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The multivariate distribution of five main indices of Tehran stock exchange is 
approximated using a pair-copula model. A vine graphical model is used to produce an 𝑛-
dimensional copula. This is accomplished using a flexible copula called a minimum 
information (MI) copula as a part of pair-copula construction. Obtained results show that 
the achieved model has a good level of approximation. 
 
Keywords: Minimum information copula, pair-copula, vine. 
 

Introduction 

Sometimes in applied probability and statistics it is necessary to model multiple 
uncertainties or dependencies using multivariate distributions. To do it, it is 
common to use discrete model such as Bayesian networks but when modeling 
financial data, it is necessary to have model of continuous random variables. 
Copulas are quickly gaining popularity as modeling dependencies e.g. surveys by 
Nelsen (1999), Joe (1997). Copulas have found application in a number of areas 
of operations research including combining expert opinion and stochastic 
simulation, (e.g. Abbas et al. (2010) and references cited therein). A copula is a 
joint distribution on the unit square (or more generally on the unit n-cube) with 
uniform marginal distributions. Under reasonable conditions, a joint distribution 
for 𝑛-random variables can be found by specifying the univariate distribution for 
each variable, and in addition, specifying the copula. Following Sklar (1959) the 
joint distribution function of random vector ( )1, , nX X…  is 
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 ( ) ( ) ( )( )1 n 1 1 n nF x , ,x C F x , ,F x… = …   (1) 
 

Where 𝐶 is a copula distribution function, and 𝐹1, … ,𝐹𝑛 are the univariate, 
or marginal, distribution functions. A special case is that of the 'Gaussian copula', 
obtained from Gaussian joint distribution and parameterized by the correlation 
matrix. Use of the Gaussian copula to construct joint distributions is equivalent to 
the NORTA method (normal to anything). Clearly the use of a copula to model 
dependency is simply a translation of one difficult problem into another: instead 
of the difficulty of specifying the full joint distribution is the difficulty of 
specifying the copula.  The main advantage is the technical one that copulas are 
normalized to have support on the unit square and uniform marginals. As many 
authors restrict the copulas to a particular parametric class (Gaussian, multivariate 
t, etc.) the potential flexibility of the copula approach is not realized in practice.  

As mentioned because of difficulty in specifying the copulas and restricted 
to the exact class, copula approximation is to some extend new topic in this case. 
The approach used herein allows a lot of flexibility in copula specification that 
was analyzed and some properties of it was said in Bedford et al. (2013) and 
developed by Daneshkhah et al. (2013), and for approximation multivariate 
distribution, a graphical model, called a vine, is used to systematically specify 
how two-dimensional copulas are stacked together to produce an 𝑛-dimensional 
copula. 

The main objectives is to show that a vine structure can be used to 
approximate Tehran stock exchange multivariate copula to any required degree of 
approximation. The standing technical assumptions are that the multivariate 
copula density 𝑓under study is continuous and is non-zero. No other assumptions 
are needed. A constructive approach involves the use of minimum information 
(MI) copula that can be specified to any required degree of precision based on the 
data available. According to Bedford et al. (2013) good approximation locally 
guarantees good approximation globally. 
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Figure 1. A Regular Vine with 5 Elements 
 
 
A vine structure imposes no restrictions on the underlying joint probability 
distribution it represents (as opposed to the situation for Bayesian networks, for 
example). However this does not mean to ignore the question about which vine 
structure is most appropriate, for some structures allow the use of less complex 
conditional copulas than others. Conversely, if only certain families of copulas are 
allowed then one vine structure might fit better than another. 

Vine constructions for multivariate dependency 

A copula is a multivariate distribution function with standard uniform marginal 
distributions. Using (1) it may be observed that a copula can be used, in 
conjunction with the marginal distributions, to model any multivariate distribution. 
However, apart from the multivariate Gaussian, Student, and the exchangeable 
multivariate Archimedean copulas, the set of higher-dimensional copulas 
proposed in the literature is limited and is not rich enough to model all possible 
mutual dependencies amongst the n  variants (see Kurowicka & Cooke, 2006 for 
details of these copulas). Hence it is necessary to consider more flexible 
constructions. 

