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A new tree growth model called the hyperbolic exponential nonlinear growth model is 
suggested. Its ability in model prediction was compared with the Malthus or exponential 
growth model an approach which mimicked the natural variability of heights/diameter 
increment with respect to age and therefore provides more realistic height/diameter 
predictions as demonstrated by the results of the Kolmogorov Smirnov test and Shapiro-
Wilk test. The mean function of top height/Dbh over age using the two models under 
study predicted closely the observed values of top height/Dbh in the Hyperbolic 
exponential nonlinear growth models better than the ordinary exponential growth model 
without violating most of the assumptions about the error term. 
 
Keywords: Model, height, Dbh, forest, Pinus caribaea, hyperbolic. 
 

Introduction 

The Caribbean Pine, Pinus caribaea, is a hard pine, native to Central 
America, Cuba, the Bahamas, and the Turks and Caicos Islands. It belongs to 
Australes Subsection in Pinus Subgenus. It inhabits tropical and subtropical 
coniferous forests, which include both lowland savannas and montane forests. 
Wildfire plays a major role limiting the range of this species, but it has been 
reported that this tree regenerates quickly and aggressively, replacing latifoliate 
trees. In zones not subject to periodic fires, the succession continues and a tropical 
forest thrives. It has been widely cultivated outside its natural range, and 
introduced populations can be found today in Jamaica, Colombia, South Africa or 
China. The species has three distinct varieties, one very distinct and treated as a 
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separate species by some authors. These are Pinus caribaea var. caribaea, Pinus 
caribaea var. bahamensis (Bahamas Pine), and Pinus caribaea var. hondurensis 
(Honduras Pine).  

Pines are a member of the gymnosperms, which literally means ‘naked seed’. 
This is because the ovule (which develops into the seed) is not enclosed during 
fertilization within a fruit-like structure like it is in flowering plants. 
Gymnosperms are an ancient lineage of plants that were abundant during the era 
of the dinosaurs. Pines are wind ‘pollinated’ and do not have flowers. They bear 
their seeds in distinctive pinecone. Other gymnosperms in Belize include the 
cycads that are common in the savanna and mountain cypress (Podocarpus 
guatemalensis) a tree found particularly in upland forests. 
 
 

 
 
Figure 1. Growing Pines 

 
 
Figure 2. A young Pine 
 

 
A mathematical description of a real world system is often referred to as a 

mathematical model. A system can be formally defined as a set of elements also 
called components. A set of trees in a forest stand, producers and consumers in an 
economic system are examples of components. The elements (components) have 
certain characteristics or attributes and these attributes have numerical or logical 
values. Among the elements, relationships exist and consequently the elements 
are interacting. The state of a system is determined by the numerical or logical 
values of the attributes of the system elements. Experimenting on the state of a 
system with a model over time is termed simulation (Kleijnen, 1987). Scientific 
forest management relies to a large measure on the predictions of the future 
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conditions of individual stands. This is achieved by predicting the increment from 
the current stand structure and updating the current values at each cycle of 
iteration using a growth model. The structural changes over time can be 
monitored under different cutting cycles and cutting intensities and optimal 
management policies can be arrived at based on the results of such simulation 
runs 

Jayaraman and Bailey (1988) proposed a growth model useful for 
simulating the changes occurring in an uneven aged mixed species stand. The 
mean annual increment in basal area and number of trees is predicted from the 
current values of basal area, number of trees, site quality and species composition 
of the stand and the simulation proceeds by progressive updating of the values of 
predictor variables in annual cycles. Changes in site quality are carried forward 
through a linear difference equation. Volume estimates at each time point can be 
obtained by an appropriate height-diameter relation and a volume table function. 

Kumar (1988) reviews the different supply and demand models available in 
forestry and suggests a new model for a small wood producing country. The 
model essentially consists of a supply equation, an export function, a home 
demand equation and ar: identity on the inventories. Functional forms for the 
equations will have to be determined by empirical verification. Parameters can be 
estimated if data are available on a lengthy time series basis after converting the 
model to its reduced form. The reduced form expresses each current exogenous 
variable as a function of exogenous and lagged endogenous variables. 
Deterministic simulation can then be undertaken by tracing the time path of 
endogenous variables by specifying initial values for exogenous and lagged 
endogenous variables. 
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Figure 3. Components of forest growth and the analogous representation in a stand 
growth model. 
 
