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The Bayesian approach of joinpoint regression is widely used to analyze trends in cancer 
mortality, incidence and survival data. The Bayesian joinpoint regression model was used 
to study the childhood brain cancer mortality rate and its average percentage change 
(APC) per year. Annual observed mortality counts of children ages 0-19 from 1969-2009 
obtained from Surveillance Epidemiology and End Results (SEER) database of National 
Cancer Institute (NCI) were analyzed. It was assumed that death counts are 
probabilistically characterized by the Poisson distribution and they were modeled using 
log link function. Results were compared with the mortality trend obtained using 
joinpoint software of NCI.  
 
Keywords: Bayesian statistics, brain cancer, joinpoint regression, mortality, SEER. 
 

Introduction 

The social and economic burden due to cancer is growing and is the major public 
health problem in the United States. Brain cancer (brain tumor and other central 
nervous system (CNS) cancers) is one of the leading cancers ranking the second 
largest cause of childhood death due to cancers. Based on 1975-2007 incidence 
data reported by Kohler, et al. (2011), 65.2 percent of the children with brain 
tumors are diagnosed with malignant tumor whereas the percentage in adult is 
only 33.7. According to National Cancer Institute (NCI), leukemias and the 
cancers of the brain and nervous system in children account for more than half of 
the new cases. Brain tumors are the most common solid tumors and are the 
second most common type of pediatric cancer. The central brain tumor registry of 
the United States reports that approximately 4,300 children younger than age 20 
are expected to be diagnosed with primary malignant and non-malignant brain 
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cancer in 2013. According to Kleihues, et al. (1993), the histological appearances 
of childhood brain tumors differ significantly from that of adult and are classified 
into several large groups. The overall distribution of these tumors also differ 
significantly (Peterson, et al., 2006; Pollack, 1994; Pollack, 1999). Ullrich and 
Pomeroy (2003) reported that the Pilocytic astrocytoma is the main histologic 
types in children CNS tumors with relatively high frequency of occurrence. 
According to Ries et al. (2007), the overall incidence for childhood brain cancer 
rose from 1975 to 2004 with the greatest increase occurring from 1983 through 
1986. But, it is found that the mortality rates are continuously decreasing, with 
relatively higher rate from 1969 to 1980 and slower rate from 1980 onwards. 
These previous works provide motivation to study the mortality trend in 
childhood brain cancer using a statistical model that is based on realistic 
assumptions. 

 The main objective of this study is to give the reliable estimates of the 
measure of cancer mortality trend that provide up-to-date information and recent 
changes in childhood brain cancer. The joinpoint regression model is preferable 
when analyzing the trend for several years as it enables the identification points in 
the trend where the significant changes occur (Kohler, et al., 2011). If it is 
assumed that the joinpoints are random variables that can occur at any locations 
within the data range, the log likelihood is not differentiable with respect to break 
points suggesting that the Bayesian method is a more realistic approach. The 
actual Bayesian Joinpoint Regression Model will be solely based on Bayesian 
model selection criteria with the smallest number of joinpoints that accurately 
describe the Annual Percentage Change (APC) in the trend of mortality rates. 
Having good estimates of the mortality rates will allow the detection of points in 
time where significant changes occur and provide the best possible predictions. 
More practically, it helps to monitor the progress being made in childhood brain 
cancer, and evaluate the effectiveness of current treatment methods with respect 
to the mortality rate.  