A flexible structure, here denoted the pair-copula construction or vine, 
allows for the free specification of (at least) ( )1 / 2n n −  copulas between n  
variables. (Note that ( )1 / 2n n −  is the number of entries above the diagonal of an 
n n×  correlation matrix - though these are algebraically related so not completely 
free variables). This structure was originally proposed by Joe (1997), and later 
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reformulated and discussed in detail by Bedford and Cooke (2001, 2002), who 
considered simulation, information properties and the relationship to the 
multivariate normal distribution but who also considered a more general method 
called a Cantor tree construction. Kurowicka and Cooke (2006) considered 
simulation issues, and Aas et al. (2009) examined inference. The modeling 
scheme is based on a decomposition of a multivariate density into a set of 
bivariate copulas. The way these copulas are built up to give the overall joint 
distribution is determined through a structure called a vine, and can be easily 
visualized. A vine on n  variables is a nested set of trees, where the edges of the 
tree j  are the nodes of the tree 1j +  (for 1,..., 2j n= − ), and each tree has the 
maximum number of edges. For example, Figure 1 shows a vine with 5 variables 
which consists of four trees ( )1 2 3 4, , ,T T T T  with 4, 3, 2 and 1 edges, respectively. A 
regular vine on n  variables is a vine in which two edges in tree j  are joined by 
an edge in tree 1j +  only if these edges share a common node, for 1,..., 2j n= − . 
There are ( )1 / 2n n −  edges in a regular vine on n  variables. The formal 
definition is as follows. 
 
Definition: (Vine, regular vine) V is a vine on n  elements if 
 

1. 1 1( , ), nV T T −= … . 
 
2. 1T  is a connected tree with nodes { }1 1,...,N n=  and edges 1E ; for 

2,..., 1, ii n T= −  is a connected tree with nodes 1N  = 1iE − . 
V  is a regular vine on n  elements if additionally the proximity condition 
holds: 
 
3. For 2,..., 1i n= − , if a  and b  are nodes of iT  connected by an edge in 

iT , where { }1 2,a a a= , { }1 2,b b b= , then exactly one of the ia  equals one of 
the ib . 

 
One of the simplest regular vines is shown in Figure 1 - this structure is 

called D-vine, see Kurowicka and Cooke, 2006, pp. 93. Here, 1T  is the tree 
consisting of the straight edges between the numbered nodes. 2T is the tree 
consisting of the curved edges that join the straight edges in 1T , and so on. 
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For a regular vine each edge of 1T  is labelled by two numbers from { }1,..., n . 
If two edges of 1T , for example 12 and 23, which are nodes joined by an edge in 

2T  are taken, then of the numbers labeling these edges one is common to both (2), 
and they both have one unique number (1,3 respectively). The common number(s) 
will be called the conditioning set eD  for that edge e  (in this example the 
conditioning set is simply {2}) and the other numbers will be called the 
conditioned set (in this example {1, 3}). For a regular vine the conditioned set 
always contains two elements. 

A vine distribution is associated to a vine by specifying a copula to each 
edge of  1T  and a family of conditional copulas for the conditional variables given 
the conditioning variables, as shown by the following result of Bedford and 
Cooke (2001). 
 
Theorem 1: Let ( )1 1,..., nV T T −=  be a regular vine on n  elements. For each edge 

( ), ie j k T∈ , 1,..., 1i n= −  with conditioned set { },j k  and conditioning set eD , let 
the conditional copula and copula density be | ejk DC and | ejk Dc  respectively. Let the 
marginal distributions iF  with densities if , 1,...,i n=  be given. Then the vine-
dependent distribution is uniquely determined and has a density given by 
 

 ( ) ( ) ( )e e j e k

i

n

1 n i jk|D j|D ( x ) jk|D ( x )
i 1 e( j ,k ) E

f x , , x f x c F ,F  
= ∈

… =∏ ∏   (2) 

 
The existence of regular vine distributions is discussed in detail by Bedford and 
Cooke (2002). 

