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The Pratt index is a useful and practical strategy for day-to-day researchers when 
ordering predictors in a multiple regression analysis. The purposes of this study are to 
introduce and demonstrate the use of the Pratt index to assess the relative importance of 
predictors for a random intercept multilevel model. 
 
Keywords: Random Intercept model, multilevel model, Mplus, Structural equation 
modeling, Pratt Index 
 

Introduction 

Multiple regression analysis is a widely used statistical method in many fields. 
Once predictors in a regression model are selected, it is a common practice for 
researchers to investigate which predictors explains more variance than others, or 
to identify a sub-set of predictors that explain most of the variation in the outcome 
variable. Hence, how to measure the relative importance of explanatory variables 
has been widely discussed in the regression literature (e.g., Budescu, 1993; 
Darlington, 1968; Green, Carroll, & Desarbo, 1978; Kruskall, 1987; Pratt, 1987; 
Thomas, Hughes, & Zumbo, 1998). As is commonly noted in the literature, the 
relative importance of a predictor reflects how much it contributes to the 
explanation/prediction of an outcome variable, in the presence of the other 
correlated predictors.  

The Pratt index, a R-square based statistic, has been shown to be a useful 
and practical strategy when ordering predictors in terms of importance in a 
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multiple regression analysis. However, to date, this technique has not been 
adapted for multilevel model or hierarchical linear model (HLM) analysis because 
(a) there is no natural R-square measure for a multilevel regression model akin to 
one in multiple regression that can be partitioned additively, and (b) the within- 
and between-level correlation matrices are not readily available – both of which 
are key elements in R-square based methods for variable ordering. However, 
recent advances on multilevel modeling within a structural equation modeling 
(SEM) framework provides these two key elements (e.g., Asparouhov & Muthén, 
2006; Muthén, 1994) and hence allows one to apply the Pratt index to multilevel 
regression models. 

As Raudenbush and Bryk (2002) note, the random intercept model is widely 
used, especially when the clustering is a nuisance factor or one is interested in 
how the level-2 predictors affect the means of the outcome variable (e.g., Bryk & 
Driscoll, 1988; Englert, et al., 1988; Judge, Scott, & Ilies, 2006; Muijs, 2003), and 
hence the ordering of predictors has practical significance and value. The purpose 
of this study is to demonstrate how to order the relative importance of predictors 
in a multilevel regression analysis with a random intercept using the Pratt index 
(Pratt, 1987; Thomas, Hughes, & Zumbo, 1998; Zumbo, 2007). The article is 
organized as follows. First, the Pratt index is briefly described. "Next, the additive 
property of R-square measures and estimated covariance matrices at within- and 
between-levels are described. Finally, it will be demonstrated how to use the Pratt 
index in multilevel regression models using Mplus with two examples: (a) a 
random intercept only multilevel regression analysis, and (b) a random intercept 
only with a new multilevel regression approach-- latent covariate. 

Pratt Index 

Herein a very brief sketch of Pratt’s variable ordering measure is provided, 
similar to the one described in Zumbo (2007). The interested reader is referred to 
Pratt (1987) and Thomas, Hughes, & Zumbo (1998) for details. Pratt considered a 
linear regression of the form 
 
 0 1 1 ... p py b b x b x      ,  (1) 
 
where residual term   is uncorrelated with 1 2,, ..., px x x  and is distributed with 

mean zero and variance 2 . The total standardized variance (R2) in a population 
explained by the model in equation (1) can be written as 
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 2

j jj
R b    (2) 

 
where bj is the standardized regression coefficient corresponding to xj, and ρj is 
the simple correlation (i.e., zero-order correlation) between y and xj. Pratt justified 
the rule whereby relative importance of a predictor is equated to variance 
explained, provided that the explained variance attributed to xj is j jb  , a 
definition which is widely used in the applied literature (e.g., Green, Carroll & De 
Sarbo, 1978).  

