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The advantages of modeling the unreliability of outcomes when evaluating the 
comparative effectiveness of health interventions is illustrated. Adding an action-research 
intervention component to a regular summer job program for youth was expected to help 
in preventing risk behaviors. A series of simple two-group alternative structural equation 
models are compared to test the effect of the intervention on one key attitudinal outcome 
in terms of model fit and statistical power with Monte Carlo simulations. Some models 
presuming parameters equal across the intervention and comparison groups were under-
powered to detect the intervention effect, yet modeling the unreliability of the outcome 
measure increased their statistical power and helped in the detection of the hypothesized 
effect. Comparative Effectiveness Research (CER) could benefit from flexible multi-
group alternative structural models organized in decision trees, and modeling 
unreliability of measures can be of tremendous help for both the fit of statistical models 
to the data and their statistical power. 
 
Keywords: comparative effectiveness research, quasi-experiment, structural equation 
modeling, measurement error, internal locus of control, behavioral change 
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Introduction 

Assessing intervention effects poses some challenges to researchers, scholars, 
evaluators, and policy makers, especially when a quasi-experimental design is 
employed (Judd & Kenny, 1981; Stead, Hastings, & Eadie, 2002). When 
treatments and interventions move from the trial phase to being implemented on 
the ground, or Translating Research into Practice (TRIP, Feifer et al., 2004) the 
question of differential effects is of most concern to practitioners and researchers. 
Comparative Effectiveness Research (CER, Agency for Healthcare Research and 
Quality, 2007) is an emerging new approach addressing questions of comparative 
effects of alternative health interventions implemented in real world settings. 

It is particularly difficult to decide on the best comparative results for 
reporting, when alternative models, accounting for various differences by 
condition, reach different conclusions. Evaluation challenges posed by health 
intervention designs in which randomization to conditions is not feasible are 
illustrated, by comparing alternative Structural Equation Models (SEM, Kline, 
2010) testing for comparative intervention effects, in terms of both fit and 
statistical power. The benefits of modeling unreliability in increasing statistical 
power to detect true intervention effects are specifically demonstrated. 

Evaluating health interventions effects on outcomes in community-based 
settings involves statistical modeling of non-RCT (Randomized Control Trial) 
designs, when different comparable groups are contrasted in terms of differential 
changes or responses to some program. A number of statistical approaches are 
commonly employed for such tests, among them regression-based linear models 
testing for the impact of a condition variable (the intervention of interest vs. a 
comparison condition) on the outcome of interest (Aiken, West, Schwalm, Carroll, 
& Hsiung, 1998; Bentler, 1991; West, Biesanz, & Pitts, 2000). In real world 
implementation settings however, the groups always differ in model parameters 
like baseline means and variances of key outcomes and covariates, as well as in 
terms of the outcomes change trajectories, or stability.  

To accommodate such differences, structural models can be tested in several 
groups concurrently, like two-group models, thereby accounting for group 
differences that are commonly overlooked in analyses focused on whole-sample 
data, like paired t-tests (Macy, Chassin, & Presson, 2013) or analysis of variance 
(Young, Harrell, Jaganath, Cohen, & Shoptaw, 2013).  

Moreover, the very assumptions about various initial and time changing 
group differences impact how well models fit the data and more importantly the 
statistical power to detect the effects of interest (Hancock, 2004). These 
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assumptions need to be flexibly modeled for the estimates of post-test differences 
or differential changes to be trustworthy (Green & Thompson, 2006). A simple 
CER model comparison procedure for evaluating true group differences of non-
RCT interventions is presented, which specifically tests both the fit to data and the 
statistical power of alternative SEM models and helps in sorting through 
competing models, using a decision tree framework. The procedure is repeated for 
similar models that directly include measurement errors of the measures, and the 
benefits of modeling unreliability are shown. 