The density decomposition associated with 5 random variables 
( )1 5,...,X X X=  with a joint density function ( )1 5,† ,†f x x…  satisfying a copula-

vine structure shown in Figure 1 with the marginal densities 1 5, ,f f…   is 
 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )
( ) ( )( )

n

12345 i 12 1 2 23 2 3 34 3 4 45 4 5
i 1

13 1 2 3 2 24 2 3 4 3 35 3 4 5 4

14 1 2 3 4 2 3 25 2 3 4 5 3 4

15 1 2 3 4 5 2 3 4

f f x   c F x ,F x c F x ,F x c F x ,F x c F x ,F x

c F x | x ,F x | x c F x | x ,F x | x c F x | x ,F x | x

c F x | x ,x ,F x | x ,x c F x | x ,x ,F x | x ,x

c F x | x ,x ,x ,F x | x ,x ,x

=

= ×

×

×

×

∏
  (3) 
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This formula can be derived for this case using the general expression 
 

( ) ( ) ( ) ( )( )12 1 2 12 1 2f ( x, y ) f x f y c F x ,F y=  
 
or equivalently 
 

( ) ( ) ( )( )1|2 1 12 1 2f ( x | y ) f x c F x ,F y=  
 
where 12c  is the copula density and 1F , 2F  are the univariate distributions. Starting 
with 
 

( ) ( ) ( ) ( )
( ) ( )

12345 1 5 1 1 2|1 2 1 3|12 3 1 2

4|123 4 1 2 3 5|1234 5 1 2 3 4

f x , , x f x f x | x f x | x ,x

f x | x ,x ,x f x | x ,x ,x ,x

… =
 

 
inductively convert the latter expression in to that shown in (3). This results in 
 

( ) ( ) ( )( )2|1 2 1 2 2 12 1 1 2 2f ( x | x ) f x c F x ,F x=  
 
Next, 
 

 
( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( )
| |3|12 3 1 2 3|2 3 2 13|2 1|2 1 2 3|2 3 2

3 3 23 2 2 3 3 13|2 1 1 2 3 3 2

f x x ,x f x x c F x | x ,F x | x

f x c F x ,F x c F x | x ,F x | x

=

=
  (4) 

 
The calculation for the remaining term ( )5|1234 5 1 2 3 4| , , ,f x x x x x  is left to the reader. 

Note that in the special case of a joint normal distribution, the normal copula 
would be used everywhere in the above expression and the conditional copulas 
would be constant (i.e. not depend on the conditioning variable). This means that 
the joint normal structure is specified by ( )1 / 2n n −  (conditional) correlation 
values, which are algebraically free between -1 and +1 (unlike the values in a 
correlation matrix). See Bedford and Cooke (2002) for more details. The above 
theorem gives a constructive approach to build a multivariate distribution given a 
vine structure: If choices of marginal densities and copulas are made then the 
above formula will give a multivariate density. Hence, vines can be used to model 
general multivariate densities. However, in practice it is necessary to use copulas 
from a convenient class, and this class should ideally be one that allows any given 
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copula to be approximated to an arbitrary degree. Having this class of copulas 
allows any multivariate distribution to be approximated using any vine structure. 

Unlike the situation with Bayesian networks, where not all structures can be 
used to model a given distribution, the theorem shows that - in principle - any 
vine structure may be used to model a given distribution. However, when specific 
families of copulas are used it seems that some vine structures do work better than 
others. That is, given a family of copulas, some vine structures may give a better 
degree of approximation than others. It is worth stressing the point that the 
flexibility of vines gives the potential to capture any fine grain structure within a 
multivariate distribution. A key aspect that cannot be modeled by Bayesian 
networks is that of conditional dependence. Bayesian networks are built around 
the concept of conditional independence -arrows from a parent node to two child 
nodes means that the child variables are conditionally independent given the 
parent variable. However, different models of conditional dependence are not 
available as building blocks in Bayesian networks. Multivariate Gaussian copulas 
do allow for a specification of conditional dependence, but do not allow that 
dependence to change - in a multivariate normal distribution, the conditional 
correlation of two variables given a third may be non-zero but is always constant. 
This approach, by contrast, allows the explicit modeling of non-constant 
conditional dependence. 

