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On finding a significant association between rows and columns of an r x c contingency 
table, the next step is to study the nature of the association in more detail. The use of a 
scree plot to visualize the largest contributions to Χ2 among all cells in the table in order 
to determine the nature of the association in more detail is proposed.  
 
Keywords: contingency table; graphical method; exploratory analysis; scree plot; 
contribution to chi-square 
 

Introduction 

A graphical method is proposed for exploring associations between rows and 
columns in an r x c contingency table. Typically, the Pearson chi-square test (or 
alternatively, the Fisher exact test) is used to test for independence of two 
categorical variables arranged in an r x c contingency table. (When one or both 
categories are ordinal, other procedures more suited to test for ordinal associations 
are available but the method being proposed here can be applied to both ordinal 
and non-ordinal data.)  

On finding a significant association between rows and columns of an r x c 
table, the next step is to study the nature of the association (i.e., lack of 
independence) in more detail. One approach is to partition the r x c table and to 
use principles of chi-square partitioning to compare various groupings of rows 
and columns in order to make sense of the association (Agresti, 1990). Another 
method is to “collapse” the r x c table into some meaningful 2 x 2 table, the 
results for which are much easier to interpret (Feinstein, 2002). The advantage of 
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the first approach is that it is truly inferential, but the choice of how to partition 
the table may be impractical for very large r x c tables. The second method, while 
appealing due to its simplicity, may result in combining categories that have no 
appropriate justification or interpretation with respect to the subject matter being 
studied. 

Consider the situation where the data analyst is interested more in 
exploration of the association rather than formal inference, in which case an 
exploratory graphical approach might be appropriate. There is the method known 
as Correspondence Analysis (CA) with applications in areas of social science, 
psychology, market research, and, to some extent, biomedical research (Greenacre, 
1984; Greenacre, 1992). This graphical approach is based on linear algebraic 
techniques, which project the rows and columns of a data matrix in points onto a 
graph in Euclidean space, from which a better understanding of the data may be 
derived.  

A simpler, yet intuitive method is proposed: exploratory graphical approach 
based on a method suggested by Snedecor and Cochran (1989), in which the data 
analyst identifies the cell entries providing the largest percentage contributions to 
Χ2 because those will suggest departure from the null hypothesis of independence, 
and will be row-column combinations of interest. Some drawbacks of this 
approach are that searching an r x c table for the “largest” contributions to Χ2 can 
be tedious (especially for large tables), inefficient, and prone to error (i.e., failing 
to identify all the cells that are “large” contributors). Given these potential 
problems, a graphical approach to summarizing these contributions would be 
helpful, especially when there are many cells to analyze. 

The graphical approach used herein is to use an adaptation of the scree plot 
to visualize the largest contributions to Χ2 among all of the cells of the r x c table. 
(The scree plot is commonly used in principal components analysis to help choose 
the most important principal components [Khattree and Naik, 2000]).  

As an example, Table 1 (hypothetical data for illustrative purposes) is a 6 x 
5 cross-tabulation of a patient’s primary hospital admitting diagnosis according to 
the patient’s race. There is a highly significant association between diagnosis and 
race (Χ2 = 326.4, p < 0.0001). The common interpretation of this significance is 
that diagnosis is not independent of race or, alternatively, that there are at least 
two races for which the distributions of diagnosis differ. Which two (or more) 
columns differ from one another? 
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Table 1. Cross-tabulation of a patient’s race according to patient’s primary hospital 
admitting diagnosis 
 

 Primary hospital admitting diagnosis 

 DM Chest pain CVA Fever GI distress Other Total 

White 
39 18 51 22 16 20 

166 
23.49 10.84 30.72 13.25 9.64 12.05 

Black 
11 15 8 2 92 48 

176 
6.25 8.52 4.55 1.14 52.27 27.27 

Hispanic 
90 56 19 15 13 29 

222 
40.54 25.23 8.56 6.76 5.86 13.06 

Asian 
13 0 14 7 15 0 

49 
26.53 0 28.57 14.29 30.61 0 

Other 
44 18 10 11 9 3 

95 
46.32 18.95 10.53 11.58 9.47 3.16 

Total 197 107 102 57 145 100 708 
 

Note. The top entry in each cell is the frequency count; the lower entry is the “row percent,” which is the 
percentage based on the row total. 
 
