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The ratio of independent random variables arises in many applied problems. The 

distribution of the ratio X
Y  is studied when X  and Y  are independent Normal and 

Rice random variables, respectively. Ratios of such random variables have extensive 
applications in the analysis of noises in communication systems. The exact forms of 
probability density function (PDF), cumulative distribution function (CDF) and the 
existing moments are derived in terms of several special functions. As a special case, the 
PDF and CDF of the ratio of independent standard Normal and Rayleigh random 
variables have been obtained. Tabulations of associated percentage points and a computer 
program for generating tabulations are also given. 
 
Keywords: Normal distribution, Rice distribution, ratio random variable, special 
functions. 
 

Introduction 

For given random variables X and Y , the distribution of the ratio X
Y  arises in 

a wide range of natural phenomena of interest, such as in engineering, hydrology, 
medicine, number theory, psychology, etc. More specifically, Mendelian 
inheritance ratios in genetics, mass to energy ratios in nuclear physics, target to 
control precipitation in meteorology, inventory ratios in economics are exactly of 
this type. The distribution of the ratio random variables (RRV) has been 
extensively investigated by many authors especially when X  and Y  are 
independent and belong to the same family. Various methods have been compared 
and reviewed by authors including Pearson (1910), Greay (1930), Marsaglia 
(1965, 2006) and Nadarajah (2006).  
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The exact distribution of X
Y  is derived when X  and Y are independent 

random variables (RVs) having Normal and Rice distributions with parameters 
2( , )µ σ  and ( , )vλ , respectively. The Normal and Rice distributions are well 

known and of common use in engineering, especially in signal processing and 
communication theory. In engineering, there are many real situations where 
measurements could be modeled by Normal and Rice distributions. Some typical 
situations in which the ratio of Normal and Rice random variables appear are as 
follows. In the case that X  and Y represent the random noises corresponding to 
two signals, studying the distribution of the quotient X

Y  is of interest. For 

example in communication theory it may represent the relative strength of two 
different signals and in MRI, it may represent the quality of images. Moreover, 
because of the important concept of moments of RVs as magnitude of power and 
energy in physical and engineering sciences, the possible moments of the ratio of 
Normal and Rice random variables have been also obtained. Applications of 
Normal and Rice distributions and the ratio RVs may be found in Rice (1974), 
Helstrom (1997), Karagiannidis and Kotsopoulos (2001), Salo, et al. (2006), 
Withers and Nadarajah (2008) and references therein. 

The probability density function (PDF) of a two-parameter Normal random 
variable X  can be written as: 
 

 2
2

1 1( ) exp{ ( ) },  
22Xf x x xµ
σπσ

= − − −∞ < < ∞   (1) 

 
where µ−∞ < < ∞  is the location parameter and 0σ >  is the scale parameter. For 

0µ =  and 2 1σ =  , (1) becomes the distribution of standard Normal random 
variable. A well known representation for CDF of X  is as 
 

 
1( ) 1 ( )
2 2X

xF x erf µ
σ
− = + 

 
  (2) 

 
where ( )erf ⋅  denotes the error function that is given by 
 

 
2

0

2( )
x

uerf x e du
π

−= ∫   (3) 
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Also, 
 

 
22

2
0

1( ) ! ( ) .
( 2 )! ! 2

k

k k j

j
E X k

k j j
σµ
µ

 
  

=

= ⋅
−∑   (4) 

 
If Y  has a Rice distribution with parameters ( , )vλ  , then the PDF of Y  is as 

follows: 
 

 
2 2

02 2 2

( )( ) exp{ } ( ),  0,  0,  0
2Y

y y v yvf y y v λ
λ λ λ

+
= − Ι > ≥ >   (5) 

 
where y  is the signal amplitude, 0 (.)Ι  is the modified Bessel function of the first 
kind of order 0, 22λ  is the average fading-scatter component and 2v  is the line-
of-sight (LOS) power component. The Local Mean Power is defined as 

2 22 vλΩ = +  which equals 2( )E X , and the Rice factor K  of the envelope is 
defined as the ratio of the signal power to the scattered power, i.e., 2 22K v λ=  . 
When K  goes to zero, the channel statistic follows Rayleigh distribution, whereas 
if K goes to infinity, the channel becomes a non-fading channel. For 0v = , the 
expression (5) reduces to a Rayleigh distribution. 