An additional feature of Pratt’s measure is that it allows the importance of a 
subset of variables to be defined additively, as the sum of their individual 
importance irrespective of the correlation among the predictors. Other commonly 
used measures (e.g., the standardized beta-weights, the t-values, zero-order 
correlations, semi-partial correlations) do not allow for an additive definition and 
may be problematic with correlated predictor variables.  

Thomas, Hughes, and Zumbo (1998) provide a sample interpretation of 
Pratt’s measure based on the geometry of least squares. They considered a sample 
regression equation, 
 
 1 1

ˆ ˆˆ p py b x b x     (3) 
 
where the ˆ

jb s are estimates of the population regression coefficients, j = 1, …, p. 
They defined the partition of R2 of jx , j=1, ..., p, to be the signed length of the 

orthogonal projection of ˆ
j jb x  onto ŷ , to the length of ŷ . By definition, this ratio 

represents the proportion of R2 and sums to 1.0. Furthermore, the partitioning is 
additive, so that one could, for example, compute the proportion of R2 attributable 
to various subsets of the explanatory variables, irrespective of the correlations 
among the explanatory variables. 

One then can partition the resulting R2 by computing the Pratt index, dj, 
 

 2

ˆ
,  j j

j

b r
d

R


  (4) 

where, as above, ˆ
jb is the jth standardized regression coefficient (the “beta”), jr  is 

the simple Pearson correlation, also called zero-order correlation, between the 
response variable and jth explanatory variable in equations (1) and (3) in samples. 
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The sum of dj, computed from equation (4), over all predictors is one, and the 
relative importance of predictors can be ordered by dj, that is, the larger the value 
of dj the more important the predictor, as per Pratt (1987). Thomas (1992) 
suggested that as a general rule, if dj < 1/(2p) (where p is the number of 
predictors), namely half the average importance, then the predictor can be 
regarded as unimportant. 

A variety of strategies have been used in practice in the literature, such as 
standardized regression coefficients (i.e., beta-weights), zero-order correlations, 
and the t-tests and its p-values for the regression coefficients, but they can give 
inconsistent results when the predictors are correlated because they do not have 
the additive property as indicated above. In addition to the Pratt index, two other 
methods have also been recommended in the literature, dominance analysis 
(Budescu, 1993) and proportional marginal variance decomposition (i.e., a 
modified version of dominance analysis) (Feldman, 2005). However, these two 
methods are computationally intensive with even a modest number of predictors, 
whereas the Pratt index requires simple computation and is easy to understand and 
interpret. 

Additive R-squares and Correlations Using SEM 

R-square is a widely used global effect size in multiple regression analysis, 
which is used to quantify the variance in an outcome variable explained by the 
model (i.e., by all the explanatory variables). However, R-square in a multilevel 
analysis is not straightforward. Several R-square or effect size measures were 
suggested in the literature, but none of them is equivalent to the one used in a 
multiple regression and the calculation of R-square for a random slope model is 
more complex due to the covariance of residuals between the intercept and 
slope(s) (Gelman & Pardoe, 2006; Hox, 2010; Kreft & de Leeuw, 1998; 
Raudenbush & Bryk, 2002; Roberts & Monaco, 2006; Singer & Willett, 2003; 
Snijders & Bosker, 1999). 

Based on a SEM framework, the recent advances in multilevel modeling 
have made it possible for us to use the Pratt index in a multilevel regression 
analysis. Unlike the conventional multilevel modeling approach, the observed 
covariance matrix can be decomposed into within- and between-levels 
orthogonally using the SEM framework. Cronbach and Webb (1979) proposed to 
decompose the observed individual variables into within- and between- group 
components, which can be written as Ytot =Yw +Yb, and the components Yw and 
Yb are orthogonal and additive. This decomposition can be used for the partition 
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of population covariance matrix to w (within-level covariance matrix) and b 
(between-level covariance matrix). Muthén (1989, 1990, 1994) showed that the 
sample covariance matrices can be used to estimate the multilevel population 
covariance matrices. In addition, Muthén (1994) showed that the pooled within-
level covariance matrix is an unbiased estimate of the population within-level 
covariance matrix w, which is given by 
 