The history of joinpoint is not very long. In 1992, Charlin et al. developed 
hierarchical Bayesian analysis of changepoint problem in which they used an 
iterative Monte Carlo method. Kim et al. (2000, 2004) proposed a nonparametric 
approach which is widely used for analyzing and predicting the mortality and 
incidence data. NCI still uses this methodology, among others to find the trends in 
mortality, incidence, and survival of cancers in the United States. Tiwari et al. 
(2005) first developed a Bayesian model selection method for joinpoint regression. 
They discussed two criteria to select the best model, one with smallest BIC and 
other related to the Bayes factor. All of the previous studies assumed that the 
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errors are IID normal which is not always relevant with the real application data 
such as mortality and incidence of a specific disease in a population. This 
normality assumption is relaxed by Ghosh et al. (2009) proposing a Bayesian 
approach on parametric and semi-parametric joinpoint regression model. They 
introduced a continuous prior for the joinpoints induced by the Dirichlet 
distribution. The generalized linear model with log link function in joinpoint 
regression model that evaluates and incorporates the uncertainty in both model 
selection and model parameters has been recently introduced and implemented by 
Martinez-Beneito et al. (2011).  

Studied here is the mortality trend of childhood brain cancer data obtained 
from SEER database of NCI. The total annual observed mortality counts of 
children below 20 years of age from 1969-2009 is extracted. Being rare events, 
assume the mortality counts are probabilistically characterized by the Poisson 
probability distribution and model them using log link function. The Bayesian 
joinpoint regression model discussed previously was used to obtain the mortality 
trend assuming that the break points are continuous over time. The joinpoint 
regression model is also fitted using the joinpoint software of NCI for the same 
data and compare these two results. Observe that the model using Bayesian 
approach describes the data very well giving best possible short term predictions 
and performs a better improvement over the existing methods. 

Joint Point Model 

Let , = 1,2,...,iY i n  be the number of mortality counts during a period of time it  in 
a population. Let there be k  change points that describe the behavior of the data, 
then the mean of the above outcome process can be expressed as the following 
generalized linear model  
 

 ( ) 0
=1

| = ( ) ( ) ,
k

i i i j i j
j

g E Y t t t tα β β τ ++ − + −   ∑   (1) 

 
where t  is the mean of it , and jτ  is the change point in the model and g  is 
monotonic and differentiable function, called the link function. The value of 
( )i jt τ +−  is ( )i jt τ−  if ( ) > 0i jt τ +−  and 0  otherwise. For example, if there is no 
breakpoint in the model then  
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( ) 0| = ( );i i ig E Y t t tα β+ −    

 
and if there is one break point, the model becomes  

 
( ) 0 1 1| = ( ) ( ) .i i i ig E Y t t t tα β β τ ++ − + −    

 
The model with no breakpoint is named as 0M , one breakpoint as 1M  and so on. 
There will be 1kM +  nested models over the model space in total depending upon 
the number of breakpoints. 

In the proposed model given in (1), α , and 0β  represent the common 
parameters where as '

j sβ  are non-common parameters that are model-specific. 

0β together with '
j sβ  gives the slope for the different models with at least one 

change point. To give the same meaning across different models for all common 
parameters, Martinez-Beneito et al. (2011) proposed an alternative 
parametrization imposing different conditions. This work is motivated by their 
work and follows the same parametrization. 

The purpose of this study is to fit the joinpoint regression model for the 
childhood brain and other CNS cancer mortality counts. This model is based on 
its probabilistic framework that provides a reliable estimates of annual mortality 
trend. Because the behavior of the mortality count data in the population is a rare 
event, characterized by Poisson distribution ( , ( , = 1,2, , ))i iY Poi i nλ  , it is 
modeled using natural log link function. Hence, the model in the equation (1) 
becomes 
 

 0
=1

log( ) = log( ) ( ) ( )
k

i i i j j ij
j

n t t B tτλ α β δ β+ + − +∑   (2) 

 
where in  is the total number of population at time it , ( )

j
B tτ  is the piecewise 

linear function reparametrized as in Martinez-Beneito et al. (2011), called as 
break-point centered at jτ , and , = 1,2, ,j j kδ   are binary indicator variables for 
the inclusion or exclusion of the change points in the model i.e. 
 

jδ = 1 for each breakpoint
0 otherwise{   
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The above equation (2) leads to the following estimated rate:  
 

 0
=1

( ) = ( ( ) ( )).
k

i i j j ij
j

E r exp t t B tτα β δ β+ − +∑   (3) 

 
The annual percentage change(APC) is used to characterized the trends or the 
change in rates over time. APC from thi  year to ( 1)thi +  year is given as  
 

1= 100.i i
i

i

r rAPC
r

+ −
×  

 
Because the model can choose an infinite number of breakpoints, it is necessary to 
impose some restrictions on the position of the change points in the model. This is 
done by assigning minimum gap of two years between two joinpoints starting 
after the first years and ending before the last two years.  