One key outcome was compared between groups of urban minority 
adolescents from two large cities in the USA, who were enrolled in summer job 
programs. One youth group was additionally engaged in a youth intervention 
designed to reduce drug and sexual risk behaviors (Berg, Coman, & Schensul, 
2009). Low-income urban youth are often more likely to engage in risky 
behaviors, like substance use or unprotected sex (Farahmand, Grant, Polo, & 
Duffy, 2011; Simons-Morton, Crump, Haynie, & Saylor, 1999). A host of factors 
have been shown to be linked with behaviors that impact youth substance use 
initiation, like poverty, exposure to violence and drug use in their community 
(Caldwell, et al., 2004; DeWit, Adlaf, Offord, & Ogborne, 2000; Grant, Stinson, 
& Harford, 2001; Swahn, et al., 2012).  On the other hand, parental support, 
positive peer influences and social support systems act as protective factors and 
are often targeted by prevention interventions (Catanzaro & Laurent, 2004; 
Cleveland, Gibbons, Gerrard, Pomery, & Brody, 2005). Furthermore, youth action 
and involvement in one’s community can reinforce group cohesion and increase 
individual skills and a sense of self-efficacy and control over their own behaviors 
(Schensul, Berg, Schensul, & Sydlo, 2004).  

YARP (Youth Action Research for Prevention) was a three-year summer 
and after-school preventive intervention (Berg, Owens, & Schensul, 2002; Reason 
& Bradbury, 2007). Three youth cohorts were employed and trained over the 
summer and were instructed to identify a youth-related problem in their 
community, to develop a research model and an action plan addressing that issue, 
gather and interpret community data, and actively engage in social action to 
promote changes in their community. This intervention group was compared to a 
matched youth group recruited from a comparable summer-job program in a 
neighboring city with similar economic conditions and ethnic/racial composition.   

A primary hypothesis proposed that youth-initiated research for action, 
along with involvement in multilevel social change activities (or activism) 
reinforce group cohesion and individual and collective efficacy. As a result, it was 
expected that among other outcomes, Internal Locus of Control (ILC) would 
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strengthen in the intervention group compared to the matched comparison group. 
Figure 1 shows the pre- and post-test sample means of the ILC outcome in the 
intervention and comparison YARP groups. It is specifically investigated which 
alternative models testing for intervention effects exhibit both good fit to data and 
enough statistical power to detect the effects, depending on different model 
specifications (Hancock, Lawrence, & Nevitt, 2000). The impact of accounting 
for measurement unreliability in the models, thereby estimating true differences 
of the latent (unobserved) outcome is also explored. The models belong to the 
Structural Equation Modeling (SEM) framework.  
 
 

 
 

Figure 1: Outcome means pre- and post-intervention for the YARP comparison and 
intervention groups 
 

Methodology 

Structural equation modeling for intervention effects 
A major methodological tool for understanding health intervention processes and 
assessing comparative outcome effects is the latent linear modeling with multiple 
simultaneous regression equations, known as Structural Equation Modeling (SEM, 
Bollen, 1989; Jöreskog, 1973) or covariance structure analysis (Bentler & 
Dudgeon, 1996). SEM is an enormously flexible technique that can carry out 
virtually any analysis (Muthén, 2002; Skrondal & Rabe-Hesketh, 2004). Current 
extensive SEM reviews position it as an integrative general modeling framework, 



COMAN ET AL 

75 

of which traditional analyses like the t-test, ANOVA, MANOVA, canonical 
correlation, or discriminant analysis are special cases (Fan, 1997; Graham, 2008; 
Muthén, 2008; Voelkle, 2007).  

A simple SEM setup for testing intervention effects is the common one-
group analysis of the effect of a dummy intervention variable on the post-
intervention outcome. This approach, called ‘group code’ SEM (Hancock, 1997), 
tends to overlook however group differences that may need to be modeled, in 
other words it cannot account for a number of differences between groups, 
because data from both groups are combined. A more flexible tool is the testing of 
causal models in multiple groups, which allows for a range of tests of group 
differences (Bagozzi & Yi, 1989; Kühnel, 1988; Thompson & Green, 2006). 
Two-group models, like a two-group simple regression, provide parameter 
estimates for each group (Green & Thompson, 2006), and are more versatile in 
that they are simultaneously tested in more than one sample, with the options to 
hold parameters equal or allow them to vary across groups.  