Notations and Preliminaries 

Recall some special mathematical functions, these will be used repeatedly 
throughout this study. The modified Bessel function of first kind of order v , is  
 

 
2

0

1( )1 4( ) ( )
2 ( !) ( 1)

k

v
v

k

x
I x x

k v k

∞

=

=
Γ + +∑   (6) 

 
The generalized hypergeometric function is denoted by 
 

 1 2
1 2 1 2

0 1 2

( ) ( ) ...( )
( , ,..., ; , ,..., ; )

( ) ( ) ...( ) !

k
k k p k

p q p q
k k k q k

a a a zF a a a b b b z
b b b k

∞

=

=∑   (7) 
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The Gauss hypergeometric function and the Kummer confluent hypergeometric 
function are given, respectively, by 
 

 2 1
0

( ) ( )( , ; ; )
( ) !

k
k k

k k

a b zF a b c z
c k

∞

=

=∑   (8) 

 
and 
 

 1 1
0

( )( ; ; )
( ) !

k
k

k k

a zF a b z
b k

∞

=

=∑   (9) 

 
where ( )ka , ( )kb  represent Pochhammer’s symbol given by  

( )( ) ( 1) ( 1)
( )k

ka a a a k α
α

Γ +
= + ⋅⋅⋅ + − =

Γ
. 

 
The parabolic cylinder function is  

 

 
2

22 4 1 1 1( ) 2 ( , ; )
2 2 2

v z

vD z e v z
−

= Ψ −   (10) 

 
where ( , ; )a c zΨ  represents the confluent hypergeometric function given by 
 

1
1 1 1 1

1 1
( , ; ) ( ; ; ) 2 (1 ;2 ; )

1
cc c

a c z F a c z F a c c z
a c a

−− −   
Ψ = Γ +Γ + − −   + −   

,  

 
in which  
 

1 1

1

1

( ),...,
,..., ( )

m

i
m i

n
n

j
j

aa a
b b b

=

=

Γ
 

Γ = 
  Γ

∏

∏
. 

 
The complementary error function is denoted by  
 



DISTRIBUTION RATIO OF NORMAL AND RICE RANDOM VARIABLES 

440 

 
22( ) u

x

erfc x e du
π

∞
−= ∫   (11) 

 
The following lemmas are of frequent use. 
 
Lemma 1 (Equation (2.15.5.4), Prudnikov, et al., 1986). For Re 0p > ,
Re( ) 0vα + > ; arg c π<  
 

21

0

( ) 2
1 2

1 1

( )

( )
2 ( ; 1; )2

2 41

px
v

v
v v

x e I cx dx

v
v cc p F v

pv

α

α α
α

∞
− −

+
−− −

+ 
+ = Γ +

 
+ 

∫
. 

 

Lemma 2 (Equation (2.8.9.2), Prudnikov, et al., 1986). For Re 0p > ; arg
4

c π
<  

 
22 1

1
0

2

22 2

( ) 0 ! ( 1)
( 1 2 2

1 ( ) exp( ) ( ) .

n
n px

n

n

n

erf cx b nx e dx
erfc cx b p

c pb bcerf b erfc
P p c pp c p c p

∞
+ −

+

+    −
= ±   +   

 ∂
+ − 

∂ + + +  

∫
 

 
 
Lemma 3 (Equation (3.462.1), Gradshteyn & Ryzhik, 2000). For Re 0β > , 
Re 0v >  
 

{ }
2

1 2 2

0

exp( (2 ) ( ) exp( ) ( ).
8 2

v
v

vx x x dx v Dγ γβ γ β
β β

∞
−−

−− − = Γ∫  
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The Ratio of Normal and Rice Random Variables 

The explicit expressions for the PDF and CDF of X Y  are derived in terms of 
the Gauss hypergeometric function. The ratio of standard Normal and Rayleigh 
RVs is also considered as a special case. 
 