 

To answer that question, two methods are commonly used. The first is 
simply to inspect the many so-called “column proportions” and informally, based 
on subjective visualization, make a judgment as to which columns differ. The 
second is to more formally perform all 10 pairwise comparisons of the columns 
using a Χ2 test with 5 degrees of freedom and to declare two columns as different 
if the associated p-value is less than some critical value that is appropriately 
adjusted for multiple comparisons. (In general there would be c!/(2!(c-2)!) each 
with r-1 degrees of freedom.) 

The first method is deficient because it is highly subjective and requires 
simultaneous visual processing of all of the column percentages. The second 
method has the advantage of being truly inferential, but, in finding two columns 
that differ, it fails to identify the row locations of those differences.  

The graphical method proposed is computationally objective and 
reproducible and can be easily programmed in most statistical software packages, 
including SAS® for which a publically available macro has been written.  
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Methodology 

Suppose data are arranged in an r x c contingency table. The individual entries in 
the r x c table represent the frequency, or, number, of observations of a given row-
column combination (e.g. race and diagnosis as in Table 1.) 

Using standard statistical notation, let Oij represent the observed entry in row 
i, column j, Oi. the total of all entries in row i, O.j the total of all entries in column 
j, and Eij the expected entry in row i, column j. Letting n denote the sum total of 
all frequencies entered in the table, the expected frequency of row i, column j, Eij , 
is calculated as the product of the total frequency in row i multiplied by the total 
frequency in column j, divided by n (i.e.,   .  .  /  ij i jE O x O n ).  

Using this notation, the standard Pearson Χ2 statistic is calculated as 
 

  
22   –  /  i j ij ij ijX O E E 

 
 


 ,  

 
where the summations correspond to i = 1, 2, …, r and j = 1, 2, …, c. Snedecor 
and Cochran (1989) denote the contribution of the ijth entry to the Χ2 statistic as  
 

  
22  –  /  ij ij ij ijX O E E   

 

Compute all values of Χ2
ij for i=1, 2,…, r and j=1,2,…,c. Then compute Pij = 

100* Χ2
ij / Χ2 = percentage of overall Χ2 contributed by the ijth entry. Snedecor 

and Cochran (1989) propose that the entries providing the largest percentage 
contributions to Χ2 are those that will suggest departure from the null hypothesis 
of independence. Note that “contribution to Χ2” is sometimes referred to as the 
square of the “standardized residuals” (Agresti, 1990). 

The general idea of the proposed graphical method is to compute each table 
entry’s Pij, order the Pijs from largest to smallest, and to find the first Pij for which 
the remaining ordered Pijs remain relatively constant. This ordering can be 
visually displayed in a graph, known as a “scree plot”. The algorithm for 
constructing the scree plot is given in the following steps: 

Step 1 
Order the values of Pij from largest to smallest and denote the ordered values (i.e. 
“order statistics”) as P(1) ≥ P(2), ≥…, ≥P(rc).   
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Step 2 
Plot P(i) against i to form a scree plot, analogous to what is done with eigenvalues 
in principal components analysis (PCA) (Khattree and Naik, 2000).  

Step 3 
Find the cells in the r x c table that significantly contribute to the departures from 
independence. This can be done using any of the following three criteria. 
 
Cumulative Percent Method  Find the left-most point on the horizontal 
axis that corresponds to a cumulative sum of percent contributions to chi-square 
that totals as close to, but does not exceed some pre-specified percentage, π. For 
example, π might be set to 50%. It should be noted that π is often chosen 
arbitrarily with no formal justification of its utility. Using π = 50% is “middle of 
the road”. Increasing π would result in a more “liberal” rule, allowing more cells 
to be implicated in the departure from independence, possibly increasing the false 
positive rate with respect to identifying the number of such cells. Decreasing π 
would restrict the number of cells, possibly increasing the false negative rate. 
(Note that in PCA, π, which would be the cumulative variance explained, is often 
set to 90% [Khattree and Naik, 2000])  

 
Subjective Elbow Method  Find the “bend of the elbow” or “turning 
point” of the scree plot to determine which cells in the r x c table contribute 
substantially to the Χ2 statistic. Typically, the bend in the elbow would be defined 
as the point on the plot for which all points to the left of it will have a much 
steeper downward slope than those to the right. The idea behind this choice of a 
bending point is that the number of cells to be selected is such that the differences 
between consecutive contributions to chi-square are becoming increasing smaller 
(Khattree and Naik, 2000). This subjective method is based only on visual 
inspection of the scree plot. This approach may be useful when there is a fairly 
clear elbow. The primary shortcoming is that this method is subjective and may 
not be reproducible between data analysts. 
 