The aim is to find the trend that describes the behavior of the data well. This 
will be carried out by detecting the points and their locations where the significant 
changes occur within the data range. Finding such locations in this model 
selection problem is carried out by using Bayes Factor in which data updates the 
prior odds to yield posterior odds. Bayes Factor summarizes the relative support 
for one model versus another for all competing models by selecting a model with 
highest posterior probability. Therefore, the posterior probability of each model is 
calculated and the one with highest posterior probability is selected as the best 
model. 

The specification of priors plays a major role in Bayesian model selection 
problem. In an objective Bayes solution to the model selection problem, the 
nature of the posterior distributions depends upon the selection of priors and is 
very sensitive if there are non-common parameters in the models as explained in 
Berger and Pericchi (2001), and Bayarri and García-Donato (2008). Furthermore, 
the choice of improper or vague priors would lead to arbitrary Bayes Factor and 
make the result computationally challenging (see Charlin et al., 1992; Martinez-
Beneito et al., 2011). For the commmon parametersα , and 0β , choose flat priors 
i.e. 0( , ) 1π α β ∝ . For non-common parameters, the divergence-based (DB) priors 
introduced in Bayarri, et al. (2008) as a generalization of the ideas discussed in 
Zellner and Siow (1980), Jeffreys (1961), and Zellner (1984) and implemented in 
Martinez-Beneito et al. (2011) is considered. The parameter space for τ  is 
bounded, and hence the default prior ( ) 1π τ ∝  was chosen. Based on the nature of
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δ , it is reasonable to choose independent Bernoulli priors with a probability of 

success p  with hyper priors for p  being 1 1( , )
2 2

kBeta −  where k is the number of 

joinpoints in the model.  
In Bayesian paradigm, finding a good candidate model from a set of nested 

models can be computationally intensive. The high dimensionality of the integrals 
makes the model selection procedure even more complex. In choosing priors, the 
distribution of the posterior probability is not analytically tractable, thus Gibbs 
variable selection approach in WinBUGS software is used to select the best model 
with significantly minimum number of joinpoints that describes the trend. The 
process is carried out in such a way that if one more joinpoint is added in the 
model, the model becomes insignificant.  

Results 

To apply the model discussed, annually observed mortality counts for childhood 
brain and other CNS cancers from the Surveillance Epidemiology and End 
Results (SEER) database of National Cancer Institute (NCI) from 1969-2009 were 
used. The data were extracted from publicly used database of the SEER program 
7.1.0 with the adjustments of Katrina/Rita population. 

The joinpoint model is fitted using WinBUGS software. The model is 
described by four unknown joinpoints ( = 4k ) to identify the time where changes 
in the slope of child brain cancer mortality trend occurs. Two parallel chains using 
different initial values are implemented. Each chain is run for 150,000 iterations 
giving 50,000 iterations as burn-in period. The posterior inferences is based on 
100,000 iterations for each chain combining total of 200,000 iterations for each of 
the parameters. The posterior summaries for the parameters are given in Table 1. 
Out of competing five nested models, the model selection procedure selected the 
model with one joinpoint as given in Figure 1 (left). For the selected model with 
one joinpoint, the posterior distribution of each of the parameters is observed by 
monitoring the trace, iterations, Monte Carlo errors, standard deviations, and 
density curves. The trace for each of the parameters satisfy the convergence 
criteria. Also, the Monte Carlo errors are within 0.1% of the posterior standard 
deviations. 
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Figure 1: Posterior distribution of the number of joinpoints in child brain cancer mortality 
trend in United States (left), Box plot for parameters of joinpoints (right). 
 