The minimum information (MI) copula using the D1AD2 
algorithm 

Bedford et. al (2013) presented a way to approximate a copula using minimum 
information methods which demonstrate uniform approximation in the class of 
copula used. Bedford and Meeuwissen (1997) applied a so-called DAD   
algorithm to produce discretized MI copula with given rank correlation. This 
approach can be used whenever it is desirable to specify the expectation of any 
symmetric function of ( )U F x=  and ( )V F y= . 

In order to have asymmetric specifications the 1 2D AD  algorithm must be 
used where A  is a positive square matrix, thus, diagonal matrices 1D  and 2D  can 
be found such that the product of 1 2D AD  is doubly stochastic. It is possible to 
correlate the variables of interest X  and Y  by introducing constraints based on 
knowledge about functions of these variables. Suppose there are k  of these 
functions, namely ( ) ( ) ( )' ' '

1 2, , , , , ,kh X Y h X Y h X Y…  and mean values 1,..., kα α  are 
specified for all functions respectively from the data or the expert judgment. 
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Corresponding functions of the copula variables U and V , defined by 
( ) ( ) ( )( )' 1 1

1 1 1 2, ,h U V h F U F V− −= , etc. can be defined and clearly these should also 

have the specified expectations 1,..., kα α . The kernel 
 
 1 1 k kA( u, v )  exp( h ( u, v )  . . .  h ( u, v ))λ λ= + +   (5) 
 
is formed, where u  denotes the realization of U  and v  the realization of V . 

For practical implementations it is necessary to discretize the set of ( ),u v  
values such that the whole domain of the copula is covered. This means that the 
kernel A  described above becomes a 2-dimensional matrix A  and that the 
matrices 1D  and 2D  are required to create a discretized copula density 
 
 1 2P D AD=   (6) 
 
Suppose that both U  and V  are discretized into n  points, respectively iu , and jv , 

, 1,...,i j n= . Then ( ) ( ) ( )( )1 1
1 1, , ,ij nA a D diag d d= = … and ( ) ( )( )2 2

2 1 , , nD diag d d= …

where ( ) ( ) ( )1
1, ,ij i j i ia A u v d D u= = and ( ) ( )2

2i id D u= . The double stochastically 

of 1 2D AD with the extra assumption of uniform marginals means that 
 

( 1 ) ( 2 )
i j ij

j

1 i 1, ,n   d d a
n

∀ = … =∑  

 
and 
 

( 1 ) ( 2 )
i j ij

i

1 j 1, ,n    d d a
n

∀ = … =∑  

 
because for any given i  and j  the selected cell size in the unit square is 1/ n . 
Hence 
 

( 1 )
i ( 2 )

j ijj

nd
d a

=
∑
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and 
 

( 2 )
j ( 1 )

i iji

nd
d a

=
∑

 

 
The 1 2D AD  algorithm works by fixed point iteration and is closely related to 
iterative proportional fitting algorithms. 

It can be shown that a multivariate distribution can be arbitrarily well 
approximated by using a fixed family of bivariate copula. A key step to 
demonstrating this is to show that the family of bivariate (conditional) copula 
densities contained in a given multivariate distribution forms a compact set in the 
space of continuous functions on [ ]20,1  (see Bedford et al. (2013) for proof). 
Based on this it can be shown that the same finite parameter family of copula can 
be used to give a given level of approximation to all conditional copula 
simultaneously. 

The set [ ]( )20,1C  can be considered as a vector space, and in this context a 

basis is simply sequence of functions [ ]( )2
1 2, ,... 0,1h h C∈ for which any function 

[ ]( )20,1g C∈  can be written as 
1

i i
i

g hλ
∞

=

=∑ . There are lots of possible bases, for 

example 
 

2 2 2 2u, v, uv, u , v , u ,vu,v , . . . . 
 
Given an ordered basis [ ]( )2

1 2, ,... 0,1h h C∈  and a required degree of 

approximation 0∈>  in the sup metric, Bedford et al. (2013) stated the following 
theorem. 
 
Theorem 2: Given 0∈> , there is a k  such that any member of ( )LNC f  can be 
approximated to within error 0∈> by a linear combination of 1,..., kh h . 