Objective Elbow Method  Because the determination of the bend in the 
elbow using the Subjective Elbow Method is not necessarily reproducible, it is 
proposed to systematize the identification of the elbow by finding the ordered pair 
(i,P(i)) which is closest to the origin (0,0). This can be done by computing the 
squared-Euclidean distances of each point on the scree plot, 



EXPLORING R X C CONTINGENCY TABLES WITH SCREE PLOTS 

96 

(i−0)2 + (P(i)−0)2 = i2 + P(i)
2 and finding the ordered pair, (i*, P*), corresponding to 

the minimum value of those distances (i.e. (i*, P*) is the point closest to the 
origin). All cells that are represented on the plot with i ≤ i* would then be 
implicated in the departure from independence. In the context of a scree plot, 
which is a plot of a non-increasing concave function, the “ideal” elbow would be 
two straight line segments connected at a “pivot” point forming an angle of 90º to 
less than 180º between the segments. For such a function, the bend of the elbow 
would correspond to the point with minimum distance to the origin. An example 
of an ideal elbow would be a perfect “L” shape curve with its vertical and 
horizontal components parallel to the vertical and horizontal axes of the scree plot, 
respectively.  

It should be emphasized that while the proposed method relies on the use of 
the chi-square statistic, as an exploratory tool, it can be used even when the r x c 
table does not meet the criteria for the use of the Pearson chi-square test and a 
Fisher’s exact test would be more appropriate.  

For this manuscript, the authors used the PROC FREQ procedure in SAS 
Version 9.3 (SAS Institute, Cary, NC).  

Results and Examples 

The proposed method is illustrated using data from the Asia-Pacific Quality of 
Life Study (APQOL) in Lung Cancer. (The data are provided courtesy of Drs. 
Richard Gralla and Patricia Hollen [Gralla, 2013; Thongprassert, 2013]). This 
data consists of, among other variables, country of diagnosis (China, Korea, 
Thailand, Taiwan), Karnofsky Performance Status at diagnosis (KPS=50, 60, 70, 
80, 90, 100), lung cancer T stage (T0, T1, T2, T3, T4, and TX), node status (N0, 
N1, N2, N3, NX), and metastasis (M0, M1, MX). [The so-called “TNM staging 
system” for cancer classifies cancers according to tumor size (T), lymph node 
involvement (N), and presence or absence of metastatic disease (M). The KPS is a 
measure of a patient’s general well-being and activities of daily life.] Analyses 
investigated whether there was any association between any of these variables and 
country of diagnosis. Standard Pearson chi-square analysis for r x c contingency 
tables was carried out. Four examples were chosen to illustrate variation in the 
way that the location of the elbow might be visually and subjectively judged. 
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Example 1 
Table 2a is the contingency table of Country vs. KPS and displays, respectively, 
each cell’s frequency, deviation from expected (Oij−Eij), cell chi-square (X2

ij =[Oij–
Eij]2/Eij), and row percent (frequency relative to the row total). As shown in the 
footnote to Table 2a, Χ2 = 97.72, df = 15, p < 0.0001 and the Fisher exact test 
yields p < 0.0001. 
 
 
Table 2a. Country vs. KPS, including frequency, deviation, cell chi-square and row 
percent. 
 

 50 60 70 80 90 100 Total 

China 

0 0 8.0000 24.0000 52.0000 15.0000 

99 -0.1920 -0.1920 0.5174 -2.2850 0.7733 1.3779 
0.1919 0.1919 0.0358 0.1986 0.0117 0.1394 

0 0 8.0800 24.2400 52.5300 15.1500 

Korea 

0 0 8.0000 51.0000 111.0000 8.0000 

178 -0.3450  -0.3450 -5.4530 3.7403 18.8950 -16.4900 
0.3450 0.3450 2.2106 0.2960 3.8764 11.1050 

0 0 4.4900 28.6500 62.3600 4.4900 

Thailand 

1.0000 0 19.0000 48.0000 41.0000 9.0000 

118 0.7713 -0.2290 10.0810 16.6710 -20.0600 -7.2360 
2.6016 0.2287 11.3960 8.8705 6.5893 3.2252 
0.8500 0 16.1000 40.6800 34.7500 7.6300 

Taiwan 

0 1.0000 4.0000 14.0000 63.0000 39.0000 

121 -0.2340 0.7655 -5.1450 -18.1300 0.3895 22.3510 
0.2345 2.4990 2.8949 10.2270 0.0024 30.0050 

0 0.8300 3.3100 11.5700 52.0700 32.2300 
Total 1 1 39 137 267 71 516 

 

Note. Χ2=97.72, df=15, p<0.0001 and Fisher exact test p<0.0001. The top entry in each cell is the frequency 
count; the second entry is the cell deviation (O−E); the third entry is the cell contribution to chi-square [(O−E)2 / 
E]; the last entry is the “row percent,” which is the cell percentage based on the row total. 
 