( )( )
ˆ 

G n

ij j ij j
j i

w w

Y Y Y Y
S

N G

 

  



  

 
where i denotes individuals, j denotes groups, N is the total sample size, G is the 
total number of groups, ijY  denotes individual observations of all observed 

variables, jY denotes the group means of all observed variables, and the symbol 
prime denotes transpose. Muthén further showed that the sample between-level 
covariance matrix is an estimate of the composite ˆ ˆ b w bS c    , where c is a 
scaling factor 
 

2 2

( 1)

G

j
j

N n
c

N G







 

 
and bS  is given by 
 

( )( )

1

G

j j
j

b

n Y Y Y Y
S

G

 





. 

 
The maximum likelihood estimate of ˆ

b is )(1
wb SSc  . 

The estimated within- and between-level covariance matrices allow us to 
obtain two key components that are needed for the calculation of the Pratt index: 
the correlations of the outcome variable with the predictors and the variances of 
the outcome variable explained by the model at within- and between-levels, 
respectively. The correlations can be obtained from covariance matrices as the 
correlation matrices are simply the standardized covariance matrices. The additive 
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property of estimated variance-covariance matrices at the within- and between-
levels makes it possible to obtain the R-square which is conceptually equivalent to 
the one used in a multiple regression analysis and is always positive – a property 
that is not always guaranteed by other “R-square” measures discussed in the 
literature. The total variance of the outcome variable at both levels can be 
obtained directly from the covariance matrices, the residual variances at both 
levels can be obtained from a multilevel model analysis, and R-square can be 

computed from the equation 
2

2
21 e

tot

R 


  , which applies to both within- and 

between-levels. It should be noted that R-square arising from this method is akin 
to the R-square in regression and hence can be partitioned using Equation (4). 
However, it should be noted that the additive property of R-square described here 
only applies to a random intercept regression model and the problems raised by a 
random slope model are still not yet solved. This limitation is also true for other 
methods of ordering in multilevel models such as those based on dominance 
analysis (Luo & Azen, 2013).  

The Mplus software program has currently made those parameter estimates 
available in the output file. The covariance as well as correlation matrices at both 
within- and between-levels can be obtained by requesting“SAMPSTAT” under 
the “OUTPUT” command. The request for“STANDARDIZED”under the 
“OUTPUT”command will give R-squares for within- and between-levels, 
respectively, and the standardized beta-weights (i.e., beta-weights in the section of
“STDYX Standardization”in the output). Researchers can also calculate R-
square using the variance of outcome variable and the residual variance obtained 
from the Mplus output. Examples of Mplus syntax and Mplus output can be found 
in Appendices A and B.  

Two Demonstrations  

In this section, the use of the Pratt index with two real data examples is 
demonstrated. The first is a demonstration of a commonly used model in 
conventional HLM practice and involves what is often referred to as a random 
intercept model with predictors at both within- and between-levels. The second is 
a demonstration of a model that is referred to as a latent covariate approach, 
wherein the observed predictors are decomposed into two latent components 
rather than the common practice of aggregating individual observations to form a 
group level predictor.   
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Data sources 
The data were retrieved from Trends in the International Mathematics and 
Science Study (TIMSS) 2007. TIMSS 2007 Grade-8 mathematics ability scores, 
plausible values, estimated by item response theory, were used as the outcome 
variable. For the purpose of demonstration, one of five plausible values for the 
analyses was chosen. Six predictors (either measured variables or derived indices 
by TIMSS) were chosen from the students’ questionnaire as within-level 
predictors. These within-level predictors included sex, use of calculator 
(Calculator), availability of computer (Computer), students’ positive affect toward 
mathematics (Affect), students’ valuing of mathematics (Valuing), and students’ 
perception about being safe at school (Safety). Three variables were chosen from 
the school principal’s questionnaire as between-level predictors — good school 
attendance (Attendance), principals’ perception of school climate (Climate), and 
percentage of students at economic disadvantage in the school (SES).  

