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Monte Carlo methods were employed to investigate the effect of nonnormality on the 
bias associated with the squared canonical correlation coefficient (Rc

2). The majority of 
Rc

2 estimates were found to be extremely biased, but the magnitude of bias was impacted 
little by the degree of nonnormality. 
 
Keywords: canonical correlation coefficient, effect size, simulation, nonnormal, canonical 
correlation analysis 
 

Introduction 

Over the last several decades, the movement towards the use of effect size 
estimates in determining the importance of research results has intensified. This 
movement can be seen in the editorial policies of at least 25 educational and 
psychological journals (Wang & Thompson, 2007) that explicitly require the 
inclusion of effect sizes with statistical results. The sixth edition of the American 
Psychological Association Publication Manual (APA, 2001) deemed it “almost 
always necessary to include some measure of effect size” (p. 34) when reporting 
results. This shift has come with increased awareness that, when used alone to 
interpret results (i.e., without effect sizes or other statistics), p-values derived 
from null hypothesis significance tests (NHSTs) offer little information about the 
importance of results or their ability to replicate (Cumming, 2008; Henson & 
Smith, 2000; Kirk, 1996; Kline, 2004; Thompson, 1996, 1998). Effect size 
estimates offer “practical significance” information by quantifying the magnitude 
of a difference or relationship between variables. Consequently, numerous authors 
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and institutions have argued that effect sizes should be included with statistical 
results (e.g., APA, 2009, 2001; Henson, 2006; Thompson, 1996, 1998; Wilkinson 
& APA Task Force on Statistical Inference, 1999).  

Although there are many types of effect sizes from which researchers can 
choose, most fall into two broad categories: (a) standardized mean difference 
effects and (b) measures of strength of association (Kirk, 1996; Kline, 2004; 
Olejnik & Algina, 2000; Onwuegbuzie, Levin, & Leech, 2003), although other 
statistics such as Huberty’s I index certainly also qualify (Huberty & Lowman, 
2000). Outside of the correlation coefficient, one of the most common effect sizes 
reported in the literature is R2, likely due to the fact that R2 is routinely provided 
as part of the regression output in most statistical packages (Kirk, 1996). 

There has been some debate as to whether effect sizes should be included 
with all NHST results, even those that are not statistically significant or only for 
those tests that are statistically significant (Roberts & Henson, 2002; Robinson & 
Levin, 1997). Some researchers have gone as far as to recommend that hypothesis 
tests be banned entirely (e.g. Carver, 1993) and replaced with effect size estimates 
or other statistics (see also Harlow, Mulaik, Steiger, 1997, for a broader 
discussion). These views notwithstanding, there seems to be current consensus 
that effect sizes can add considerable value to research interpretation. 

However, effect sizes are not without their limitations and can be “subject to 
as much abuse and misuse as are tests for statistical significance” (Onwuegbuzie, 
Levin, & Leech, 2003, p. 38; see also O’Grady, 1982; Robinson & Levin, 1997). 
Many researchers are unaware that effect size estimates can be criticized on some 
of the same grounds as NHSTs, including but not limited to the fact that effects 
can vary according to sample size and variability, and they are often impacted by 
the shape of the data, including departures from normality (Knapp & Sawilowsky, 
2001; Onwuegbuzie & Levin, 2003; Onwuegbuzie, Levin, & Leech, 2003). As 
Henson (2006) noted, “If we fail to adequately understand what our effect sizes 
do and do not tell us, then we may fall victim to new misconceptions about our 
research methods” (p. 610). 