 

Table 2b contains the same information as Table 2a (in a list format), where 
the percent contribution to chi-square of each cell has been computed (Pij= 
100*X2

ij / X2), the table has been sorted by decreasing Pij, and the cumulative 
percent contributions have been computed. 
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Table 2b. Country vs. KPS, including frequency, deviation, cell chi-square and row 
percent, in list format, sorted by decreasing Pij 

 

Rank Country KPS Cell Chi-
Square 

Deviation 
(O-E) 

% Row 
Frequency 

% contrib. 
to chi sq. 

Cumulative % 
contribution 

1 Taiwan 100 30.0048 22.3508 32.2314 30.7046 30.7046 
2 Thailand 70 11.3958 10.0814 16.1017 11.6616 42.3661 
3 Korea 100 11.1053 -16.4922 4.4944 11.3643 53.7305 
4 Taiwan 80 10.2270 -18.1260 11.5702 10.4655 64.1959 
5 Thailand 80 8.8705 16.6705 40.6780 9.0773 73.2733 
6 Thailand 90 6.5893 -20.0581 34.7458 6.7429 80.0162 
7 Korea 90 3.8764 18.8953 62.3596 3.9668 83.9830 
8 Thailand 100 3.2252 -7.2364 7.6271 3.3004 87.2834 
9 Taiwan 70 2.8949 -5.1453 3.3058 2.9624 90.2458 

10 Thailand 50 2.6016 0.7713 0.8475 2.6622 92.9081 
11 Taiwan 60 2.4990 0.7655 0.8264 2.5572 95.4653 
12 Korea 70 2.2106 -5.4535 4.4944 2.2622 97.7275 
13 Korea 50 0.3450 -0.3450 0 0.3530 98.0805 
14 Korea 60 0.3450 -0.3450 0 0.3530 98.4335 
15 Korea 80 0.2960 3.7403 28.6517 0.3029 98.7364 
16 Taiwan 50 0.2345 -0.2345 0 0.2400 98.9764 
17 Thailand 60 0.2287 -0.2287 0 0.2340 99.2104 
18 China 80 0.1986 -2.2849 24.2424 0.2033 99.4136 
19 China 50 0.1919 -0.1919 0 0.1963 99.6100 
20 China 60 0.1919 -0.1919 0 0.1963 99.8063 
21 China 100 0.1394 1.3779 15.1515 0.1426 99.9489 
22 China 70 0.0358 0.5174 8.0808 0.0366 99.9856 
23 China 90 0.0117 0.7733 52.5253 0.0119 99.9975 
24 Taiwan 90 0.0024 0.3895 52.0661 0.0025 100.0000 

 
 

Figure 1 displays the corresponding scree plot where each P(i) is plotted on 
the vertical axis against its rank order and the plot is further annotated with the 
respective cumulative cell percentages. Visual inspection of the scree plot (Figure 
1) does not reveal a clear cut turning point. Depending on the observer’s 
perspective, rank 2, 7, or 13 could be considered the turning point. Based on the 
more objective Euclidean distance method, the turning point corresponds to rank 
7. (The calculation of each cell’s Euclidean distance was deliberately omitted 
from each table in order to let the reader better appreciate the shortcomings of the 
visual process of finding the elbow, without being biased by knowing the 
corresponding distances. For the record, the squared distances for the first 10 
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ordered cells were 943.8, 140.0, 138.1, 125.5, 107.4, 81.5, 64.7, 74.9, 89.8, and 
107.1, with the minimum (64.7) occurring at rank 7.) 

Referring back to Table 2b one can examine the ranks of the cells 
corresponding to ranks 1 through 7 to identify those cells in the table that deviate 
the most from their expected values, as well as the direction of their deviation 
under the null hypothesis of independence, in order to better understand the nature 
of the association. Taiwan appears to have an overrepresentation of patients with 
KPS 100, while Korea’s frequency is less than expected. Patients with KPS 80 
tend to be underrepresented in Taiwan, but overrepresented in Thailand. Patients 
with KPS 90 tend to be underrepresented in Thailand and overrepresented in 
Korea. Finally, patients with KPS 70 tend to be overrepresented in Thailand. 
 