First consider a practical guide to build a minimally informative copula 
structure briefly discussed to approximate any multivariate distribution. A 
multivariate distribution can be approximated as follows: 
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• Specify a basic family ( )B k  
• Specify a pair-copula structure 
• For each part of pair-copula specify either 

 
1. mean 1,..., kα α  for 1,..., kh h  on each pairwise copula; 
2. functions ( | )m eji Dα  for the mean values as functions of the 
conditioning variables, for 1,...,m k= , where eD  is the conditioning 
set for the edge e . 

Data set 

A data set of Tehran stock exchange is used that includes five time series of daily 
data: the overall index (O), the industry index (I), the free float index (F), the 
main board index (M) and the secondary index (S). All are for the period January 
5th2008 to October 30th 2011. (number of observation equal to 668) These five 
variables are denoted by O, I, F, M and S, respectively. 

First, remove serial correlation in the five time series i.e. the observation of 
each variable must be independent over time. Hence, the serial correlation in the 
conditional mean and the conditional variance are modeled by an AR(1) and a 
GARCH(1,1) model (Bollerslev, 1986), respectively. That is for time series i , the 
following model for log-return ix ; 
 

i ,t i i i ,t 1 i ,t i ,tx c x zα σ−= + +  
 

i ,tE z 0=    
 
and 
 

i ,tVar z 1=    
 
Where , 1 , ,i t i t i tzε σ− = + . Aas et al. (2009) 

The further analysis is performed on the standard residuals iz . If the AR(1)-
GARCH(1,1) models are successful at modeling the serial correlation in the 
conditional mean and the conditional variance, there should be no autocorrelation 
left in the standard residuals and squared standard residuals. The modified Q-
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statistic is used (Ljung and Box, 1979) and the Lagrange Multiplier Test (LM) 
Engle (1982), respectively, to check this. For all series and both tests, the null 
hypothesis that there is no autocorrelation left cannot be rejected at the 5% level. 
Because interest lies mainly in estimating the dependence structure of the risk 
factor, the standard residual vectors are converted to the uniform variables using 
the kernel method before further modeling. 

It is necessary to generate a vine approximation fitted as in Figure 2 to this 
data set using minimum information distributions. It should be noted that the 
corresponding functions of the copula variables X, Y, Z, U and V associated with 
O, I, F, M and S can be found. These are defined by, for example, 
( ) ( ) ( )( )' 1 1

1 2, ,i ih X Y h F O F I− −= and should have the same specified expectation, in 

this case ( ) ( )'[ , [ ,i iE h X Y E h O I =  . The minimum information copulas 

calculated in this example are derived based on copula variables X, Y, Z, U and V. 
It should be noticed that to generalize to other stock exchanges and other 

applications, a vine structure can be determined uniquely by specifying the order 
of variables in the first tree 1T . To specify this order, we can use correlation 
scatter plot, Kendall’s τ  or the tail dependence coefficient (see e.g., Aas et al., 
2009) to measure the strongest bivariate dependencies among the variables in the 
first tree of the D-vine (or C-vine) of interest. Once the  Kendall’s τ  or the tail 
dependence coefficients between any pair of the variables in the first tree 
calculated, then order these measures, and put the variables with the highest 
measures next to each other and place the ones with weak dependencies farther 
away. Skipping to present the numerical details of these measures, and following 
Aas et al. (2009), use the pair-copula construction given in Figure 2  as the 
selected D-vine structure. In the case, that there is no data to compute these 
measures to specify the vine structure (or variables order in the first tree), we can 
use the expert's judgement to elicit these measures or other relevant measures that 
are more convenient to express by the expert (see Bedford et al. (2013) for a 
relevant work).  
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Figure 2. Selected vine structure for the Tehran stock exchange with 5 variables:  overall 
index (O), industry index (I), free float index (F), main board index (M)  and  secondary 
index (S). 
 
 

Initially minimally informative copulas are constructed between each set of 
two adjacent variables in the first tree, 1T . To do so it is necessary to decide upon 
which bases to take and how many discretization points to use in each case. The 
recommended procedure for first copula in T1, between O and I is considered next. 