The general multiple-group manifest (observed) variable SEM model in 
multiple groups (indexed by g) is of the form:  

 
      g g g g gy x   (1) 
 
where y is the (q1) vector of exogenous and x the (p1) vector of endogenous 
manifest variables, τ is the (q1) vector of intercepts, Γ represents the (qp) 
matrix of slopes, and ζ the (q1) vector of residuals (or disturbances). However, 
when m latent variables are also modeled, the structure can be expressed 
separately for the latent variable relationships as: 

 
           g g g g g g g   (2) 
 
with η being the (m  1) vector of latent endogenous variables, α the (m  1) 
vector of factor score means, B the (m  m) coefficient matrix for the influence 
of endogenous η’s on η’s, Γ the (m  n) coefficient matrix of the effects of the n 
exogenous ξ variables on η’s, and ζ is the (m1) disturbance vector assumed to 
have an expected value of zero and be uncorrelated with ξ and η. The model for 
the measurement part linking the manifest to the latent variables is (Bollen, 1989: 
320): 
 
 g yg yg yg g     y   (3) 
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and 
 
 g x xg g     xg gx   (4) 
 

Model testing in SEM is meant to reproduce the variances, covariances and 
the means of the observed variables (Bentler & Yuan, 2000; Hancock, 2004). 
SEM testing requires first the assessment of the fit of the model to the data; the fit 
is simply the extent to which a model implies means and variances/covariances 
that are similar to the observed ones. The χ2 (chi-squared) fit statistic for instance 
assesses the closeness between the implied covariance matrix and the sample 
covariance matrix (Hayduk, 1987). For a multiple-group SEM model, the χ2 is 
obtained as (N-1) FML from the fit function FML, which is a weighted combination 
of the g groups fit functions (Bollen, 1989: 361): 

 
    1           gML g g g gF tr log log p q      S S   (5) 

 
where ∑ is the population covariance matrix and S is the sample covariance 
matrix.  

Lack of χ2 fit is generally a function of the constraints imposed on the model 
(Thompson & Green, 2006). A two-group SEM model fits to the extent that it 
closely reproduces the sample means and covariances in both groups, so model 
misfit can indicate misspecification at the level of both within-group means and 
covariances (Saris & Satorra, 1993), as well as in the assumptions about cross-
group equalities or differences, like the equality of pre-intervention means or 
variances  

However, some specific equality constraints are supported by some data sets 
and rejected by others (Green & Thompson, 2003), depending on actual 
community initial conditions, and on differential change processes.  For example, 
the assumption that the path (auto-regressive) coefficients from baseline to post-
test outcome are equal in the intervention and comparison groups is rarely true, 
primarily because the intervention itself is expected to change the stability of the 
outcome; these assumptions are rarely tested (Bentler, 1991). 

To compare groups (like gender, age, or intervention and comparison 
groups) on the means of the DV (dependent variable, or endogenous) in an SEM 
framework, researchers evaluate the fit of a structural model of no difference 
between the focal parameters (i.e. equality of intercepts is imposed) against 
another model where intercepts differ; if the models fit the data similarly, there is 
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no difference in intercepts, whereas if the different means model fits significantly 
better, there is evidence for a systematic group difference.  

Acceptable model fit alone however does not ensure that its conclusions are 
warranted, because alternative well-fitting models may lead researchers to 
divergent conclusions. This is partly because alternative well-fitting models can 
have different statistical power to detect the effects of interest (MacCallum, Lee, 
& Browne, 2010; Saris & Satorra, 1993), especially for small sample sizes and 
unequal groups (Hancock, et al., 2000). These models contain different 
specification errors, and therefore will vary in both fit and testing power. 
Researchers should then analyze the statistical power of all alternative well-fitting 
models that can be relied upon for testing the hypothesis of equal post-
intervention means.  