 

 
 
Figure 1. Scree plot of Country vs. KPS data in Table 2. P(i) is plotted on the vertical axis 
against its rank order; the plot is annotated with the respective cumulative cell 
percentages (rounded up).  
 
 
  



EXPLORING R X C CONTINGENCY TABLES WITH SCREE PLOTS 

100 

Example 2 
Tables 3a and 3b show the relevant calculations for the association between 
Country and T stage. In this example, the association is not significant (Χ2=22.29, 
df=15, p=0.10, and the Fisher exact test yields p=0.085.) Although not significant 
and the general shape of the curve is similar to that in Figure 1, consider this 
example to show that it may still be of interest to apply the proposed method to 
discover patterns in the data. 
 
 
Table 3a. Country vs. Tumor stage, including frequency, deviation, cell chi-square and 
row percent. 
 

 T0 T1 T2 T3 T4 TX Total 

China 

0 3 26 19 43 9 

100 -1.758 -1.297 -0.563 -1.508 1.3984 3.7266 
1.7578 0.3914 0.0119 0.1109 0.047 2.6334 

0 3 26 19 43 9 

Korea 

4 9 47 31 73 8 

172 0.9766 1.6094 1.3125 -4.273 1.4453 -1.07 
0.3154 0.3505 0.0377 0.5177 0.0292 0.1263 

2.33 5.23 27.33 18.02 42.44 4.65 

Thailand 

5 6 28 22 48 9 

118 2.9258 0.9297 -3.344 -2.199 -1.09 2.7773 
4.1269 0.1705 0.3567 0.1999 0.0242 1.2396 

4.24 5.08 23.73 18.64 40.68 7.63 

Taiwan 

0 4 35 33 49 1 

122 -2.145 -1.242 2.5938 7.9805 -1.754 -5.434 
2.1445 0.2943 0.2076 2.5455 0.0606 4.589 

0 3.28 28.69 27.05 40.16 0.82 
Total 9 22 136 105 213 27 512 

 

Note. Χ2=22.29, df=15, p=0.10; Fisher exact test p=0.085. The top entry in each cell is the frequency count; the 
second entry is the cell deviation (O−E); the third entry is the cell contribution to chi-square [(O−E)2 / E]; the last 
entry is the “row percent,” which is the cell percentage based on the row total. 
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Table 3b. Country vs. Tumor stage, including frequency, deviation, cell chi-square and 
row percent, in list format, sorted by decreasing Pij 

 
 

In the scree plot for this example (Figure 2), the bend in the elbow is more 
obvious than in Figure 1 and appears to be at rank 8. This is confirmed using the 
Euclidean distance method. 
 
 

Rank Country Tumor Cell Chi-
Square 

Deviation 
(O-E) 

% of Row 
Frequency 

% contrib. 
to chi sq. 

Cumulative % 
contribution 

1 Taiwan TX 4.58903 -5.43359 0.8197 20.5890 20.589 
2 Thailand T0 4.12695 2.92578 4.2373 18.5159 39.105 
3 China TX 2.63344 3.72656 9.0000 11.8151 50.920 
4 Taiwan T3 2.54553 7.98047 27.0492 11.4207 62.341 
5 Taiwan T0 2.14453 -2.14453 0 9.6216 71.962 
6 China T0 1.75781 -1.75781 0 7.8866 79.849 
7 Thailand TX 1.23961 2.77734 7.6271 5.5616 85.411 
8 Korea T3 0.51773 -4.27344 18.0233 2.3229 87.733 
9 China T1 0.39142 -1.29688 3.0000 1.7561 89.489 

10 Thailand T2 0.35671 -3.34375 23.7288 1.6004 91.090 
11 Korea T1 0.35046 1.60938 5.2326 1.5723 92.662 
12 Korea T0 0.31543 0.97656 2.3256 1.4152 94.077 
13 Taiwan T1 0.29435 -1.24219 3.2787 1.3206 95.398 
14 Taiwan T2 0.20760 2.59375 28.6885 0.9314 96.329 
15 Thailand T3 0.19986 -2.19922 18.6441 0.8967 97.226 
16 Thailand T1 0.17047 0.92969 5.0847 0.7648 97.991 
17 Korea TX 0.12630 -1.07031 4.6512 0.5666 98.558 
18 China T3 0.11086 -1.50781 19.0000 0.4974 99.055 
19 Taiwan T4 0.06061 -1.75391 40.1639 0.2719 99.327 
20 China T4 0.04701 1.39844 43.0000 0.2109 99.538 
21 Korea T2 0.03771 1.31250 27.3256 0.1692 99.707 
22 Korea T4 0.02919 1.44531 42.4419 0.1310 99.838 
23 Thailand T4 0.02420 -1.08984 40.6780 0.1086 99.947 
24 China T2 0.01191 -0.56250 26.0000 0.0534 100.000 



EXPLORING R X C CONTINGENCY TABLES WITH SCREE PLOTS 

102 

 
 
Figure 2. Scree plot of Country vs. Tumor stage data in Table 3. 
 