R2 Effect Size 
For example, studies have shown r2 (Wang & Thompson, 2007; Zimmerman, 
Zumbo, & Williams, 2003) and its analog, R2, to often overestimate the effect 
found in the population (Carter, 1979; Fan, 2001; Larson, 1931; Snyder & 
Lawson, 1993; Thompson, 1999; Yin & Fan, 2001). By design, the ordinary least 
squares estimation method commonly used in regression analyses seeks to 
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maximize the correlation between variables resulting in the largest possible effect 
size. To obtain the greatest possible effect, the analyses capitalize on all the 
variance in a given sample, including the variance attributable to sampling error 
(Thompson & Kieffer, 2000; Wang & Thompson, 2007). Because the effect size 
accounts for variability unique to the sample – variance that is unlikely to be 
found in the population or future samples – the resulting R2 is often a biased 
estimate of the effect in the population or in future samples (Roberts & Henson, 
2002; Snyder & Lawson, 1993; Yin & Fan, 2001). Similar to the univariate 
application of R2, studies have shown that the multivariate extension of R2, the 
squared canonical correlation coefficient (Rc

2) can be positively biased due to the 
influence of sampling error as well (Thompson, 1990; Thorndike & Weiss, 1973). 

Canonical Correlation Analysis 
Like other multivariate methods, CCA has seen increased use in educational and 
psychological research, presumably due to its ability to limit experimentwise error 
rates and the fact that, by design, research studies using multivariate methods such 
as CCA often more accurately reflect the situations to which researchers wish to 
generalize (Fish, 1988; Henson, 1999; Sherry & Henson, 2005). Its primary 
purpose is to describe the relationship between synthetic composites of two sets of 
variables, although CCA can theoretically be extended to more than two variable 
sets.  

Like other parametric methods, CCA applies weights, called standardized 
canonical function coefficients, to observed variables to create synthetic variables. 
The measure of effect, or canonical correlation coefficient (Rc), is calculated as 
the simple bivariate correlation between the two synthetic variables (Campbell & 
Taylor, 1996; Henson, 2000; Sherry & Henson, 2005; Thompson, 1984, 1991). It 
is important to note that the goal of CCA is to maximize this correlation. It is in 
this optimization process, however, that sample-specific variation can become 
problematic because, although it was considered in determining the sample 
magnitude of effect, the sample-specific variance cannot be expected to exist in a 
new sample. Thus, one would anticipate a lower magnitude of effect in the 
population and/or replication with a new sample than Rc identifies. When squared, 
the canonical correlation (Rc

2) represents the proportion of variance that two 
synthetic CCA composites linearly share (Henson, 2000; Sherry & Henson, 2005; 
Thompson, 1984) and, in doing so, signifies the percentage of variability in the 
criterion variable set that can be explained with knowledge of the predictor 
variable set.  
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Bias in Rc Estimates 
Empirical studies investigating bias in Rc estimates have found mixed results. 
Thorndike and Weiss (1973) first investigated the impact of sampling error on the 
canonical correlation using data from two different sources – clients of the 
Minnesota Division of Vocational Rehabilitation and data from Thorndike et al. 
(1968) (N=789 and 505, respectively). The analyses were split into two studies, 
and subjects from both sources were randomly split into two groups each (n=418 
and 371 and n=246 and 259, respectively) for a total of four subgroups. The 
canonical correlations were compared to the cross-validated canonical 
correlations for each of the four subgroups. According to the authors, large 
differences demonstrated that sample-specific covariation could affect sample 
results.  

Barcikowski and Stevens (1975) also investigated the effect of sampling 
error on the canonical correlation, but with results that differed from Thorndike 
and Weiss (1973). They selected 8 correlation matrices from the literature [two of 
which were from Thorndike and Weiss (1973)] and, using a procedure described 
by Huberty (1969), generated population matrices with the same properties as the 
selected datasets. Sample correlation matrices were generated from the population 
matrices, and canonical correlation analyses were performed. The number of 
variables ranged from 7 to 41, and the sample sizes ranged from 200-3000 in 
increments of 200; each sample size was replicated 100 times. The results 
indicated that the canonical correlations were “very stable under replication” 
(Barcikowski & Stevens, 1975, p. 362), even in the cases of small sample sizes 
(e.g., 100-200).  