Among those predictors, Calculator and Computer are on 4-point Likert 
scale (never, some lessons, half the lessons, & every or almost every lesson); 
Affect, Valuing, Safety, Attendance, and Climate are on 3-point Likert scale (low, 
medium, & high); and SES are on 4-point Likert scale (0-10%, 11-25%, 26-50%, 
& more than 50%). A detailed description of these variables can be found in the 
TIMSS 2007 User Guide (Foy & Olson, 2009). A total of 120 schools, 3470 
students from Hong Kong were included in the analysis and 50.4% of students are 
girls. It should be noted that the same data set will be used for both 
demonstrations. 

Demonstration One 
Data analysis. Please see Raudenbush and Bryk’s (2002) case study one 
for a description of the random intercept model in their notation. In the case 
herein, the random intercept multilevel regression model was estimated using 
Mplus 6.02 to address how students’ mathematics ability was affected by the 
between-level (school level) factors as well as the within-level (student level) 
factors. The Pratt indices were computed to answer the question—which 
predictors are more important when accounting for the variance in the outcome 
variable (mathematics ability). The two-level random intercept model in the 
Mplus formulation can be described as: 
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0 1 2 3

4 5

0 00 01 02 03 0

Within-model:  Gender  Valuing  Computer

 Affect  Calculator ,

Between-model:  Attendance  Climate  SES ,

ij j

ij

j j

Y
r

u

   

 

    

   

  

    

  (5) 

 
where i denotes the number of students; j denotes the number of schools; 0 j is 
the random intercept; other  s are the fixed slopes of within-model predictors; 

00 is the model grand mean; other  s are the slopes for the between model 
predictors; ijr is the within-level residual; and 0 ju  is the between-level residual for 
the random intercept. 
 
Results Table 1 shows the results of the multilevel regression analysis with 
a random intercept and the Pratt index for each predictor. The second column is 
the standardized regression coefficients (the ‘beta’-weights); the following 
columns present t-tests, the corresponding p-values, zero-order correlations, and 
Pratt indices. The upper and lower parts of the table contain the results of the 
student-level (within) and school-level (between) models, respectively. The 
Mplus syntax and output of Demonstrate One can be found in Appendix A. 

Using the common practices described above, would make contradictory 
conclusions about the relative importance of within-level predictors, sex, 
calculator, computer and valuing math, if using different strategies. For example, 
one would consider computer more important than sex, calculator and valuing 
math if relying on the beta-weights. However, one would regard sex more 
important if relying on t-tests or the corresponding p-values or regard valuing 
math more important than computer, sex, or calculator if using simple correlations. 
These strategies are problematic as they do not have the additive property 
mentioned earlier.  

However, due to its additive property, the Pratt index orthogonally partitions 
the R-square and sums to one, which can provide us a criterion of how much each 
predictor contributes to the explained variance in the outcome variable 
orthogonally. Using the Pratt indices, calculator is shown to be more important 
than sex, computer, and valuing math, but all of them have made trivial 
contributions to the model relative to affect, which accounted for 73.8% of the R-
square (R2=0.135).  
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Table 1. A Random Intercept Multilevel Regression Analysis and Corresponding Pratt 
Indices 
 
Within Level Beta-weight t-test p-value Correlation Pratt 
valuing math 0.048 2.610 0.009 0.158 0.056 

computer -0.104 -5.031 <0.001 -0.077 0.059 

sex 0.090 5.108 <0.001 0.094 0.063 

calculator 0.090 4.659 <0.001 0.121 0.081 

Affect 0.300 16.381 <0.001 0.332 0.738 

R-square 0.135       SUM=1.0 

      
Between Level Beta-weight t-test p-value Correlation Pratt 
school climate 0.249 3.831 <0.001 0.354 0.258 

low SES -0.259 -3.258 0.001 -0.430 0.326 

school attendance 0.319 4.196 <0.001 0.447 0.417 

R-square 0.342       SUM=1.0 

 

Note. The sum of Pratt index of all predictors in either within- or between-levels is not exactly one due to 
rounding errors from parameter estimates. 