 
 

Referring back to Table 3b, it appears that the departures are explained by 
the frequency distribution of unclassified (TX) and in situ (T0) tumors primarily 
among China, Thailand, and Taiwan. Furthermore, the direction of the deviation 
from each country can be seen in the column labeled Deviation. China and 
Thailand appear to have more TX tumors than expected, while Taiwan’s 
frequency is decreased. T0 tumors tend to be underrepresented in China and 
Taiwan, but overrepresented in Thailand. 

Even though the observed association between Country and T stage was not 
significant (Fisher’s p=0.085), the observed pattern may still be of clinical interest. 

Example 3 
Tables 4a and 4b show the relevant calculations for the association between 
Country and N stage. In this example, the association is significant (Χ2=33.96, 
df=12, p=0.0007.) 
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Table 4a. Country vs. Node stage, including frequency, deviation, cell chi-square and row 
percent. 
 

 N0 N1 N2 N3 NX Total 

China 

10.0000 8.0000 29.0000 43.0000 10.0000 

100 
-3.0860 -0.5940 0.6797 4.5234 -1.5230 
0.7277 0.0410 0.0163 0.5318 0.2014 

10.0000 8.0000 29.0000 43.0000 10.0000 

Korea 

23.0000 22.0000 44.0000 74.0000 9.0000 

172 
0.4922 7.2188 -4.7110 7.8203 -10.8200 
0.0108 3.5254 0.4556 0.9241 5.9070 

13.3700 12.7900 25.5800 43.0200 5.2300 

Thailand 

19.0000 6.0000 25.0000 43.0000 25.0000 

118 
3.5586 -4.1410 -8.4180 -2.4020 11.4020 
0.8201 1.6907 2.1205 0.1271 9.5615 

16.1000 5.0800 21.1900 36.4400 21.1900 

Taiwan 

15.0000 8.0000 47.0000 37.0000 15.0000 

122 
-0.9650 -2.4840 12.4490 -9.9410 0.9414 
0.0583 0.5887 4.4857 2.1054 0.0630 

12.3000 6.5600 38.5200 30.3300 12.3000 
Total 67 44 145 197 59 512 

 

Note. Χ2=33.96, df=12, p=0.0007. The top entry in each cell is the frequency count; the second entry is the cell 
deviation (O−E); the third entry is the cell contribution to chi-square [(O−E)2 / E]; the last entry is the “row 
percent,” which is the cell percentage based on the row total. 
 
 
Table 4b. Country vs. Node stage, including frequency, deviation, cell chi-square and 
row percent, in list format, sorted by decreasing Pij 
 

Rank Country Nodes Cell Chi-
Square 

Deviation 
(O-E) 

% of Row 
Frequency 

% contrib. 
to chi sq. 

Cumulative % 
contribution 

1 Thailand NX 9.56146 11.4023 21.1864 28.1532 28.1532 
2 Korea NX 5.90703 -10.8203 5.2326 17.3930 45.5462 
3 Taiwan N2 4.48566 12.4492 38.5246 13.2078 58.7540 
4 Korea N1 3.52544 7.2188 12.7907 10.3805 69.1345 
5 Thailand N2 2.12048 -8.4180 21.1864 6.2437 75.3781 
6 Taiwan N3 2.10542 -9.9414 30.3279 6.1993 81.5774 
7 Thailand N1 1.69070 -4.1406 5.0847 4.9782 86.5556 
8 Korea N3 0.92411 7.8203 43.0233 2.7210 89.2766 
9 Thailand N0 0.82011 3.5586 16.1017 2.4148 91.6914 