Thompson (1990) investigated bias in the canonical correlation that resulted 
in findings that conflicted with Barcikowski and Stevens (1975). Unlike the 
studies by Thorndike and Weiss (1973) and Barcikowski and Stevens (1975) that 
employed real and modeled data, respectively, Thompson used Monte Carlo 
methods to simulate data such that it met predetermined properties. A fully-
crossed design was employed that varied the following conditions: (a) between-
set correlations, (b) within-set correlations, (c) sample-size to variable ratios, and 
(d) variable sets. Sixty-four (i.e., 4 correlation matrices x 4 sample sizes x 4 
variable sets) condition combinations were investigated. For each condition 
combination, 1,000 random samples were drawn and analyzed.  

The ratio of subjects to variables emerged as the best predictor of bias in all 
six analyses (i.e., one for each of three Rc

2 deviation scores and three Rc
2 standard 

error deviations). Because the bivariate correlations between these values were 
positive, Thompson (1990) concluded that a greater number of subjects per 
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variable could potentially lead to less bias in Rc
2. Furthermore, Thompson found 

that, though the estimates of Rc were somewhat positively biased, the bias was 
minimal unless a ratio “as small as three to one” was used (p. 27). Finally, 
Thompson contended that even then the bias could be minimized in some 
situations if the value of Rc was moderate to large (e.g., greater than .40).        

Thompson (1990) only examined the accuracy of Rc
2 when the multivariate 

normality assumption of CCA was met. Whereas the normality assumption is 
formally required only when testing the statistical significance of canonical results 
(Marascuilo & Levin, 1983; Sherry & Henson, 2005; Thompson, 1984), when 
normality is not met, distribution shapes must still be reasonably comparable. If 
not, entries in the matrix of association used to derive canonical estimates may be 
attenuated, which could compromise the results including the magnitude of the 
effect (Thompson, 1984). Studies have shown, however, that few educational and 
psychological datasets are exactly normally distributed (Blair, 1981; Bradley, 
1968, 1982; Micceri, 1989; Pearson & Please, 1975) and, as such, there is a need 
to investigate the performance of CCA under nonnormal data conditions to inform 
the use of CCA in applied studies. 

Purpose of the Study 

As a result of the equivocal prior findings and the lack of investigation of 
nonnormal distributional conditions, this study compared the degree of bias 
associated with the squared canonical correlation coefficient (Rc

2) gained from 
distributions possessing varying degrees of nonnormality to that found with 
multivariate normal distributions. Additional study factors were included to 
explore potential bias in this multivariate effect size across common conditions 
and to allow comparison with prior studies. Monte Carlo simulation methodology 
was used to fulfill this purpose. 

Methodology  

Design 
A fully-crossed design was employed in this study, manipulating the following 
conditions: (a) distribution shape, (b) variable sets, (c) sample sizes, (d) 
correlation matrices with varied between- and within-set correlations. See Table 1 
for the conditions and their respective levels. Six distribution shapes were 
investigated, as well as 4 variable sets, 4 sample sizes, and 7 correlation matrices 



LEACH & HENSON 

115 

(manipulating both the between- and within-set correlations), resulting in a total 
of 672 manipulated conditions. Five-thousand samples were drawn for each 
condition for a total of 3,360,000 canonical analyses 
 
 
Table 1: Summary of Data Conditions Manipulated in the Study 
 

 

Note. k denotes univariate kurtosis. The various variable sets are denoted in the following manner: no. of 
variables in the predictor set + no. of variables in the criterion set (total number of variables in both sets). 

 
 

Multivariate normality` The shapes of the distributions were manipulated to 
facilitate comparison of results under normal theory to those found under 
multivariate nonnormal data conditions. Specifically, this study examined the 
impact of varying levels of kurtosis (k) on the squared canonical correlation 
coefficient. Five multivariate nonnormal datasets were generated such that all 
marginal distributions in each dataset possessed the following levels of univariate 
kurtosis: (a) negligible kurtosis (k = -1, 0, 1, 3) and (b) moderate kurtosis (k = 5, 
8). These value ranges are consistent with studies investigating the effect of 
nonnormality on other sample statistics (e.g., Curran, West, & Finch, 1996; 
Olsson, Foss, Troye, & Howell, 2000).  

