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On Some Properties of a Heterogeneous
Transfer Function Involving Symmetric
Saturated Linear (SATLINS) with Hyperbolic
Tangent (TANH) Transfer Functions

Christopher Godwin Udomboso

University of Ibadan
Ibadan, Nigeria

For transfer functions to map the input layer of the statistical neural network model to the
output layer perfectly, they must lie within bounds that characterize probability
distributions. The heterogeneous transfer function, SATLINS_ TANH, is established as a
Probability Distribution Function (p.d.f), and its mean and variance are shown.

Keywords: Statistical neural network, SATLINS, TANH, SATLINS_TANH, mean,
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Introduction

Anders (1996) proposed a statistical neural network model given as

y="f(X,w)+u (1)

where y is the dependent variable, X =(x,=1Xx,....,x,) is a vector of

independent variables, w = (a, S, y) is the network weight: « is the weight of the

input unit, £ is the weight of the hidden unit, and y is the weight of the output unit,

and u; is the stochastic term that is normally distributed (that is, u; ~ N(0, 6°l,)).
Basically, f (X, w) is the artificial neural network function, expressed as

f(X,w)=aX +§ﬁhg{§7hixiJ

The author is a lecturer in the Department of Statistics. Email him at:
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PROPERTIES OF SATLINS WITH TANH TRANSFER FUNCTIONS

where g(.) is the transfer function.
The proposed convoluted form of the artificial neural network function used
in this study is

and thus, the form of the statistical neural network model proposed is

where y is the dependent variable, X =(x,=1Xx,....,x,) is a vector of

independent variables, w = (a, S, y) is the network weight: « is the weight of the
input unit, £ is the weight of the hidden unit, and y is the weight of the output unit,
u; and u; are the stochastic terms that are normally distributed (that is, u;, u; ~ N(O,
o°1,)) and ga1(.) and g,(.) are the transfer functions.

The distributional properties of the heterogeneous model arising from the
convolution of SATLINS and TANH is investigated here. Let g;(.) = Symmetric
Saturated Linear function (SATLINS), defined as

satlins=g,(.)= f,(n) = » o (3)
n, -1<n<1
1 n>1

Let g2(.) = Hyperbolic Tangent function (TANH), defined as

n -n

_e"-e
e"+e™"

tanh =g, (-)= ,(n) Q)
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Symmetric Saturating Linear and Hyperbolic Tangent

(i)

Let f(n)=f(n)® fz(n):J'fl(n—m) f,(m)dm (5)

a

For n <—1, fy(n) = —1, which implies also that f;(h —m) =—1.

m -m

e" —e
f =

2 (m) em + e—m
Therefore,

(6)

(if)
Similarly, for —1 <n <1, f;(n) = n, which implies that f;(n —m) = n —m, such that
-1<m<n.

Therefore,

% (7)
|

Using integration by part, and noting that

Iuv' = uv—ju 'V

Let u =n—m. This implies that du =—dm.
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d [em +e’m]

m

and V' = . This implies that v =log(e" +e™).

e" +e”

Thus,

f,(n)® f,(n)=(n—m)log(e"+e™")+ j log(e" +e ™" )dm (8)

In (6), let I = } log(e" +e™)dm
e

Now, let x =log(e" +e™), which implies that e* =e" +e™"

But x=keN for -1<m<1.Hence | =0.
Therefore,

f.(n)® fz(n):—(n+1)log(e+e‘1) 9)

(iii)
Also, forn > 1, fy(n) = a = 1. This implies that f;(n —m) =1

Therefore,

(10)

The summary of the derived function is given as
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log [%}, forn<-1
e"+e
(n+1)|og(e+e‘1)7l, for-1<n<1
Iog{e +e_1 j forn>1
e+e

(11) is the derived transfer function for the Symmetric Saturated Linear transfer
function and the Hyperbolic Tangent transfer function.

Distributional Properties of the SATLINS_TANH SNN Model

Next it is shown that the derived transfer functions are probability density
functions. By definition, the probability density function (p.d.f) of function f(x) of
a random variable X:Q - R is said to be a proper p.d.f if for
Xe(—oo,+oo),xe X, thus,

jf(x)dx=1, Xe X

From the derived transfer function in (11),

0

I f.(n)® f,(n)dn

—00

-1 e +e " 1 ]
:jlog[ : en}dn+'[(n+1)log(e+el) dn
e
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-1

= [Iog(er +e”")-log(e" +e’”)}dn

+Iog(e+e’l)_l j(n +1)dn
e

+I[Iog (e"+e™")—-log(e+ e‘l)} dn

1
- :[1 log(e" +e ™" )dn+ Iog(e+e’1)_1 .lf(n +1)dn —Tlog(e+e’1)dn (12)
—0 -1 1

o] o] e

=o0+2log(e+e™)—oo

=2log(e+e™)

The mean and variance of the derived transfer functions are obtained next.

For f.(n)® f,(n)

f,(n)®f,(n)= o
Iog[en+e_nj, forn<-1
e" +e
(n+1)log(e+e’1)71, for —1<n<1
Iog(e +e:l j forn>1
e+e

E(n)= _[n(fl(n)@)fz(n))dn
T e +e” h PICU e"+e"
_Lnlog[euenjdn+:[n(n+l)log(e+e ) dn+J1'nIog( e Jdn
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= fn log(e" +e " )dn- J.ln log(e" +e")dn

+jn(n +1)Iog(e+e’l)_l dn
]

+Tn log(e"+e™")dn - Tn log(e+e™)dn

1 1

—» -1

2 3 2

=log(e"+e” ){%1 ogfere”)” [n?ﬂ?}ll ) log(“el){%}j
=log(e" +e” )(%—%}— Iog(e+el)l[(%+%j—(%—%ﬂ— Iog(e+e1)(§—%j

Hence, the mean of derived transfer function in is

2 -1
E(n)=—1I - 13
(n) 3og(e+e ) (13)
Similarly,

E(nz):znz( f,(n)® f,(n))dn

—r

Somfg ol ofrmf

e"+e e+e

=log(e" +e") fnzdn - fnz log(e" +e")dn
+Iog(e+e’1)_l j‘(ne' - nz)dn

-1

+Tn2 log(e" +e™")dn—log(e+ e‘l)Tnzdn
1 1
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- % log e+ e‘l)f1

4

-1 3 1 0
" flog(ete 1{n__n_} +log(e+e™ {n_}
o] oatere) | T stoa(ere’) 7|

L) (22 aleee(3-)

Therefore, variance of ( f,(n)® f,(n)) is

Thus,

with mean, E(n)

var(n) = E(nz)—[E(n)]2
=%Iog(e+e‘l)l —Elog(e+e‘l)l}

3

s e

(14)
_ _%Iog(e+e‘1)+g(log(e+e‘l))2
Iog(e;Jre_;J, forn<-1
e"+e
(n+1)|og(e+e‘1)_1, for —1<n<1
forn>1

%Iog(e+e‘1)l

o

" +e™"
e+et )

and variance, var(n)=log(e+ el){g log(e+e™) —ﬂ .
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