 

Growth models assist forest researchers and managers in many ways. Some 
important uses include the ability to predict future yields and to explore 
silvicultural options. Models provide an efficient way to prepare resource 
forecasts, but a more important role may be their ability to explore management 
options and silvicultural alternatives. For example, foresters may wish to know 
the long-term effect on both the forest and on future harvests, of a particular 
silvicultural decision, such as changing the cutting limits for harvesting. With a 
growth model, they can examine the likely outcomes; both with the intended and 
alternative cutting limits and can make their decision objectively. The process of 
developing a growth model may also offer interesting new insights into stand 
dynamics. 
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Figure 4. The role of growth models and complementary data in providing forest 
management information. 
 
 

The total height (Ht) of a tree is important for assessing tree volume 
(Walters et al., 1985; Walters and Hann, 1986) and stand productivity through site 
index (Hann and Scrivani, 1987), but accurate measurement of this variable is 
time consuming. As a result, foresters often choose to measure only a few trees’ 
heights and estimate the remaining heights with height-diameter equations. 
Foresters can also use height-diameter equations to indirectly estimate height 
growth by applying the equations to a sequence of diameters that were either 
measured directly in a continuous inventory or predicted indirectly by a diameter-
growth equation. The diameter-growth prediction approach can be valuable for 
modeling growth and yield of trees and stands as it’s done in ORGANON (Hann 
et al., 1997). A number of studies of height-diameter relationships in northwestern 
Oregon, western Washington, and southwest British Columbia have already been 
published. Curtis (1967) investigated several equations for Douglas-fir that 
included tree diameter outside bark at breast height (DBH) as an explanatory 
variable. Larsen and Hann (1987), and Wang and Hann (1988), using a variant of 
Curtis’s (1967) recommended model, found that an equation which included tree 
diameter and site index was a better height predictor for 6 of 16 species in the 
mid-Willamette Valley. Krumland and Wensel (1988) included top height and 
quadratic mean diameter in their height-diameter equation. 

Predicting total tree height based on observed diameter at breast height 
outside bark is routinely required in practical management and silvicultural 
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research work (Meyer, 1940). The estimation of tree volume, as well as the 
description of stands and their development over time, relies heavily on accurate 
height-diameter functions (Curtis, 1967). Many growth and yield models also 
require height and diameter as two basic input variables, with all or part of the 
tree height predicted from measured diameters (Burkhart et al., 1972; Curtis et al., 
1981; Wykoff et al., 1982). In the cases where actual measurements of height 
growth are not available, height-diameter functions can also be used to indirectly 
predict height growth (Larsen and Hann 1987). Curtis (1967) summarized a large 
number of available height-diameter functions and used Furnival’s index of fit to 
compare the performance of 13 linear functions fitted to second-growth Douglas-
fir (Pseudotsuga menziesii (Mirb.) Franco) data. Since then, many new height-
diameter functions have been developed. With the relative ease of fitting 
nonlinear functions and the nonlinear nature of the height-diameter relationships, 
nonlinear height-diameter functions have now been widely used in height 
predictions (Schreuder et al., 1979; Curtis et al., 1981; Wykoff et al., 1982; Wang 
and Hann 1988; Farr et al., 1989; Arabatzis and Burkhart, 1992). 

Individual tree heights and diameters are essential measurements in forest 
inventories, and are used in estimating timber volume, site index and other 
important variables related to forest growth and yield, succession and carbon 
budget models (Peng, 2001). The time taken to measure tree heights takes longer 
than measuring the diameter at breast height. For this reason, often only the 
heights of a subset of trees of known diameter are measured, and accurate height-
diameter equations must be used to predict the heights of the remaining trees to 
reduce the cost involved in data acquisition. If stand conditions vary greatly 
within a forest, a height regression may be derived separately for each stand, or a 
generalized function, which includes stand variables to account for the variability, 
may be developed (Curtis, 1967; Zhang et al., 1997; Sharma and Zhang, 2004). 
Two trees within the same stand and that have the same diameter are not 
necessarily of the same height; therefore a deterministic model does not seem 
appropriate for mimicking the real natural variability in height (Parresol and 
Lloyd, 2004). 

The objective of the present study was to evaluate the performance of a 
stochastic height-diameter approach in mimicking the observed natural variability 
in Gmelina Arborea heights recorded in 2011. 



OYAMAKIN, CHUKWU & BAMIDURO 

387 

Material and Methods 

A fundamental nonlinear least squares assumption is that the error term in all the 
height-diameter functions considered are independent and identically distributed 
with zero mean and constant variance. However, in many forestry situations there 
is a common pattern of increasing variation as values of the dependent variable 
increase. This is clearly evident from the scatterplots of height versus DBH in 
Figure 2, where the values of the error are more likely to be small for small DBH 
and large for large DBH. When the problem of unequal error variances occurs, 
weighted nonlinear least squares (WNLS) is applied, with the weights selected to 
be inversely proportional to the variance of the error terms. 