Basis function 

Which basis functions to include in the copula must first be decided. Basis 
functions could be chosen, starting with simple polynomials and moving to more 
complex ones, and including them until satisfied with our approximation. For 
example if the following basis functions in order is included, 
 

2 2 2 2 3 3 2 3 3 2 4 4 5 5 3 3 2 4 4 2OI ,O I ,OI ,O I ,O I ,OI ,O I ,O I ,O I ,OI ,OI ,O I ,O I ,O I ,O I  
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Figure 3. The log-likelihood of the minimally informative copula calculated based on 
different functions 
 
 
then the log-likelihood for the copula changes as in Figure 3. There is a jump in 
the log-likelihood as the third basis function, 2OI  is added. This could imply that 
we are not adding the basis functions in an optimal manner. Instead at each stage, 
it is proposed to assess the log-likelihood of adding each additional basis function, 
then include the function which produces the largest increase in the log-likelihood. 
Thus the method is similar to a stepwise regression. Doing so for the initial copula 
yields the basis functions 2 3 2, ,OI O I O I .  

There is no longer a jump in the log-likelihood when adding the four basis 
function. The log-likelihood also increase more quickly and reaches its plateau 
value of around 1030 using fewer basis functions. 

Fixing the values of the expectations of these functions by using the 
empirical data as follows 

 
667

1 i i
i 1
667

2
2 i i

i 1
667

3 2
3 i i

i 1

1 O I 0.328,  
667

1 O I 0.2428,  
667

1 O I 0.1578
667

α

α

α

=

=

=

= =

= =

= =

∑

∑

∑
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The minimum information copula OIC  With respect to the uniform distribution 
given the three constraint above can then be constructed. In order to do so it is 
necessary to decide on the number of discretization points (or grid size). A larger 
grid size will provide a better approximation to the continuous copula but at the 
cost of more computation time. Similarly, the more iteration of the D1AD2 and the 
optimization algorithms that are run, the more accurate the approximation will 
become. This is again at the expense of speed. Comments on the convergence of 
the DAD algorithm are given in Bedford et al. (2013) and Daneshkhah et al. 
(2013). In terms of the optimization it is possible to specify how accurate the 
approximation should be and then judge the effect on the number of iterations 
required for convergence. In number of iterations needed will also depend on the 
grid size. In order to be consistent throughout the rest of the example, choose a 
grid size 50 50. 

Having done this, the MI copula COI can now be found. This gives 
parameter value of 

 
907.8, 
-1025.1,
389.41

1

2

3

λ
λ
λ

=
=
=

 

 
The result has been summarized in table 1 and copula plotted in Figure 4. Note 
that the Log-likelihood for this copula is 1031.4. 
 
 
Table 1. Minimum information copula between O and I 
 

Base Expectation Parameter Value 

OI 0.3280 907.8 
O2I 0.2428 -1025.1 
O3I2 0.1578 389.41 
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Figure 4. Minimum information copula between O and I 
 
 
The second copula in 1T  is IFC . Using the stepwise method as illustrated the 
following results obtained and the log-likelihood is 521.8.IFl =  The summarized 
result are given in Table 2, and Figure 5 shows the fitted copula. 
 
 
Table 2. Minimum information copula between I and F. 
 
Base Expectation Parameter Value 
IF 0.3209 81.2 
I3F3 0.1254 38.6 
I3F 0.1851 -75.7 
 
 

 
 
Figure 5. Minimum information copula between I and F 
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The third marginal copula is between F and M. Given a 50×50 grid and a required 
error of no more than 1×10−12 the three bases chosen using the stepwise procedure, 
the constraint for each base and the resulting parameter values are given in Table 
3 and Figure 6 . The log-likelihood for this copula is 462.31. 
 
 
Table 3. Minimum information copula between F and M 
 

Base Expectation Parameter Value 

FM 0.3195 60.97 
F4M2 0.1252 26.42 
FM3 0.1839 -45.46 
 
 

 

Figure 6. Minimum information copula between F and M 
 
 
and the last copula in first tree, 1T , between M and S is MSC . The result are 
summarized in Table 4 and Figure 7. 
 