Theorem 1: Suppose that X  and Y  are independent Normal and Rice random 
variables with parameters 2( , )µ σ  and ( , )λ ν , respectively. The PDF of the ratio 

random variable XT Y=  can be expressed as ( ) ( ) ( )f t g t g t= + − , where  

 

 

2 2 2 2 2

2 2 2 2 2 2{ }
22 2 4 ( )

3
2 2 2 2

2

2

(2 3)2 2 2 2
0

( )
2 ( )

( )
4 (2 3) ( ).
( !)

v t
t

k

k
k

eg t
t

v
tk D

k t

µ µ λ
λ σ σ λ σ σ λ

π λ σ

µ λλ
σ λ σ

− + −
+

∞

− +
=

=
+

−
× ⋅Γ + ⋅

+
∑

  (12) 

 
Theorem 1 Proof: 
 

 

X Y X Y
0 0

2 2
2

02 2 2 2
0

2 2
2

02 2 2 2
0

f ( t ) yf ( ty ) f ( y )dy yf ( ty ) f ( y )dy

1 1 y ( y v ) yvy exp ( ty ) exp I ( )dy
2 22

1 1 y ( y v ) yvy exp ( ty ) exp I ( )dy
2 22

µ
σ λ λ λπσ

µ
σ λ λ λπσ

∞ ∞

∞

∞

= + −

 + = ⋅ − − ⋅ −   
   

 + + ⋅ − − − ⋅ −   
   

∫ ∫

∫

∫

  (13) 

 
The two integrals in (13) can be calculated by direct application of Lemma 3. 
Thus the result follows. 
 
Remark 2: By using expression (10), elementary forms for ( )g t  in Theorem 1 
can be derived as follows: 
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2 2 2 2

2 2

2
1 ( ) 2 2 2 22 2

3 2 3 2 2 2 2
02 2 2 22 2

( ) (2 3) 2 3 14( ) ( , ; )
2 2 2 ( )2 ( ) ( !) 2

kv

k
k

v ke k tg t
tt k

σ µ λ
σ λ λσ µ λλ

σ λ σ
π λ σ

− +
∞

+
=

Γ + +
= Ψ

+
+

∑   (14) 

 
Corollary 3 Assume that X  and Y  are independent standard Normal and 
Rayleigh random variables, respectively. The PDF of the ratio random variable 

XT Y=  can be expressed as 

 

 2 2 3 2( ) , 0
( 1)Tf t t
t

λ
λ

= >
+

  (15) 

 
Theorem 4: Suppose that X  and Y  are independent Normal and Rice random 
variables with parameters 2( , )µ σ  and ( , )λ ν , respectively. The CDF of the ratio 

random variable XT Y=  can be expressed as ( ) ( ) ( )F t G t G t= − −  where  

 

 

2

2

2
v k

k k2 4
2

2 2
k 1 kk 0

2 2

3 2

2 2 22 2 2 2 2 2

v( )e n! ( 1)4G( t ) { [ 2 erf ( )1 12 ( k !) 2 22( ) ( )
2 2

2t texp( )erfc( )]}.
2( t )t 2( t )

λ µλ λ
λ σ

λ λ
λ µ µ λ

λ σλ σ σ λ σ

−
∞

+=

− ∂ −
= −

∂

− × − −
++ +

∑
  (16) 

 
Theorem 4 Proof: The CDF ( ) Pr( )XF t tY= ≤  can be written as  

 

 
0

( ) ( ) ( ) ( ) ,Y
ty tyF t f y dyµ µ
σ σ

∞ − − − = Φ −Φ 
 ∫   (17) 

 
where (.)Φ  is the cdf of the standard Normal distribution. Using the relationship 
 

 1( ) ( ),
2 2

xx erfcΦ − =   (18) 

 
Eq. (17) can be rewritten as 
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0

2 2

02 2 2
0

2 2

02 2 2
0

1( ) ( ) ( ) ( )
2 2 2

1 ( )( ) exp ( )
2 22

1 ( )( ) exp ( ) .
2 22

Y
ty tyF t erfc erfc f y dy

ty y y v yverfc I dy

ty y y v yverfc I dy

µ µ
σ σ

µ
λ λ λσ

µ
λ λ λσ

∞

∞

∞

− + = − 
 

 − +
= ⋅ − 

 
 + +

− ⋅ − 
 

∫

∫

∫

  (19) 

 
The result follows by using Lemma 2. 
 
Corollary 5: Assume that X  and Y  are independent Normal and Rice random 
variables with parameters 2(0, )σ  and ( ,0)λ , respectively. The CDF of the ratio 

random variable XT Y=  is  

 

 
2 2 2

( ) , 0.tF t t
t

λ
λ σ

= >
+

  (20) 

 
Figures (1) and (2) illustrate possible shapes of the pdf corresponding to (20) for 
different values of 2σ  and λ . Note that the shape of the distribution is mainly 
controlled by the values of 2σ  and λ . 
 

 
Figure 1 Plots of the pdf corresponding to (20) for 0.5,1,3,5λ =  and 1σ = . 
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Figure 2 Plots of the pdf corresponding to (20) for 0.2,0.5,1,2σ =  and 1λ = . 