We used data from Gmelina Arborea even-aged stands located in Federal 
College of Forestry, Ibadan. The stand conditions within the plantation were 
similar and thus we consider the data obtained as belonging to the stands.  

Method of Estimation 

Consider a nonlinear model  
 
 ( ),i iH f D= + iB    (1) 
 

1, 2, ,i n= … , Where H  is the response variable, D  is the independent variable, B 
is the vector of the parameters jβ  to be estimated ( 1 2,† ., pβ β β…… ), i  is a 
random error term , p  is the number of unknown parameters, n  is the number of 
observation. The estimator of jβ ’s are found by minimising the sum of squares 
residual ( RssSS ) function 
 

 ( ) 2

1

,
n

Rss i i
i

SS H f D B
=

 = − ∑   (2) 

 
Under the assumption that the i are normal and independent with mean zero and 
common variable 2σ . Since iH  and Di  are fixed observations, the sum of 
squares residual is a function of B, these normal equations take the form of  
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1

,
, 0

n
i

i i
i j

f D B
H f D

β=

 ∂
− = 

∂  
∑ B   (3) 

 
For 1, 2, ,j p= … . When the model is nonlinear in the parameters so are the 
normal equations consequently, for the nonlinear model, consider Table 2, it is 
impossible to obtain the closed solution of the least squares estimate of the 
parameter by solving the p  normal equations describe in Eq (3). Hence an 
iterative method must be employed to minimize the Resss  (Draper and Smith 1981, 
Ratkowsky 1983).  

The hyperbolic functions have similar names to the trigonometric functions, 
but they are defined in terms of the exponential function. The three main types of 
hyperbolic functions and the sketch of their graphs are given below. 
 
 

 
 
(a) Cosh Function 

 
 
(b) Sinh function 

 
 
(c) Tanh Function 
 

 
The function (b) above is pronounced as ‘shine’, or sometimes as ‘sinch’. The 
function is defined by the formula 
 

sinh
2

x xe ex
−−

=  

 
Again, we can use our knowledge of the graphs of ex and e−x to sketch the 

graph of sinh x. First, let us calculate the value of sinh 0. When x = 0, ex = 1 and 
e−x = 1. So 
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0 0 1 1sinh 0
2 2

e ex
−− −

= = =  

 
Next, let us see what happens as x gets large. We shall rewrite sinh x as; 
 

sinh
2 2

x xe ex
−

= −  

 
To see how this behaves as x gets large, recall the graphs of the two exponential 
functions. 
 
 

 
 
Graph of exponential functions 
 
 
As x gets larger, ex increases quickly, but e−x decreases quickly. So the second 

part of the difference 
2 2

x xe e−

−  gets very small as x gets large. Therefore, as x gets 

larger, sinh x gets closer and closer to 
2

xe . This is written as; 

Sinh
2

xex ≈  For large x 
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But the graph of Sinh x will always stay below the graph 
2

xe . This is because, 

even though 
2

xe−

−  (the second part of the difference) gets very small, it is always 

less than zero. As x gets larger and larger the difference between the two graphs 
gets smaller and smaller. 

Next, suppose that x is negative. As becomes more negative, −e−x becomes 
large and negative very quickly, but ex decreases very quickly. So as x becomes 

more negative, the first part of the difference 
2 2

x xe e−

−  gets very small. So sinh x 

gets closer and closer to 
2

xe−

− . This is written as; 

 

Sinh
2

xex −
≈  For large negative x 

 

Now the graph of sinh x will always stay above the graph of 
2

xe−

 when x is 

negative. This is because, even though 
2

xe  (the first part of the difference) gets 

very small, it is always greater than zero. But as x gets more and more negative 
the difference between the two graphs gets smaller and smaller. 

We can now sketch the graph of sinh x. Notice that sinh(−x) = − sinh x. 
 

 
 
Graph of sinh (x) 
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Hence, the hyperbolic sine function and its inverse provide an alternative method 
for evaluating; 
 

2

1
1

dx
x+

∫  

 
If we make the substitution, then; 
 

( ) ( ) ( )2 2 21 1 coshx sinh u cosh u u+ = + = =  

 
Where the second equality follows from the identity cosh2(u) − sinh2(u) = 1 and 
the last equality from the fact that cosh(u) > 0 for all u. Hence; 
 

( )
( ) ( )1

2

cosh1
cosh1

u
dx du du u c sinh x c

ux
−= = = + = +

+
∫ ∫ ∫  

 
The following proposition is a consequence of the integral above i.e. 
 