It is unrealistic to expect that multivariate datasets seen in practical 
applications would typically possess equal univariate kurtoses across the marginal 

Data condition  Levels Manipulated 
Distribution shape  k = -1, 0, 1, 3, 5, 8 

   

Variable Sets  

6 + 6 (v=12) 
4 + 4 (v=8) 
4 + 2 (v=6) 

10 + 2 (v=12) 

   
Sample size: variable ratio  3:1, 10:1, 25:1, 40:1 

   

Correlation matrices  

Matrix  Between-set 
correlation 

 Within-set 
correlation 

A  0  0 
B  .1 (small)  .3 (moderate) 
C  .1 (small)  .5 (large) 
D  .3 (moderate)  .3 (moderate) 
E  .3 (moderate)  .5 (large) 
F  .5 (large)  .3 (moderate) 
G  .5 (large)  .5 (large) 
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distributions (Yuan & Bentler, 1997). But, for the sake of clarity and ease of 
interpretation, this procedure was used in this study study as it has been in past 
investigations (e.g., Curran, West, & Finch, 1996; Fouladi, 2000; Nevitt & 
Hancock, 2001; Olsson, Foss, Troye, & Howell, 2000). The results from these 
nonnormal distributions were compared to those from a multivariate normal 
distribution. Because tests of variances and covariances (e.g., CCA) in normal 
distributions have been found to be more affected by kurtosis than skewness 
(Mardia, Kent, & Bibby, 1979), skewness was held constant at symmetrical (i.e., 
skewness = 0).  
 

Variable sets  We incorporated the following variable sets [denoted as the 
number of variables in the predictor variable set + the number in the dependent 
set]: (a) 6+6 (v=12), (b) 4 + 4 (v=8), (c) 4 + 2 (v=6), (d) 10 + 2 (v=12). These sets 
replicate the variable sets used by Thompson (1990) and represent sets that one 
would likely see in behavioral studies. 
 

Sample size to variable ratios Sample size to variable ratios of 3, 10, 25, 
and 40 per variable were chosen to represent those likely seen in behavioral 
research. They are consistent with other studies investigating the accuracy of 
canonical correlation results (see, for example, Thompson, 1990). 
 

Correlation matrices  Six combinations of small, moderate, and large 
within- and between-set correlations made up the population correlation matrices 
in addition to a “null” model with all correlations equal to zero. Cohen’s (1988) 
conventions for values of r to correspond to his d benchmarks were used to 
determine the entries in the correlation matrix (r =.1, .3, and .5 indicating small, 
medium, and large effects, respectively). 

It is important to note that the benchmarks provided by Cohen (1988) were 
not intended to be used as rigid criteria for determining result importance. Effects 
should always be considered in the context of the study from which they result as 
well as the broader literature to determine if they indicate a small, moderate, or 
large effect.  In this article, we use the wording small, moderate, and large only to 
refer to the various effects; our choice of wording does not indicate that the 
various magnitudes will always represent small, moderate, and large effects, 
respectively. Furthermore, Cohen’s effect size rules of thumb were originally 
presented for use in univariate contexts. In multivariate contexts, one could 
conceivably expect larger effects as a result of the additional variance made 
available for prediction by multiple dependent variables. There is little research to 
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support these guidelines for multivariate outcomes, however, so the univariate 
approximations were used in this study.   

Varying combinations of between- and within-set correlations were used to 
define the correlation matrices (excluding the null model with rb=0 and rw=0). 
Within-set correlations were limited to moderate (.3) and large (.5) correlations 
because, in a typical CCA analysis, one would often expect the correlations within 
the variable sets to be moderately, if not highly, correlated. Between-set 
correlations would likely possess a wider range, and, as such, we chose to use 
small (.1), medium, and large correlations in this study. The combinations for the 
various population correlation matrices are presented in Table 1. 