10 China N0 0.72773 -3.0859 10.0000 2.1428 93.8341 
11 Taiwan N1 0.58870 -2.4844 6.5574 1.7334 95.5675 
12 China N3 0.53179 4.5234 43.0000 1.5658 97.1334 
13 Korea N2 0.45560 -4.7109 25.5814 1.3415 98.4749 
14 China NX 0.20140 -1.5234 10.0000 0.5930 99.0679 
15 Thailand N3 0.12711 -2.4023 36.4407 0.3743 99.4422 
16 Taiwan NX 0.06304 0.9414 12.2951 0.1856 99.6278 
17 Taiwan N0 0.05831 -0.9648 12.2951 0.1717 99.7995 
18 China N1 0.04102 -0.5938 8.0000 0.1208 99.9203 
19 China N2 0.01631 0.6797 29.0000 0.0480 99.9683 
20 Korea N0 0.01076 0.4922 13.3721 0.0317 100.0000 
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Visual inspection of the scree plot (Figure 3) reveals a much smoother curve 
then those shown in Figures 1 and 2 and does not reveal a clear cut bending point. 
Using the Euclidean distance method, the turning point corresponds to rank 5. 
Referring back to Table 4b, it appears that the departures are explained by the 
frequency distribution of unclassified (NX) and N2 nodes primarily among Korea, 
Thailand, and Taiwan. Thailand appears to have an excess of NX nodes, while 
Korea’s frequency is decreased. N2 nodes tend to be underrepresented in Thailand, 
but overrepresented in Taiwan. 
 
 

 
 
Figure 3. Scree plot of Country vs. Node stage data in Table 4. 
 
 

Example 4 
Tables 5a and 5b show the relevant calculations for the association between 
Country and M stage. In this example, the association is also significant 
(Χ2=30.64, df=6, p<0.0001.) 
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Table 5a. Country vs. Metastasis stage, including frequency, deviation, cell chi-square 
and row percent. 
 

 M0 M1 MX Total 

China 

26.0000 71.0000 3.0000 

100 
6.4688 -2.6330 -3.8360 
2.1425 0.0941 2.1525 

26.0000 71.0000 3.0000 

Korea 

19.0000 147.0000 6.0000 

172 
-14.5900 20.3520 -5.7580 

6.3398 3.2704 2.8196 
11.0500 85.4700 3.4900 

Thailand 

31.0000 71.0000 16.0000 

118 
7.9531 -15.8900 7.9336 
2.7445 2.9048 7.8030 

26.2700 60.1700 13.5600 

Taiwan 

24.0000 88.0000 10.0000 

122 
0.1719 -1.8320 1.6602 
0.0012 0.0374 0.3305 

19.6700 72.1300 8.2000 
Total 100 377 35 512 

 

Note. Χ2=30.64, df=6, p=0.0001. The top entry in each cell is the frequency count; the second entry is the cell 
deviation (O−E); the third entry is the cell contribution to chi-square [(O−E)2 / E]; the last entry is the “row 
percent,” which is the cell percentage based on the row total. 
 
 
Table 5b. Country vs. Metastasis stage, including frequency, deviation, cell chi-square 
and row percent, in list format, sorted by decreasing Pij 
 

Rank Country Metastasis Cell Chi-
Square 

Deviation 
(O-E) 

% of Row 
Frequency 

% contrib. 
to chi sq. 

Cumulative % 
contribution 

1 Thailand MX 7.80297 7.9336 13.5593 25.4664 25.466 
2 Korea M0 6.33980 -14.5938 11.0465 20.6911 46.158 
3 Korea M1 3.27036 20.3516 85.4651 10.6734 56.831 
4 Thailand M1 2.90479 -15.8867 60.1695 9.4803 66.311 
5 Korea MX 2.81961 -5.7578 3.4884 9.2023 75.514 
6 Thailand M0 2.74450 7.9531 26.2712 8.9572 84.471 
7 China MX 2.15251 -3.8359 3.0000 7.0251 91.496 
8 China M0 2.14245 6.4688 26.0000 6.9923 98.488 
9 Taiwan MX 0.33048 1.6602 8.1967 1.0786 99.567 
10 China M1 0.09414 -2.6328 71.0000 0.3072 99.874 
11 Taiwan M1 0.03736 -1.8320 72.1311 0.1219 99.996 
12 Taiwan M0 0.00124 0.1719 19.6721 0.0040 100.000 
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The scree plot (Figure 4) does not reveal a clear cut bending point. Either 
rank 3 or rank 9 could be judged as the turning points. However, using the 
Euclidean distance method, the turning point corresponds to rank 9. Thailand and 
Taiwan appear to have an excess of unknown metastases (MX), while Korea and 
China’s frequencies are decreased. Patients with no distant metastases (M0) tend 
to be underrepresented in Korea, but overrepresented in Thailand and China. 
Patients with metastases to distant organs (M1) tend to be overrepresented in 
Korea but underrepresented in Thailand.  
 