 
 

For the between-level model, school attendance was shown as the most 
important predictor among the three school variables. The order of importance 
would also be different, depending on whether beta-weights, correlation, or t-tests 
are used as criterion. The Pratt indices showed that school attendance is the most 
important predictor, which accounted for 41.7% of the explained variance 
(R2=0.342). The next important predictors are low SES and school climate, which 
accounted for 32.6% and 25.8% of the explained variance, R-square, respectively. 
Using Thomas’ (1992) criterion, all the values of Pratt indices are greater than 
0.167, so that those between-level predictors could be considered as important 
predictors. 

Demonstration 2 
Data Analysis In the second example, a new approach is demonstrated 
that allows us to examine a predictor at both levels though it is collected at the 
individual level. In some situations, data was collected from individuals, but it 
was also desired to investigate them at an aggregate level. For example, imagine 
students’ socioeconomic status (SES) was collected from individual students, but 
also were interested in the effects of school SES. Rather than aggregating SES by 
taking an average from within-level, a new approach that decomposes SES 
variable into two latent components (SESwithin and SESbetween) in the multilevel 
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regression analysis can be used, which would reduce the measurement error 
arising from aggregating the data as is typical within SEM.  

In general, a manifest covariate ijX can be decomposed into two latent 
components ij wij bjX X X   where wijX  and bjX  are latent covariates. The 
multilevel equations are defined as Y ij = 0 j  + 1 j wijX  + ijr  and 0 j = 00  + 

01 bjX  + 0 ju  where all the notation is defined the same as in Equation (3). A 
detailed description can be found in Asparouhov and Muthen (2006) and Ludtke, 
et al. (2008). This approach has also been adopted in Preacher, Zyphur, and 
Zhang's (2010) multilevel mediational models. 

This latent variable decomposition approach is used in the second 
demonstration. Building on the model in the first demonstration, one variable 
safety (How safe students feel at schools) was added, which was collected from 
individual students, but the effects of safety at both student and school levels can 
be examined using this latent variable decomposition approach. The 2-level 
model is presented as follows: 
 

 

0 1 2 3

4 5 6 within

0 00 01 02 03

04 between 0

Within-model:  Gender  Valuing  Computer

 Affect  Calculator  ,

Between-model:  Attendance  Climate  SES

,

ij j

ij

j

j

Y
r

u

   

  

    



   

   

   

 

Safety

 Safety

  (6) 

 
where all parameters are defined as in the Equation (3) except that the variable 
safety was added into the within-level and between-level models in Equation (4); 

6 is the slope for safety in level-1 model; 04 is the slope for safety in level-2 
model. 

 
Results Table 2 presents the parameter estimates obtained from the random 
intercept multilevel regression analysis based on a latent variable decomposition 
approach. The columns 2-5 are the standardized beta-weights, t-tests, 
corresponding p-values, and correlations, respectively. The Pratt indices are 
calculated and shown in the last column. The Mplus syntax and output of 
Demonstrate Two can be found in Appendix B. 

The interesting findings of this analysis are that although it was collected at 
the individual level safety was a trivial predictor at the student level, beta-
weight=0.008, t=0.478, p=0.632, and the corresponding Pratt index=0.001, but it 
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became a salient predictor at the school level, beta-weight=0.306, t=2.925, 
p=0.004, and the corresponding Pratt index=0.306. 
 