 
Table 4: Minimum information copula between M and S 
 

Base Expectation Parameter Value 

MS 0.2928 25.52 
MS2 0.2064 -23.22 
M2S4 0.0989 8.44 
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Figure 7: Minimum information copula between M and S 
 
 
The conditional copulas in the second tree, 2T , can similarly be approximated 
using the minimum information approach. Initially the conditional MI copula 
between O|I and F|I is constructed. In order to calculate this copula, divide the 
support of I into some arbitrary sub-intervals or bins and then construct the 
conditional copula within each bin. To do so, find bases in the same way as for 
the marginal copulas and fit the copulas to the expectations calculated for these. 
Two bins are used so that the first copula is for O,F|I∈ (0,0.5). The bases for this 
copula are 
 

( )( ) ( )( )' ' 2
1 2, | 0,0.5 , , | 0,0.5 ,h O F I OF h O F I OF∈ = ∈ =  

( )( )' 3
3 , | 0,0.5h O F I OF= ∈ =  

 
The expectations given these basis functions which will constrain the MI copula 
are 
 

1 2 30.0902,    0.0368,    0.168α α α= = =  
 
This process can be followed again for the remaining bins. Table 5 shows the 
constraints and corresponding Lagrange multipliers required to build the 
conditional MI copula between O|I∈ (0.5,1) and F|I∈ (0.5,1). It also gives the log-
likelihood in each case. 
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Table 5. Minimum information copula between O and F given I 
 

Condition Base Expectation Parameter Value Log-
likelihood 

0< I <= 0. 5 (OF, OF2, OF3) (.0902,.0368,.0168) (274.76,-627.3 , 482.6) 195.94 

0. 5< I <= 1 (O2F4,O5F, O4F2) (0.247,0.254,0.247) (-18.2,-69.98 , 81.93) 162.92 

 
 
Similarly, the MI copula can be constructed between remaining nodes in 2 ,T  one 
of them I|F and M|F and another between F|M and S|M based on 2 bins and 3 
constraints found in the usual manner. The resulting MI copula are summarized in 
Table 6 and Table 7. 
 
 
Table 6. Minimum information copula between I and M given F 
 

Condition Base Expectation Parameter Value Log-
likelihood 

0< F <= 0.5 (IM, IM2, I4M2) (0.1193,0.06,0.017) (982.3 , -881.7 , 298.2) 551.3 

0.5<F<= 1 (I3M3, I4M2, I4M) (0.258,0.259,0.302) (704.4 , -242.1 , -216.8) 555.4 

 
 
Table 7. Minimum information copula between F and S given M 
 

Condition Base Expectation Parameter Value Log-
likelihood 

0<M<= 0.5 (FS, F3S, FS2) (0.1314,0.0258,0.078) (51.3 , -51.9 , -11.3) 87 

0.5<M<= 1 (F5S, FS5, F3S3) (0.222,0.197,0.193) (5.3 , -5.3 , 6.5) 73.7 

 
 
O|(I,F) and M|(I,F) are calculated on each combination of bins for I,F. Thus in 3T  
there are 4 bins altogether. The bins, bases and log-likelihoods ( l ) associated with 
each copula are given in Table 8. 

Similarly the MI copulas for I|(F,M) and S|(F,M) are calculated on each 
combination of bins for F,M. Table 9 shows the result in this case. 
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Table 8. Minimum information copula between O and M given I and F 
 

Condition Base Expectation Parameter Value  l 

I <=0.5& F <=0.5 (OM, OM2, OM3) (.082,.031,.0124) (2685.4 , -7892.9 , 783) 405.95 

I <=0.5 & F >0.5 (OM, O5M, O4M2) (0.164,0.006,0.007) (2046.3 , -27710 , 1263) 41.9 

I >0.5 & F <=0.5 (OM5, OM3, O2M4) (0.153,0.245,0.152) (1481 , -206 , -556) 37.9 

I >0.5 & F >0.5 (O5M, OM, OM3) (0.282, 0.582, 0.39) (728.4, -2054.7, 1025.2) 243.4 

 
 