Data Generation and Analysis 
Populations of data were randomly generated that mirrored the correlation 
matrices at the kurtosis levels previously specified. A total of 42 multivariate 
populations (N=100,000 each) were created (i.e., all paired combinations of the 6 
distribution shapes [1 multivariate normal and 5 kurtotic] and the 7 correlation 
matrices). See Appendix A for information regarding the data generation 
procedure. 

Sample canonical analyses were performed using SAS® (SAS Institute, Inc., 
Cary, NC, www.sas.com) version 9.1.3 syntax. The variance explained (Rc

2) for 
each of the first three canonical functions was computed. The accuracy of Rc

2 was 
then calculated as the difference between the sample Rc

2 and population Rc
2 values. 

The average level of accuracy, or bias, of the Rc
2 estimates was calculated as the 

mean of the accuracy values for each condition combination, and the precision of 
the Rc

2 estimates was represented by the standard deviation of the respective 
accuracy values. Bias was considered to be extreme if it exceeded ±.30 Rc

2; bias 
was considered to be minimal (and thus acceptable) if it was less than or equal to 
±.30 Rc

2. 
Analysis of variance (ANOVA) was used to identify the influence of each 

condition on the variability of the accuracy values. The accuracy – i.e., the 
differences between the population Rc

2s and the sample Rc
2s – acted as the 

dependent variable (DV) whereas the four conditions made up the independent 
variables. Only main effects were considered in this study. Main effects were 
evaluated based on statistical significance of the F tests  (alpha<.02 - value 
determined using the Bonferroni correction) as well as from η2 and ω2 effect size 
values (ω2 was included as a theoretical adjustment for sampling error).  

http://www.sas.com/
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Results 

Accuracy and Precision of Rc2 

Results from the first three functions were analyzed for each correlation matrix. 
All function II and III results were found to be extremely biased across all 
correlation combinations. For this reason and for the sake of brevity, only results 
from the first functions are reported and discussed in the present article. Second 
and third function results are available from the authors upon request. 

The bias and precision (SD) of the sample Rc
2 accuracy values for 

correlation matrices A through G are presented in Tables A1 through A7 in 
Appendix B, respectively. Note that all of the condition combinations for 
correlation matrices A and C produced extremely biased Rc

2 accuracy values. 
Likewise, all but two of the combinations (97.92% of 96 cases) for correlation 
matrix B produced Rc

2 values that were extremely biased. 
Correlation matrix D produced extremely biased accuracy values in only 

22.92% of the 96 condition combinations. All condition combinations for 
correlation matrix D with sample size to variable ratios greater than or equal to 
10:1 produced minimal amounts of bias. Conversely, the majority of the bias 
(91.67% of 21 cases) with a sample size to variable ratio of 3:1 were found to be 
extreme. Only two of the 3:1 n:v ratio condition combinations produced minimal 
bias; all other cases met the criteria to be considered extremely biased. 

Similar results were found with the correlation matrix E results. In this case, 
43.75% of the 96 condition combinations produced extreme bias. As a general 
rule, the condition combinations that were found to possess minimal levels of bias 
had sample size to variable ratios greater than or equal to 25:1. Unlike the other 
correlation matrices, results from all condition combinations in correlation 
matrices F and G were found to contain minimal bias.   