 
Table 2. A Random Intercept Multilevel Regression Analysis Based on a Latent Variable 
Decomposition Approach and the Corresponding Pratt Indices 
 
Within Level Beta-weight t-test p-value Correlation Pratt 
Safety 0.008 0.478 0.632 0.005 0.001 
valuing math 0.048 2.657 0.008 0.158 0.056 

computer -0.102 -4.920 <0.001 -0.075 0.056 

sex 0.093 5.168 <0.001 0.097 0.066 

calculator 0.093 4.763 <0.001 0.124 0.085 

Affect 0.300 16.365 <0.001 0.333 0.735 

R-square 0.136       SUM=1.0 

      
Between Level Beta-weight t-test p-value Correlation Pratt 
school climate 0.228 3.840 0.005 0.355 0.185 

low SES -0.239 -3.042 0.002 -0.430 0.235 

school attendance 0.274 3.755 <0.001 0.447 0.280 

Safety 0.306 2.925 0.004 0.427 0.306 
R-square 0.436       SUM=1.0 
 

Note. The sum of Pratt index of all predictors in either within- or between-levels is not exactly one due to 
rounding errors from parameter estimates. 

 
 

Again, the relative importance of predictors would be ordered differently, 
depending on which criterion, beta-weights, t-tests, or correlations, were used for 
the judgment. For example, the effect of safety at the between level would not be 
considered as the most important predictor if the judgment is based on 
correlations or t-tests. However, using Pratt indices, safety was regarded as the 
most important predictor, which accounted for 30.6% of the R-square. The 
importance of the other between-level predictors is ranked in the following the 
order, school attendance (28%), low SES (23.5%), and school climate (18.5%). 
The order of relative importance for the within-level predictors was similar to that 
of Demonstration One except the inclusion of safety, which should not be 
regarded as an important predictor based on 1/(2p) criterion as it accounted for 
less than 8.3% of the R-square. 

Concluding Remarks 

Ordering the relative importance of predictors has been a common practice in 
multiple regression analysis, but the methods developed in multiple regression 
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have not been used in multilevel regression analysis due to several statistical 
challenges. This study demonstrated how to order the relative importance of 
predictors in a multilevel regression analysis using the Pratt index. The Pratt 
index has not been used in multilevel regression analyses mainly because the 
within- and between-level variance-covariance could not be partitioned 
orthogonally and thus an R-square measure equivalent to the one used in multiple 
regression analysis cannot be obtained. The recent advances in multilevel 
modeling using SEM framework made the R-square available for researchers to 
compute the Pratt index when conducting a random intercept multilevel 
regression analysis. 

The Pratt index provides a useful tool to day-to-day researchers. As 
indicated in the introductory section, the Pratt index can be used with random 
intercept models when one wants to eliminate a nuisance factor arising from 
clustering or when one is only interested in the relationship between the level-2 
predictors and the average scores of outcome.  

It should be noted that the Pratt index can currently only apply to a random 
intercept regression model. The problems of obtaining a R-square with a random 
slope described above have not been solved yet, such as the R-square values can 
be negative and the magnitude of global R-square measure depends on the scale 
of predictors included in the model. The residual covariances of the intercept and 
slopes give rise to the complexity of partitioning the within- and between-level 
variances-covariances. Luo and Azen (2013) also discussed this issue in their 
extension of dominance analysis to multilevel models. They pointed out that the 
random slope model is problematic when conducting dominance analysis and 
hence suggested readers to use the random intercept model when using 
dominance analysis.   