 
 

Kth Moments of the Ratio Random Variable 
In the sequel, the independence of X  and Y  are used several times for 

computing the moments of the ratio random variable. The results obtained are 
expressed in terms of confluent hypergeometric functions. 
 
Theorem 6: Suppose that X  and Y  are independent Normal and Rice random 
variables with parameters 2( , )µ σ  and ( , )λ ν , respectively. A representation for 
the kth moment of the ratio random variable T X Y= , for 2k < , is: 
 

 
2

2

[ ]2 22
2

1 1 2 2
0

2 2 1[ ] ! ( ) ( ;1; ) ( )
2 2 2 ( 2 )! ! 22

k
k v

k j

j

k k vE T k e F
k j j

λµ σ
λ µλ

−

=

− + − + = Γ  − 
∑  (21) 

 
Theorem 6 Proof: Using the independency of X  and Y  the expected ratio can 
be written as 
 

 1( ) ( ) ( ) ,
k

k k
k k

XE T E E X E
Y Y

 
= = 

 
  (22) 

 
in which 
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2 2

02 2 2
0

1 1 ( )( ) exp ( )
2k k

y y v yvE I dy
Y y λ λ λ

∞  +
= ⋅ − 

 
∫   (23) 

 
By using lemma 2.1, the integral (23) reduces to  
 

 

2

2 22

1 1 2
2 2

1 2 2( ) ( ) ( ;1; )
2 2 2(2 )

v

kk

e k k vE F
Y

λ

λ
λ

−
− + − +

= Γ   (24) 

 
The desired result now follows by multiplying (4) and (24). 
 
Remark 7: Formula (21), displays the exact forms for calculating ( )E T , which 
have been expressed in terms of confluent hypergeometric functions. The delta-
method can be used to approximate the first and second moments of the ratio
T X Y= . In detail, by taking ( )X E Xµ = , ( )Y E Yµ =  and using the Delta-
method (Casella & Berger, 2002) results in: 
 

2

22

2

1 1 2

2( )
3( ,1; )
2 2

X

Y

eE T
F

ν
λµ µ
νµ π λ
λ

≈ = . 

 
For approximating ( )Var T , first recall that 2 2 2( )E X µ σ= +  and 

2 2 2( ) 2E Y λ ν= + . Thus, 
 

2

2 2 2

( ) ( )( ) ,X

Y X Y

X Var X Var YVar
Y

µ
µ µ µ

  
≈ +  
  

 

 
which involves confluent hypergeometric functions, but in simpler forms.  
 
Remark 8: The numerical computation of the obtained results in this article 
entails calculation of special functions, their sums and integrals, which have been 
tabulated and available in determinds books and computer algebra packages (see 
Greay, 1930; Helstrom, 1997; and Salo, et al. 2006 for more details.  
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Percentiles 

Table 1. Percentage points of XT Y=  for 0.1 2.5λ = − . 