In summary, there always exists a range of well-fitting models that provide 
different model-implied estimates of between-group differences, when researchers 
compare effects of programs across different conditions or settings. For the sake 
of brevity the focus is on simple models with only one outcome variable 
measured twice, with the baseline measure affecting the post-test outcome, in two 
groups, enhanced intervention and comparison, a common quasi-experimental 
design (Meehl & Waller, 2002). These models can be easily expanded to include 
covariates and additional intervening factors.  
 

Analytic steps Two-group regression models were tested that gradually 
imposed equality constraints on model parameters across groups, in a hierarchical 
manner (somewhat similar the SEM decision trees, Brandmaier, von Oertzen, 
McArdle, et al., 2013), starting with a basic model with all parameters allowed to 
differ across groups. Specified models with increasingly more parameters were 
then constrained to be equal across the comparison and intervention groups: 
baseline means, then baseline variances, then the baseline to post-test regression 
coefficient, and combinations of them (Mplus syntax outputs are available online 
at http://trippcenter.uchc.edu/modeling/files/HEdRes.zip). The decisions to accept 
or reject models and equality-constraints are based on chi-square (χ2) tests and 
Wald tests. Wald tests are asymptotically equivalent to the chi-square difference 
tests (Δχ2) and do not require re-specifying the model (Bollen, 1989: 295). 

A simple two-group structural model with a baseline outcome causing the 
post-test outcome yields five model estimated parameters for each group (see for 
illustration the actual parameters in Figure 2). The model depicts variances as a 
double headed arrow, or as a covariance of the variable with itself. Such models 
can specify (or not) equality constraints between some of these parameters, and 
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then test the difference between post-intervention intercepts of the outcome. The 
linear equations can be directly spelled out from the model in Figure 2 as: 
 
 2 1*g g g g gILC ILC       (6) 
 
where ILC1g and ILC2g are the baseline and post-test variables, τg are the 
intercepts (the values of ILC2g when ILC1g are zero), γg are the auto-regressive 
coefficients, ζg the residual error terms, and g indexes group (intervention or 
treatment T, and comparison C). Organizing alternative SEM models using a 
decision tree that starts with an all-parameters-different model, and grows by 
imposing equality constraints on parameters across groups is proposed. 
 
 

 
 
Figure 2. Two group model specification for testing the equality of post-intervention 
difference τ2C = τ2T of the ILC outcome (Note: Hexagons represent means/intercepts; T: 
treatment group, C: comparison.) 
 
 
 
In addition to fit, models differ in statistical power to detect specific effects 
(Hancock, et al., 2000). The probability of rejecting the hypothesis of equal post-
test means, when the means are different in the population, is the statistical power 
of the test, and should ideally be one. The power of SEM models can be obtained 
generally by fitting on population data an F (full) model, then an alternative R 
(restricted) model with an additional constraint of interest (MacCallum, et al., 
2010; Satorra & Saris, 1985). Because the population F model fits perfectly, the 
only worsening (or ‘badness’) of fit of the reduced model R would come from the 
additional constraint imposed the equality of post-test means in this case. The 
difference between the two model χ2 values represents the noncentrality parameter 
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for the noncentral distribution with one degree of freedom (Hancock, et al., 2000). 
Alternatively, the Wald test χ2 is an asymptotically equivalent method of 
estimating power (Buse, 1982). 