 

 
 
Figure 4. Scree plot of Country vs. Metastasis stage data in Table 5. 
 
 

Conclusion 

In statistical problems involving the cross-classification of frequency counts, it is 
common to test for an association between one variable and another using the 
well-known Pearson chi-square test (or, alternatively, the Fisher exact test, 
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particularly for sparse tables). Upon finding a significant association, it is of 
interest to identify the cells in the table that are “responsible” for the lack of 
independence. As the dimension of the table gets larger (i.e., the number of rows 
and/or columns grows larger), it becomes more difficult to identify these row-
column combinations. 

An exploratory, graphical method of discovering those cells that account for 
the observed association was proposed. This method is computationally objective 
and completely reproducible.  

The method is based on two frequently used techniques: assessment of 
contribution to chi-square in contingency tables and construction of scree plots as 
in principal components analysis. All of the computations required for applying 
this method are available in virtually all commonly used statistical software 
packages. 

Several examples of r x c tables were provided that exemplify the use of this 
method both when the observed associations are statistically significant and when 
they are not. The examples illustrate how the use of a cutoff point for the 
cumulative percent contribution to chi-square (“Cumulative Percent Method” as 
described above) is purely arbitrary. Of course, most statistical procedures include 
some elements of arbitrariness – most notably the use of “p < 0.05” or “95%” for 
constructing confidence intervals. The examples further show that visual appraisal 
of the scree plot (“Subjective Elbow Method”) can be highly subjective and might, 
therefore, vary from one observer to another.  

In order to address these shortcomings, it has been shown how the proposed 
Objective Elbow Method for exploring contingency tables parallels the currently 
accepted approach to identifying important principal components in PCA with the 
addition of an objective and reproducible calculation (Euclidean distance) that 
identifies the bend in the scree plot that constitutes the “elbow”. 

As discussed in the introduction, Correspondence Analysis has been used in 
the current r x c setting. While CA is a useful and powerful method, it requires 
somewhat specialized, albeit, readily available software (e.g., PROC CORRESP 
in SAS, CORRESPONDENCE module in SPSS). The proposed method, while 
not providing the level of detail contained in CA, is much simpler to execute, 
intuitively appealing to the non-statistician, and requires no more than the ability 
to perform standard contingency table analysis.  

The use of graphical methodology as a complement to inferential analysis is 
widespread in statistical practice – even in the absence of statistical significance. 
Common examples include the already cited scree plots in PCA, scatterplots, 
side-by-side boxplots, receiver operating characteristic (ROC) curves, survival 



EXPLORING R X C CONTINGENCY TABLES WITH SCREE PLOTS 

108 

and hazard function curves, ANOVA interaction plots, heat maps in genetics 
problems, to name only a few.  

This method could be readily adopted by investigators in many fields of 
research involving r x c contingency tables because the ability to perform these 
calculations is readily available in commonly used statistical software packages. 

For this manuscript, the PROC FREQ procedure in SAS Version 9.3 (SAS 
Institute, Cary, NC) was used. The following list shows the availability of the 
components of the proposed calculation in various software packages. 

 
 SAS (SAS Institute, Cary, NC): PROC FREQ, “cellchi2” TABLE 

option. 

 JMP (SAS Institute, Cary, NC): Contingency Table, choose the drop 
down labeled “Cell Chi Square”. 

 Minitab (Minitab, Inc., State College, PA), Stat: Tables: Cross 
Tabulation and Chi-Square, check the box labeled “Each cell’s 
contribution to the Chi-Square statistic” 

 Stata (StataCorp LP, College Station, TX): “tabulate” with the cchi2 
option 

 R (R Foundation for Statistical Computing, r-project.org): 
chisq.detail 

 Excel (Microsoft Corp., Redmond, WA): programmed and 
calculated by user 

 SPSS (IBM Inc., Armonk, NY): Crosstabs, Cells subcommand, 
check the box labeled “Standardized” under Residuals; contribution 
to cell chi-square must be programmed and calculated from these 
Residuals by the user 

 

Finally, it is not proposed that the Objective Elbow Method be rigidly 
obeyed. This method simply provides a reproducible guidance as to which cells 
may be responsible for the observed association. Upon finding i*, corresponding 
to the point closest to the origin, the data analyst might also want to consider 
points to the right of i* but very close to it, as other potential cells of interest. 
Based on study results, the proposed method is believed to be potentially useful to 
data analysts using large r x c tables. 
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