It is worth noting that the Pratt index is not used as a strategy to select 
variables, but a tool for ordering the relative importance of variables once 
predictors have been chosen. Selection of the variables should be based on the 
data as well as the theories and literature surrounding the dependent and predictor 
variables. Moreover, Pratt index can only tell us the statistical importance of 
variables, but in practice researchers also need to consider the 
practical/substantive importance of variables. 
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Appendix A: Mplus Syntax and Output for Demonstration 
One 

Mplus Syntax 

TITLE: this is an example of a two-level regression analysis for a continuous 

dependent variable with a random intercept and observed covariates 

DATA: FILE = HK_example2.dat 

 FORMAT ARE 136.F8; 

VARIABLE: 

 NAMES = idsch idstd y1-y5 sex calculator computer affect valuing 

    paredu safty attendan climate ses; 

 USEVARIABLES = y1 sex calculator computer affect valuing 

    attendan climate ses; 

 MISSING = blank; 

 WITHIN = sex calculator computer affect valuing 

 BETWEEN = attendan climate ses; 

 CLUSTER = idsch; 

 CENTERING = GRANDMEAN (sex calculat computer affect valuing); 

ANALYSIS: TYPE = TWOLEVEL; 

MODEL: 

 %WITHIN% 

  y1 ON sex calculat computer affect valuing; 

 %BETWEEN% 

  y1 ON attendan climate ses; 

OUTPUT:  SAMPSTAT  STANDARDIZED; 

Mplus Output 

SAMPLE STATISTICS 

 

ESTIMATED SAMPLE STATISTICS FOR WITHIN 

Covariances 

 Y1 SEX CALCULAT COMPUTER AFFECT VALUING 

Y1 3259.376 

SEX 2.687 0.250 

CALCULAT 5.823 -0.037 0.706 

COMPUTER -3.661 0.051 0.030 0.700 

AFFECT 16.487 0.035 0.093 0.025 0.757 
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VALUING 5.847 0.007 0.062 0.024 0.192 0.420 

Correlations 

 Y1 SEX CALCULAT COMPUTER AFFECT VALUING 

Y1 1 

SEX 0.094 1 

CALCULAT 0.121 -0.089 1 

COMPUTER -0.077 0.122 0.042 1 

AFFECT 0.332 0.081 0.127 0.035 1 

VALUING 0.158 0.022 0.114 0.045 0.34 1 

 

ESTIMATED SAMPLE STATISTICS FOR BETWEEN 

Covariances 

 Y1 ATTENDAN CLIMATE SES 

Y1 5091.540 

ATTENDAN 19.053 0.357 

CLIMATE 14.287 0.049 0.319 

SES -32.546 -0.225 -0.138 1.127 

Correlations 

 Y1 ATTENDAN CLIMATE SES 

Y1 1 

ATTENDAN 0.447 1 

CLIMATE 0.354 0.144 1 

SES -0.43 -0.355 -0.23 1 

 

STANDARADIZED MODEL RESULTS 

STDYX Standardization 

Within Level 

 Estimate S.E. Est./S.E. P-Value 

Y1 ON 

SEX 0.090 0.018 5.108 0.000 

CALCULAT 0.090 0.019 4.659 0.000 

COMPUTER -0.104 0.021 -5.031 0.000 

AFFECT 0.300 0.018 16.381 0.000 

VALUING 0.048 0.018 2.610 0.009 

Residual Variances 

Y1 0.865 0.012 69.355 0.000 

 

Between Level 
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Y1 ON 

ATTENDAN 0.319 0.076 4.196 0.000 

CLIMATE 0.249 0.065 3.831 0.000 

SES -0.259 0.080 -3.258 0.001 

Intercepts 

Y1 7.939 0.554 14.319 0.000 

Residual Variances 

Y1 0.658 0.077 8.557 0.0000 

 

R-SQUARE 

Within Level 

Observed 

Variable  Estimate S.E. Est./S.E. P-Value 

Y1 0.135 0.012 10.786 0.000 

Between Level 

Y1 0.342 0.077 4.448 0.000 
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Appendix B: Mplus Syntax and Output for Demonstration 
Two 

Mplus Syntax 

TITLE: this is an example of a two-level regression analysis for a continuous 

dependent variable with a random intercept – latent variable 

decomposition 

DATA: FILE = HK_example2.dat 

 FORMAT ARE 136.F8; 