The statistical power of each alternative model was assessed using Mplus 6 
Monte Carlo facility (Muthén & Muthén, 2002), which generates datasets 
according to an F causal model assumed to be the true in the population, generates 
simulated sample datasets (in this study, 1,000 simulations), and then can test a 
constrained model R to each simulated sample dataset. The Mplus output provides 
descriptives of the percent of times the R replicated models rejected the (assumed 
false) equality of post-test means, which is the power of the model to detect the 
effect. Specifically, the power of the model is given by the observed proportion of 
replication tests for which the Wald test exceeds the critical value of 3.841 (for 
degree of freedom df = 1, for the equality of intercepts constraint τC2 =  τT2). 
Unreliability was then modeled in both groups statistical power to detect 
intervention effects was tested for all the new models. (Muthén & Jöreskog, 1983; 
Thompson & Green, 2006). 

 
Study setting and data The research team conducted and evaluated the 
multi-year YARP project (2002-2005), a youth intervention implemented in 
Hartford, Connecticut (CT). The Institute for Community Research Institutional 
Review Board ensured that proper human subjects protocols were followed. The 
intervention group had NT = 90 participants who completed all four surveys, 
recruited from Hartford, CT, of whom 56% were females, 48% Blacks, 37% 
Latinos, mean age MT = 15.1 years, while the comparison group had NC =167 
from a similar inner-city youth in a summer job program in Massachusetts, U.S., 
with 58% females, 45% Blacks, 44% Latinos, and mean age MC = 15.5. 

Measures were taken at baseline, 2 month, 6 months, and 1 year in both 
groups. Internal locus of control was measured with 4 indicators (i.e., ‘I am 
responsible for accomplishing goals’, ‘Life offers me many choices’, ‘I can do 
things I set out to do’, and ‘I enjoy having control over own destiny’) from among 
the Internal subscale items of the Levenson Locus of Control scale (Levenson, 
1973) modified for younger ages. For simplicity and because interest lies in long-
term and potentially sustainable effects, the focus here is on the difference in 
changes from baseline to the final fourth measurement time point. A composite of 
the average items was calculated (rated from strongly disagree = 1, to strongly 
agree = 4, 4 being greater internality). Basic descriptive, reliabilities, correlations 
and covariances are shown in Table 1, for each group, and the entire sample. The 
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pre- and post-test ILC measures had acceptable reliabilities, Cronbach’s alphas 
between .725 and .871.   
 
 
Table 1: Covariances, correlations, means and Cronbach’s α of the pre- and post-test 
Internal Locus of Control (ILC) outcome for the two YARP groups and for the whole 
sample 
 

 Comparison 
NC = 167 

Intervention 
NT = 90 

Whole sample 
N = 257 

 ILC1 ILC2 ILC1 ILC2 ILC1 ILC2 Group 
ILC1 0.264 0.475* 0.174 0.448* 0.235 0.445* -0.081NS 
ILC2 0.264 0.325 0.174 0.480 0.134 0.385 0.104NS 

Group (C/T) - - - - -0.019 0.031 0.228 

Means μ 1.365 1.356 1.283 1.492 1.337 1.404 0.350 
Cronbach’s α 0.725 0.847 0.726 0.871 .726 .859 - 

 
Note. Covariances are shown in bold and below diagonal and correlations above diagonals, variances in italics 
on the diagonals. 
 
 

 
 

Figure 3:  Alternative decision-tree SEM modeling for comparing post-intervention 
observed outcome means in two-group causal models (Notes: Shaded models: good chi-
square fit; model names indicate which equality constraints are imposed, on: σ2 = 
variances, µ = means; β = autoregressive paths; or T = the test of equality of post-test 
intercepts; numbers in boxes: in pentagons– power of each model, and lower right - fit 
ordered from best fitting (1) up; arrows going up show model comparison tests, with p 
value for significance of Wald test [p<.05 corroborates intervention effect.]) 
 
 
 



COMAN ET AL 

81 

The hypothesis of equal post-intervention ILC means (technically the 
intercepts τC/T) was tested with all well-fitting models. The models are shown as a 
decision tree in Figure 3. The baseline model with df = 0 (the ‘root’) assumes all 
parameters are different across groups, and each higher layer of nodes adds one 
more equality constraint, hence estimating one less parameter. When adding the 
equality constraint between post-test intercepts (the focal parameter) led to a 
significant worsening of fit, or a significant Wald test statistic, it was concluded 
that the means were different between groups.  