( )1

2

1
1

d sinh x
dx x

− =
+

 

 

Also, using the substitution x = tan (u), 
2 2

uπ π
− < <  , that  

 
2

2

1 1
1

dx log x x c
x

= + + +
+

∫  

 
Since two anti-derivatives of a function can differ at most by a constant, there 
must exist a constant k such that 
 

( )1 21sinh x log x x k− = + + +  

 
for all x. Evaluating both sides of this equality at x = 0, we have 
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( ) ( )10 0 log 1sinh k k−= = + =  
Thus k = 0 and 
 

( )1 21sinh x log x x− = + +  

 
for all x. Since the hyperbolic sine function is defined in terms of the exponential 
function, we should not find it surprising that the inverse hyperbolic sine function 
may be expressed in terms of the natural logarithm function. 
 
 

 
 
Graph of arcsinh (x) 
 

Hyperboloastic Exponential Growth Model (HEGM) 

 

21
H H r
t t

θ ∂
= + ∂ + 

 

 
Separating the variables we have that; 
 

21
H r dt
H t

θ ∂
= + 

+ 
 

 
Integrating both sides we have that; 
 

( ) 1ln arcsinhH rt t Cθ= + +  
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Hence,  
 

( )arcsinhrt tH Ae θ+=  
 

Therefore, we shall apply the two models below on Age-height and Age-
Diameter of pines (pinus carean) growth; 

 
(1) ( ) ( )arcsinh arcsinh, and rt t rt tH Ae D Aeθ θε ε+ += + = +  
 
(2) , and rt rtH Ae D Aeε ε= + = +  
 

Result and Discussion 

Tables 1-4 below shows the estimated parameter for exponential and hyperbolic 
exponential growth model with their respective coefficient of determination (R2) 
for age-height/age-diameter models 
 
 
Table 1. Height Parameter Estimates using Exponential growth model 
 

   
95% Confidence Interval 

Parameter Estimate Std. Error Lower Bound Upper Bound 

a 9.33 0.559 8.138 10.522 

b 0.013 0.001 0.01 0.015 
 
R-Square = 90.9% 
 
 
Table 2. Height Parameter Estimates using Hyperbolic Exponential growth model 
 

   
95% Confidence Interval 

Parameter Estimate Std. Error Lower Bound Upper Bound 

a 2.178 .992 .051 4.306 

b .001 .003 -.006 .009 

c .448 .138 .153 .743 
 
R-Square = 95.2% 
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Table 3. Diameter Parameter Estimates using Exponential growth model 
 

   
95% Confidence Interval 

Parameter Estimate Std. Error Lower Bound Upper Bound 

a 10.945 .515 9.847 12.043 

b .013 .001 .011 .015 
 
R-Square = 94.5% 
 
 
Table 4. Diameter Parameter Estimates using Hyperbolic Exponential growth model 
 

   
95% Confidence Interval 

Parameter Estimate Std. Error Lower Bound Upper Bound 

a 2.503 .680 1.044 3.963 

b .002 .002 -.003 .006 

c .452 .082 .276 .628 
 
R-Square = 98.3% 
 
 

Also, the predicted and observed height and diameter were plotted to show 
the relationship and how best the models predicted the observed data on height 
and diameter of pines. This is also shown in the figure below: 
 

 
Figure 5. Observed Height against 
Predicted height 
(Exponetial growth model) 

 
Figure 6. Observed Diameter against 
Predicted diameter 
(Exponetial growth model) 
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Figure 7. Observed Height against 
Predicted height 
(Hyperbolic exponetial growth model) 

 
Figure 8. Observed Diameter against 
Predicted diameter 
(Hyperbolic exponetial growth model) 
 

 
 
Table 5. ANOVA summary for Height Parameter Estimates using Exponential growth 
 

Source Sum of Squares df Mean Squares 

Regression 4873.136 2 2436.568 

Residual 29.424 15 1.962 

Uncorrected Total 4902.560 17  

Corrected Total 323.678 16  
 
Dependent variable: height 
a. R squared = 1 - (Residual Sum of Squares) / (Corrected Sum of Squares) = .909. 
 
 
Table 6. ANOVA summary for Height Parameter Estimates using Hyperbolic Exponential 
growth model 
 

Source Sum of Squares df Mean Squares 

Regression 4886.955 3 1628.985 

Residual 15.605 14 1.115 

Uncorrected Total 4902.560 17 
 

Corrected Total 323.678 16 
 

 
Dependent variable: height 
a. R squared = 1 - (Residual Sum of Squares) / (Corrected Sum of Squares) = .952. 
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Table 7. ANOVA summary for Diameter Parameter Estimates using Exponential growth 
model 
 

Source Sum of Squares df Mean Squares 

Regression 6910.833 2 3455.417 

Residual 25.417 15 1.694 

Uncorrected Total 6936.250 17 
 

Corrected Total 464.198 16 
 

 
Dependent variable: height 
a. R squared = 1 - (Residual Sum of Squares) / (Corrected Sum of Squares) = .945. 
 