 
 
Table 1: Parameter estimates 
 
node mean sd MC error 2.50% median 97.50% start sample 

alpha -11.76 0.006448 3.35E-05 -11.77 -11.76 -11.75 50000 200002 

beta0 -0.01176 5.33E-04 2.79E-06 -0.01281 -0.01176 -0.01071 50000 200002 

beta[1] -0.0176 0.05287 7.68E-04 -0.09726 -0.02668 0.09301 50000 200002 

beta[2] -0.01679 0.09534 0.001723 -0.1736 -0.02925 0.1602 50000 200002 

beta[3] -0.00151 0.1265 0.001355 -0.218 -0.00167 0.2119 50000 200002 

beta[4] -7.90E-04 0.1114 0.001049 -0.1963 -1.52E-04 0.1938 50000 200002 

delta[1] 0.5254 0.4994 0.01384 0 1 1 50000 200002 

delta[2] 0.4684 0.499 0.01359 0 0 1 50000 200002 

delta[3] 0.1156 0.3197 0.005156 0 0 1 50000 200002 

delta[4] 0.05771 0.2332 0.001234 0 0 1 50000 200002 
 
 

As depicted in the graph given in Figure 1 (left), the probability of the 
posterior distribution for one joinpoint is about 80%. The probability of the 
posterior distribution for no joinpoint is very low indicating that the linear trend is 
not a choice. Similary, the probability of posterior distribution does not support 
two, three, and four joinpoints as well. The boxplot for the parameters 

, = 1,2,3,4j jβ  associated with change points is plotted in Figure 1 (right). 
Posterior means and 95% credible intervals of jβ 's suggest that their posterior 
distributions are not discriminable. This indicates that no more than one joinpoint 
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is required and if more joinpoints are added, the model is not statistically 
significant.  

The estimated rates for each year from 1969-2009 are obtained by averaging 
the estimates of joinpoint and other parameters in the model at every step of 
MCMC. The graph for the estimated rate and its prediction is given in Figure 2. 
The solid curve represents the estimated trend line for annual mortality rate 
whereas the dashed lines represent its 95% pointwise credible interval. The 
observed death rates are represented by unfilled circles. The extended graph 
beyond dashed vertical line represents the prediction of rate from 2010 to 2012. 
The predicted rates are obtained by averaging the joinpoint curve at every steps of 
the MCMC from the posterior predictive distribution.  

 The graph shows that the childhood cancer mortality rates declined faster 
from 1969 to 1978 compared to the rest of the time interval in a decreasing 
fashion. The overall mortality rate decreased from 1.056 to 0.63 per 100,000 by 
2009 and is predicted to decrease continuously. 
 
 

 
Figure 2: Estimated time trend for the annual observed mortality rate per 100,000 
children 
 
 
 

For the same data, the joinpoint regression model is fitted using the 
joinpoint software of NCI. The model was fitted with the assumption of Poisson 
variance using crude death rate with an autocorrelated errors based on the data. 
Here, the heteroscedasticity is conducted by joinpoint using weighted least square. 
Grid search method is used to select the joinpoint model with grid size of 2 years 
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leaving two years at the two ends of the data values. This was done to exactly 
match the condition imposed for identifiability problem in the Bayesian joinpoint 
model. The model selection method was performed using permutation test for 
four joinpoints which performs multiple tests to select the number of joinpoints 
using the Bonferroni correction at 0.05 overall significance level for multiple 
testing. The output is as shown in Figure 3. 
 
 

 
 
Figure 3: Mortality rates of child brain cancer(1969-2009) using the joinpoint software of 
NCI. 
 