Results 

The results of alternative modeling of the tests of ILC outcome differences are 
now reported. The three well-fitting models are shown in Table 2, which lists the 
common SEM measures of fit ordered by descending p values for χ2 larger 
than .05, and the Wald tests of the post-intervention differences.  
 
 
Table 2: Ordered fit indices, Wald tests, and statistical power for the well-fitting 
alternative causal models of the YARP intervention effect on Internal Locus of Control 
 

  Model χ2 df χ2 p CFI RMSEA Wald Wald p Power 

1 1β β’s equal 1.517 1 0.218 .991 .063 5.685 0.017  0.70 

2 2μβ μ’s & β’s 
equal 3.436 2 0.179 .976 .075 5.719 0.017  0.70 

3 1μ μ 's equal 1.919 1 0.166 .985 .085 0.161 0.688  0.14 
 

Note: μ = baseline means; β = auto-regressive path; italics Wald test p indicate significant intervention effect. 
 
 

Two well-fitting models, 1γ, and 2μγ indicated that there was indeed a 
significant intervention effect (p = .017 for the Wald statistic in both), while 
another well-fitting model, 1μ, reached another conclusion. Note that the baseline 
means cannot be deemed statistically different, because the fit of the 1μ model 
(baseline means set equal across groups) indicates in fact that the perfectly fitting 
model with all parameters different (for which df = 0) does not worsen 
significantly when constraining the baseline means to be equal.  

The fact that only some models reject the equality of means hypothesis is an 
indication of differential statistical testing power (Hancock, 2006) linked to model 
misspecifications (Saris & Satorra, 1993). In other words, some models may have 
low power to reject the (false) hypothesis of equal post-test means.  
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In terms of statistical power, the equal baseline means model (1μ) that has 
initially found no effect yielded a probability to rightly reject the (assumed false) 
equal means hypothesis of p = .14, while the other two well-fitting models had 
higher sensitivities of p = .70. This indicates that for the observed sample sizes of 
90 and 167, the models compared here have dramatically different sensitivities to 
detect the effect of interest. Examination of model fit alone, therefore, without 
controlling for Type II errors could lead to accepting well fitting models that are 
not sensitive to detect specific effects (Saris, Satorra, & van der Veld, 2009). In 
this particular instance, the ‘stress’ induced in this simple linear model by 
constraining the baseline means to be equal rendered one well-fitting model (1μ) 
seriously under-powered to detect the intervention effect. Next it will be shown 
that this particular model was underpowered because the baseline equality of 
means assumption was imposed on the unreliable baseline measure.  

Informed knowledge of the reliability of an observed variable allows for 
modeling the true means of latent variables (unattenuated by measurement error). 
When measurement error is directly specified for composite or single-item 
variables, each measured variable is in fact subjected to a mini-factor analysis, in 
which a common factor (the true measure) is assumed to be responsible for 
(acting behind) the observed measure. The reliability of an observed variable is 
simply the proportion of the observed variance that is true variance, or the squared 
correlation between the true variable and the observed variable (Raykov, 1997), 
and a common estimate used in applied research for scale reliability is Cronbach’s 
alpha coefficient (Raykov & Marcoulides, 2011). Because reliability ρ is the 
percentage of variance that is true variance, the complement 1- ρ is the percentage 
that is measurement error, hence (1-ρ)*σ2

ILC1 is the measurement error variance 
(MacKinnon, 2008: 189). The measurement error variance for the comparison 
group δ1C  for ILC1C in Figure 4, for example, whose reliability was .73 and 
variance .26, was fixed at (1 - .73) * .26 = .27 * .26 = .070. 
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Figure 4. Illustration of two-groups model parameters with measurement errors directly 
modeled (Notes: Hexagons show the means/intercepts; ρ are reliabilities; σ2 are 
observed variances; g indexes group: comparison and intervention.) 
 