 
Table 8. ANOVA: Diameter Parameter Estimates using Hyperbolic Exponential growth 
model 
 

Source Sum of Squares df Mean Squares 

Regression 6928.553 3 2309.518 

Residual 7.697 14 .550 

Uncorrected Total 6936.250 17 
 

Corrected Total 464.198 16 
 

 
Dependent variable: height 
a. R squared = 1 - (Residual Sum of Squares) / (Corrected Sum of Squares) = .983. 
 

Testing for Independence of Errors (Run test) and 
Normality of Error (Shapiro-Wilk test) 

Two assumptions made in the models are: 
 

Errors are independent 
Errors are normally distributed. 

 
These assumptions were verified by examining the residuals. If the fitted models 
are correct, residuals should exhibit tendencies that tend to confirm or at least 
should not exhibit a denial of the assumptions. 

Hence, we tested the following hypotheses stated below; 
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H0: Errors are independent  (Using Runs Test) 
H1: Errors are not independent 

 
And 
 

H0: Errors are normally distributed  (Using Shapiro-Wilk test) 
H1: Errors are not normally distributed 

 
Let m be the number of pluses and n be the number of minuses in the series 

of residuals. The test is based on the number of runs(r), where a run is defined as 
a sequence of symbols of one kind separated by symbols of another kind. A good 
large sample approximation to the sampling distribution of the number of runs is 
the normal distribution with mean; 

 
2 1mnMean
m n

= +
+

 

 
and,  
 

( ) ( )
( )

2
2

2 2
( ) 1

mn mn m n
Variance

m n m n
σ

− −
=

+ + −
 

 
Therefore, for large samples like ours the required test statistic is; 
 

( ) ( )0,1
r h

Z N
µ

σ
+ −

= ∼  

 
where, 
 

0.5,   
0.5,  

h
if r

r
µ
µ

=  <
 − >

 

 
Also, the required test statistic for the test of normality (Shapiro-Wilk test) is 
given by; 
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2SW
b

=  

Where; 

( ) ( ){ }2
1n k kS a k x x+ −= −∑  

and, 
( )2

ib x x= −∑  
 
In the above, the parameter k takes the values; x(k) is the kth order statistic of the 
set of residuals and the values of coefficient a(k) for different values of n and k 
are given in the Shapiro-Wilk table (1965). H0 is rejected at level α i.e. W is less 
than the tabulated value. 
 
 
Table 9. Result of the test of independence of Residuals using Run Test 
 

Residual Test Value No. of Runs Z Asymp. Sig.(2 tailed) 

Exp. Height -0.2000 5 -1.802 0.072* 

Exp. Diameter -0.0318 3 -3.002 0.003*** 

HExp. Height -0.0047 6 -1.494 0.135ns 

HExp. Diameter 0.0035 4 -2.499 0.012** 
 
* Significant at 10%, ** significant at 5%, *** significant at 99% and ns not significant 
 
 
Table 10. Result of the test of normality of Residuals using K-S & S-W Tests 
 

Residual 
Kolmogorov-Sminov Shapiro-Wilk 

Statistic Asmp. Sig. Statistic Asmp. Sig. 

Exp. Height 0.262 0.003*** 0.842 0.008*** 
Exp. Diameter 0.198 0.077* 0.933 0.244ns 
H Exp. Height 0.172 0.193ns 0.954 0.519ns 

H Exp. Diameter 0.192 0.095ns 0.953 0.500ns 
 
* Significant at 10%, ** significant at 5%, *** significant at 99% and ns not significant 

Conclusion 

The mean function of top height and Dbh over age using the Hyperbolic 
Exponential growth model predicted closely the observed values of top height and 
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Diameter of Pines. However, large correlations of the estimated parameters do not 
necessary mean that the original model is inappropriate for the physical situation 
under study. For example, in a linear model, when a particular β (a coefficient) 
does not appear to be different from zero, it does not always imply that the 
corresponding x (independent variable) is ineffective; it may be that, in a 
particular set of data under study, x does not change enough for its effect to be 
discernible. In general, efficient parameter estimation can best be achieved 
through a good understanding of the meaning of the parameters, the mathematics 
of the model, including the partial derivatives, and the system being modeled. 
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