Table 9. Minimum information copula between I and S given F and M 
 

Condition Base Expectation Parameter Value  l 

F <=0.5 & M <=0.5 (IS, IS2, IS3) (.0994,.0542,.0345) (108.9 , -190.2 , 3243.1) 92.3 

F <=0.5 & M >0.5 (I2S, IS2, I5S) (0.202,0.17,0.061) (32.2 , -5.6 , -16.5) 6 

F >0.5 & M <=0.5 (IS2, I2S3, I2S4) (0.218,0.082,0.067) 70.9 , -72.9 , 26.7) 4.7 

F >0.5 & M >0.5 (I4S2, I3S, I2S) (0.233, 0.344, 0.42) (7.5, 2.8,-0.4) 79.9 

 
 
Table 10. Minimum information copula between O and S given I,F and M 
 

Condition Base Expectation Parameter Value  l 

I <=0.5&F <=0.5& M <=0.5 (OS, OS2, OS3) (.0976,.0503,.03) (111.7 , -173.6 , 80.7) 81.1 

I <=0.5 & F <=0.5& M >0.5 (O5S, OS5, OS4) (0.005,0.002,0.001) (229.5 , -476.5 , -640) 3.7 

I <=0.5 & F >0.5& M <=0.5 (OS, O4S, O4S2) (0.207,0.014,0.008) (44.7, -211.8 , 16.6) 1.9 

I <=0.5 & F >0.5& M >0.5 (OS5, OS, O4S2) (0.001, 0.12, 0.003) (22.9, -985.7, 253.5) 0.1 

I >0.5 & F <=0.5& M <=0.5 (O4S, O3S, O2S) (0.131, 0.203, 0.321) (17.5, 23.8,- 36.4) 0.2 

I >0.5 & F <=0.5& M >0.5 (O3S, OS, O4S2) (0.194, 0.36, 0.095) (11.5, -8.5,- 1.1) 0.72 

I >0.5 & F >0.5& M <=0.5 (O2S4, O2S2, O2S3) (0.136, 0.185, 0.158) (722.7, -211.9,- 633) 0.84 

I >0.5 & F >0.5& M >0.5 (O3S3, OS4, OS) (0.226, 0.266, 0.519) (11.8, -8.4,-3.14) 77.1 
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The conditionally MI copula in the fourth tree, 4T , can be obtained. In this 
situation, first divide each of the conditioning variables’ supports into 2 bins as in 

2T and 3T , then the MI copulas for O|(I,F,M) and S|(I,F,M) are calculated on each 

combination of bins for I,F,M. Thus in 4T  there are 8 bins altogether. The bins, 
bases and log-likelihoods associated with each copula are given in Table 10. 

Comparison to the other approaches 
Table 11. Comparison to the other approaches 
 
Type of 
Copula Variables (X,Y ) Parameters l 

Gaussian 
copula 

(O,I)-(I,F)-(F,M)-(M,S) 

Gaussian copula are used 
as building blocks 3721.04 

(O|I,F|I)-(I|F,M|F)-(F|M,S|M) 

(O|I,F,M|I,F) (I|F,M,S|F,M) 

(O|I,F,M,S|I,F,M) 

t-copula 

(O,I)-(I,F)-(F,M)-(M,S) 

t- copula are used as 
building blocks 3987.1 

(O|I,F|I)-(I|F,M|F)-(F|M,S|M) 

(O|I,F,M|I,F) (I|F,M,S|F,M) 

(O|I,F,M,S|I,F,M) 

MI copula 

(O,I)-(I,F)-(F,M)-(M,S) 

Details are provided in 
this article 4845.12 

(O|I,F|I)-(I|F,M|F)-(F|M,S|M) 

(O|I,F,M|I,F) (I|F,M,S|F,M) 

(O|I,F,M,S|I,F,M) 
 
 
As mentioned, multivariate copula function are limited and weak to modeling 
multivariate dependency, the proposed method was compared with two different 
multivariate copula function. When the multivariate Gaussian copula was fit to 
this data the Log-likelihood is 3458.7 and by multivariate t-copula is 3468.4. In 
order to make a comparison the log-likelihood of the data sample was computed 
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for three different copula models used on the same vine structure: The Gaussian 
copula, the t-copula used by Aas (2009), and our minimum information copula. 
The results are shown in Table 11. 

Conclusion 

If choices of marginal densities are made for any indexes of Tehran stock 
exchange and copulas between them then the above formula will give a 
multivariate density for each proposed level of variables. 
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