 
 

When directly modeling the unreliabilities of the baseline and post-
intervention ILC outcome in both groups, the power to detect the post-
intervention differences in mean ILC of the 1μ model increases to .716 (from the 
meager .14 of the manifest ILC model). So when assuming that the true (latent) 
baseline ILC means are equal, the model is better powered to detect the 
intervention effect unto the reliable (true) latent outcome, and the effect emerges 
as a significant larger increase in the true ILC in the intervention group, Wald test 
statistic of 6.14 (df=1), p = .012. 

Conclusion 

A decision-tree method of comparing alternative models of observed and true 
outcomes was illustrated (Kaplan, 1990), which tests for post-intervention health 
outcome differences between community-based groups, based on both fit to data 
and power to detect these effects. This procedure can assist in Comparative 
Effectiveness Research (CER) by providing the modeling flexibility required by 
actual data in terms of various group (or community) differences. It is particularly 
useful when trying to compare effects using summary data from separate studies, 
when available in the form of means, variances and covariances. 
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One manifest outcome well-fitting model was under-powered to detect the 
YARP intervention effect on Internal Locus of Control (ILC), but two other well-
fitting models with better statistical power detected a positive effect on ILC in the 
intervention group. It was found that even small differences in parameters of the 
unreliable measures create ‘stress’ in the structural models which can render them 
underpowered to detect the effects of interest. In the illustration, the lack of power 
of the baseline equal means two-group structural model derived from imposing a 
plausible equality constraint on the unreliable observed ILC measures, rather than 
on the true (latent) ones. 

The structural equation models tested here indicate that the lack of statistical 
power of the models with unreliable outcomes are due largely to modeling error-
in-variable measures (containing measurement errors). The example herein shows 
the importance of a priori specification of alternative models and the utility and 
relative ease of post-hoc power analysis, and also showed the benefits of directly 
modeling unreliabilities of outcome measures. The nuanced reporting of the 
alternative testing and plausibility of competing conclusions is essential for 
statisticians, prevention and comparative effectiveness researchers, as well as 
policy makers and community representatives interested in evaluating, replicating 
or translating successful programs.  

Some limitations are worth mentioning. To the extent that one tries out 
repeated models on the same data, procedure called specification search and 
available in current SEM software like AMOS (Arbuckle, 2007), the issue of 
over-fitting the model to the same data (or data dredging, see Brandmaier, et al., 
2013) could be a concern (Hayduk, 1987). This procedure is acceptable, if careful 
planning of model testing under alternative reasonable configurations is 
undertaken a priori (Jöreskog, Bollen, & Long, 1993), being akin to specifying 
equivalent models before data collection (Hershberger, 1994).  

The decision tree modeling approach is useful in identifying and classifying 
alternative multi-group models according to differential support from multiple-
group data in general. It does not of course provide criteria for deciding the true 
and false nature of the models, but rather their “truth-likeness” or closeness to the 
truth (Meehl & Waller, 2002). Quasi-experimental designs for instance require the 
use of covariates to control for additional baseline differences between the groups, 
and the modeling of selection biases (Muthén & Jöreskog, 1983); however, a 
basic model was chosen herein for simplicity to illustrate this method.  

The method presented here becomes cumbersome when models increase in 
complexity, e.g. when using multiple indicator measures with numerous possible 
cross-group constraints, like specific loadings and intercepts (Green & Thompson, 
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2006). Multiple latent covariates and possibly multiple outcomes with indirect 
effects complicate the picture even further. Study analyses, however, make clear 
the benefits of directly modeling unreliability, of careful inspection of alternative 
models and attending to both model fit measures and statistical power of the 
models, when comparing the effectiveness of health interventions translated and 
implemented differently in separate communities. 
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