 
 

The solid line represents the estimated mortality rates obtained by using the 
joinpoint software of NCI. The graph shows that there is one joinpoint observed 
exactly at 1978. The trend line is piecewise linear indicating that the slopes of the 
rate curve before and after joinpoint are constant. It is not the case for the applied 
Bayesian joinpoint model as it gives the slope of the rate curve at any point. Also, 
the location of change point is discrete and occurs exactly at the whole number 
year in case of the regression trend given by joinpoint software whereas the 
location of change point is continuous in this case and can occur in between the 
years. Another difference is that the trend obtained from joinpoint software is 
descriptive but the regression trend obtained can give the insights for the mortality 
trend in future with credible bands. 

The graph in Figure 4 gives the average rate of change in mortality rate per 
year from 1969 to 2009 and its predictions up to 2011. APC is approximately -
2.31 for the first three years and increases from -2.29 in 1973 to -1.12 in 1980. 
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After 1980, APC looks almost contant with a fluctuation of 0.01 to 0.02 over the 
entire range. It means that the average rate of change per year in childhood brain 
cancer mortality rate has not been changed in recent years and is predicted to 
remain almost the same in the consequent years. 
 
 

 
Figure 4: Estimated Annual Percentage Change in child brain cancer rates over time per 
100,000 children 
 
 
 

To check the validity, goodness of fit, and the assumptions of the proposed 
model, different model validation techniques discussed in literature are performed. 
The residual analysis is performed to check the robustness and fit of the 
developed model. The mean and standard deviation of the standardized residual 
are 0.000527 and 0.927 respectively. This indicates that the developed model fits 
the observed data well. The Chi-square statistics for the observed mortality data 
as well as for the predicated data in each iteration of MCMC are calculated.The 
difference between two statistics is monitored and their corresponding posterior 
p -value is obtained. The p -value based on the difference of Chi-squares 

obtained as a posterior mean using WinBUGS is 0.5513. The large p -value 
shows that the observed statistic is close from what is expected under the assumed 
model. Also, the observed mortality counts fall not only inside the 95% posterior 
intervals of replicated data but also close to their mean values indicating that the 
assumptions of Poisson distribution is valid. 
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Conclusion 

This study applied newly developed Bayesian joinpoint regression model to 
uncover the patterns of childhood brain cancer mortality that provides an 
important information pertaining further study in the cases and control of the 
disease. Although, different studies have shown that the childhood cancer 
mortality rates continue to decline dramatically by more than 50% in the past two 
decades (Ries, et al., 2007; Kohler, et al., 2011) in the United States, only few 
studies have considered the probability distribution of the observed counts as 
Poisson and the location of the change points continuous in time. The application 
discussed here based on these probabilistic assumptions. The trend is obtained 
such that it describes the behavior of the observed data very well and gives the 
best possible short term predictions. The temporal trend provides the different 
slopes of the rate curve at each point of time. In contrast, the joinpoint software of 
NCI gives the same slope at each year between two change points. Also, it was 
possible to obtain the more accurate annual percentage change (APC) and it is 
observed that the APC is almost constant from 1981 and is predicted to remain 
constant. SEER routinely collects the data covering 28% of the US population and 
there is a three years lag in time to collect and process the data. In this scenario, 
predictions in the temporal trend and APC are very helpful to evaluate the 
effectiveness of the current status of the disease and play an important role to 
make evidence based policy. This improvement over the existing methods allow 
observation of the real progress being made in childhood brain cancer. 

This work may be extended to study the influence in the mean of the 
outcome by incorporating covariates in the model. But the addition of covariates 
increases the complexity of the model. The Bayes Factors are sensitive to the 
prior specifications, and therefore further study is needed in selecting the 
objective priors by exploring different objective model selection criteria for priors 
that can deal with model uncertainty. Moreover, age standardized rates in this 
methodology could be a future extension. Also, studying incidence and mortality 
rates at the same time will depict the clear picture of real improvements being 
made in cancer research. 
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