VARIABLE: 

 NAMES = idsch idstd y1-y5 sex calculator computer affect valuing 

    paredu safty attendan climate ses; 

 USEVARIABLES ARE y1 sex calculator computer affect valuing 

    safty attendan climate ses; 

 MISSING = blank; 

 WITHIN = sex calculator computer affect valuing 

 BETWEEN = attendan climate ses; 

 CLUSTER = idsch; 

 CENTERING = GRANDMEAN (sex calculat computer affect valuing 

    safty attendan climate ses); 

ANALYSIS: TYPE = TWOLEVEL; 

MODEL: 

 %WITHIN% 

  y1 ON sex calculat computer affect valuing safty; 

 %BETWEEN% 

  y1 ON attendan climate ses safty; 

OUTPUT:  SAMPSTAT  STANDARDIZED; 

Mplus Output 

SAMPLE STATISTICS 

 

ESTIMATED SAMPLE STATISTICS FOR WITHIN 

Covariances 

 Y1 SEX CALCULAT COMPUTER AFFECT VALUING SAFTY 

Y1 3255.204 

SEX 2.757 0.250 

CALCULAT 5.944 -0.038 0.706 
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COMPUTER -3.555 0.052 0.030 0.699 

AFFECT 16.522 0.036 0.093 0.025 0.757 

VALUING 5.853 0.007 0.062 0.024 0.191 0.420 

SAFTY 0.188 -0.040 -0.001 -0.024 0.009 -0.002 0.415 

Correlations 

 Y1 SEX CALCULAT COMPUTER AFFECT VALUING SAFTY 

Y1 1 

SEX 0.097 1 

CALCULAT 0.124 -0.091 1 

COMPUTER -0.075 0.124 0.043 1 

AFFECT 0.333 0.084 0.127 0.034 1 

VALUING 0.158 0.023 0.114 0.044 0.339 1 

SAFTY 0.005 -0.126 -0.001 -0.045 0.016 -0.004 1 

 

ESTIMATED SAMPLE STATISTICS FOR BETWEEN 

Covariances 

 Y1 SAFTY ATTENDAN CLIMATE SES 

Y1 5093.476 

SAFTY 4.285 0.020 

ATTENDAN 19.068 0.015 0.357 

CLIMATE 14.302 0.009 0.049 0.319 

SES -32.546 -0.020 -0.225 -0.138 1.127 

Correlations 

 VALUING SAFTY ATTENDAN CLIMATE SES 

VALUING 1 

SAFTY 0.427 1 

ATTENDAN 0.447 0.183 1 

CLIMATE 0.355 0.108 0.144 1 

SES -0.430 -0.137 -0.355 -0.230 1 

 

STANDARDIZED MODEL RESULTS 

STDYX Standardization 

Within Level 

 Estimate S.E. Est./S.E. P-Value 

Y1 ON 

SEX 0.093 0.018 5.168 0.000 

CALCULAT 0.093 0.020 4.763 0.000 

COMPUTER -0.102 0.021 -4.920 0.000 
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AFFECT 0.300 0.018 16.365 0.000 

VALUING 0.048 0.018 2.657 0.008 

SAFTY 0.008 0.016 0.478 0.632 

Residual Variances 

Y1 0.864 0.013 67.907 0.000 

 

Between Level 

Y1 ON 

ATTENDAN 0.274 0.073 3.755 0.000 

CLIMATE 0.228 0.059 3.843 0.000 

SES -0.239 0.079 -3.042 0.002 

SAFTY 0.306 0.105 2.925 0.003 

Intercepts 

Y1 7.972 0.546 14.601 0.000 

Residual Variances 

Y1 67 03 96 00 

 

R-SQUARE 

Within Level 

Observed 

Variable Estimate S.E. Est./S.E. P-Value 

Y1 0.136 0.013 10.660 0.000 

Between Level 

Y1 0.433 0.103 4.197 0.000 
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