 
λ  0.01p =  0.05p =  0.1p =  0.9p =  0.95p =  0.99p =  

0.1 0.100005 0.500626 1.005023 20.64741 30.4243 70.1792 

0.2 0.050002 0.250313 0.502518 10.32370 15.2121 35.0896 

0.3 0.033335 0.166875 0.335012 6.882471 10.1414 23.3930 

0.4 0.025001 0.125156 0.251259 5.16185 7.6060 17.5448 

0.5 0.020001 0.100125 0.201007 4.12948 6.0848 14.0358 

0.6 0.016667 0.083437 0.167506 3.44123 5.0707 11.6965 

0.7 0.014286 0.071518 0.143576 2.94963 4.3463 10.0256 

0.8 0.012503 0.062578 0.125629 2.58092 3.8030 8.7724 

0.9 0.011111 0.055625 0.111670 2.29415 3.3804 7.7976 

1 0.010002 0.050062 0.100503 2.06474 3.0424 7.0179 

1.1 0.009091 0.045511 0.091367 1.87703 2.7658 6.3799 

1.2 0.008333 0.041718 0.083753 1.72061 2.5353 5.8482 

1.3 0.0076926 0.038509 0.077310 1.58826 2.3403 5.3984 

1.4 0.0071432 0.035759 0.071788 1.47481 2.1731 5.0128 

1.5 0.0066670 0.033375 0.067002 1.37649 2.0282 4.6786 

1.6 0.0062503 0.031289 0.062814 1.29046 1.9015 4.3862 

1.7 0.0058826 0.029448 0.059119 1.21455 1.7896 4.1281 

1.8 0.0055558 0.027812 0.055835 1.14707 1.6902 3.8988 

1.9 0.0052634 0.026348 0.052896 1.08670 1.6012 3.6936 

2 0.0050002 0.025031 0.050251 1.03237 1.5212 3.5089 

2.1 0.0047621 0.023839 0.047858 0.98321 1.4487 3.3418 

2.2 0.0045456 0.022755 0.045683 0.93851 1.3829 3.1899 

2.3 0.0043480 0.021766 0.043697 0.89771 1.3227 3.0512 

2.4 0.0041668 0.020859 0.041876 0.86030 1.2676 2.9241 

2.5 0.0040002 0.020025 0.040201 0.82589 1.2169 2.8071 
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Table 2. Percentage points of XT Y=  for 2.6 5λ = − . 

 
λ  0.01p =  0.05p =  0.1p =  0.9p =  0.95p =  0.99p =  

2.6 0.0038463 0.019254 0.038655 0.79413 1.1701 2.6992 

2.7 0.0037038 0.018541 0.037223 0.76471 1.1268 2.5992 

2.8 0.0035716 0.017879 0.035894 0.73740 1.0865 2.5064 

2.9 0.0034484 0.017262 0.034656 0.71197 1.0491 2.4199 

3 0.0033335 0.016687 0.033501 0.68824 1.0141 2.3393 

3.1 0.0032259 0.016149 0.032420 0.66604 0.9814 2.2638 

3.2 0.0031251 0.015644 0.031407 0.64523 0.9507 2.1931 

3.3 0.0030304 0.015170 0.030455 0.62567 0.9219 2.1266 

3.4 0.0029413 0.014724 0.029559 0.60727 0.8948 2.0640 

3.5 0.0028572 0.014303 0.028715 0.58992 0.8692 2.0051 

3.6 0.0027779 0.013906 0.027917 0.57353 0.8451 1.9494 

3.7 0.0027028 0.013530 0.027163 0.55803 0.8222 1.8967 

3.8 0.0026317 0.013174 0.026448 0.54335 0.8006 1.8468 

3.9 0.0025642 0.012836 0.025770 0.52942 0.7801 1.7994 

4 0.0025001 0.012515 0.025125 0.51618 0.7606 1.7544 

4.1 0.0024391 0.012210 0.024513 0.50359 0.7420 1.7116 

4.2 0.0023810 0.011919 0.023929 0.4916 0.7243 1.6709 

4.3 0.0023256 0.011642 0.023372 0.48017 0.7075 1.6320 

4.4 0.0022728 0.011377 0.022841 0.46925 0.6914 1.5949 

4.5 0.0022223 0.011125 0.022334 0.45883 0.6760 1.5595 

4.6 0.0021740 0.010883 0.021848 0.44885 0.6613 1.5256 

4.7 0.0021277 0.010651 0.021383 0.43930 0.6473 1.4931 

4.8 0.0021145 0.010532 0.020672 0.42654 0.6311 1.4752 

4.9 0.0021073 0.010380 0.019823 0.41839 0.6277 1.4613 

5 0.0020094 0.010157 0.018782 0.41027 0.6120 1.4479 
 
 

Tabulations of percentage points pt  associated with the cdf (20) of XT Y=  are 

provided. These values are obtained by numerically solving: 
 

 
2 2 2

p

p

t
p

t

λ

λ σ
=

+
  (25) 
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Tables 1 and 2 provide the numerical values of pt  for 0.1,0.2,...,5λ =  and 1σ = . 
It is hoped that these numbers will be of use to practitioners as mentioned in the 
introduction. Similar tabulations could be easily derived for other values of ,λ σ
and p  by using the sample program provided in Appendix A. 
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Appendix A 

The following program in R can be used to generate tables similar to that 
presented in the section headed 'Percentiles.' 
 
p=c(0.01,.05,0.1,0.9,0.95,0.99) 
sig=1 
vlambda=seq(0.1,5,0.1) 
lvl=length(vlambda) 
mt=matrix(0,nc=length(p),nr=lvl) 
for(i in 1:lvl) 
  { 
  lambda=vlambda[i] 
  t=p*sig*sqrt(1/(1-p^2))/lambda 
  mt[i,]=t 
  } 
print(mt) 
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