The average bias and precision values by the various condition levels are 
presented in Table 2. As demonstrated in the table, bias generally decreased as the 
sample size to variable ratio increased.  The most dramatic decrease in bias was 
seen in the difference in bias between the sample sizes of 3:1 and 10:1 (mean 
difference of .19). Differences between subsequent sample size to variable ratios 
were comparatively small. Bias values varied across the other condition 
combinations. 
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Table 2: Descriptive Statistics for Function I Bias by Sample Size to Variable Ratio, 
Variable Set, Univariate Kurtosis Level, and Correlation Matrix 
 

Condition M SD n 

Sample size: variable ratio (n:v) 
   

3:1 0.26 0.17 840,000 

10:1 0.07 0.07 840,000 

25:1 0.03 0.04 840,000 

40:1 0.02 0.03 840,000 

    
Variable Set 

   
6 + 6 0.10 0.14 840,000 

4 + 4 0.10 0.14 840,000 

4 + 2 0.09 0.01 840,000 

10 + 2 0.09 0.13 840,000 

    
Expected Kurtosis (k) 

   
-1 0.09 0.14 560,000 

0 0.09 0.13 560,000 

1 0.09 0.14 560,000 

3 0.09 0.14 560,000 

5 0.10 0.14 560,000 

8 0.10 0.14 560,000 

    
Correlation Matrix 

   

A (rb= 0, rw= 0) 0.15 0.16 480,000 

B  (rb= .1, rw= .3) 0.13 0.16 480,000 

C (rb= .1, rw= .5) 0.14 0.16 480,000 

D (rb= .3, rw= .3) 0.07 0.11 480,000 

E (rb= .3, rw= .5) 0.10 0.13 480,000 

F (rb= .5, rw= .3) 0.03 0.06 480,000 

G (rb= .5, rw= .5) 0.04 0.08 480,000 

 

 
 

The precision of results, or standard deviation of the accuracy values, 
appeared to increase (i.e., the SD value decreased) as the sample size to variable 
ratio increased. Although decreased standard errors would be expected with 
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increased sample size, a dramatic difference in precision was detected between 
results with a sample size to variable ratio of 3:1 versus results from an n:v ratio 
of 10:1 (difference of .10).The precision of results was varied across variable sets. 
The (6+6), (4+4), and (10+2) variable sets produced results with roughly equal 
amounts of precision (SD=.14, .14, and .13, respectively). But the (4+2) variable 
set saw extremely precise results overall (SD=.01).  Normality (or nonnormality) 
of the distributions seemed to matter little in the precision of results. The results 
had approximately the same precision regardless of the value of kurtosis (ranged 
from .13-.14). However, the precision of results varied by correlation matrix. 
Correlation matrices F and G saw greater precision (.06 and .08, respectively) 
than matrices A, B, C, D, and E (ranged from .11-.16). Because correlation 
matrices F and G had higher between- and within-set correlations, these results 
suggest that higher between- and within-set correlations may influence the 
precision of Rc

2 estimates. But these results should be taken tentatively because 
they are based on descriptive analyses alone; further exploration is needed.   

Explanation of Variability in Rc2 Bias 
An analysis of variance (ANOVA) was run to determine which of the study 
factors could account for the variability in the accuracy values. The ANOVA 
summary table for the function I results can be found in Table 3.  
 
 
Table 3: ANOVA Summary Table for Explanation of the Sources of Variation in Function 

I Rc
2 Bias 

 

Source of Variation SS df MS F p η2 ω2 

Expected univariate 
kurtosis (k) 

24.90 5 4.98 702.0 <.001 <.001 <.001 

       
Sample size: variable 

ratio (n:v) 
31776.88 3 10592.29 1493068.8 <.001 0.51 0.51 

Variable set 8.14 3 2.71 382.3 <.001 <.001 <.001 

Correlation matrix 7060.75 6 1176.79 165878.3 <.001 0.11 0.11 

Error 23836.75 3359982 0.01 
    

Total 62707.42 3359999 
     

 
 

The Levene’s test for homogeneity of variance was statistically significant as 
might be expected given the large number of simulated conditions, F(671, 
3359328) = 2413.64, p < .001. Upon visual inspection of the variances by 
condition, we determined that the variances were roughly homogenous and 
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therefore most likely met the assumption of homogeneity of variance in this 
balanced design. Furthermore, the equal variances assumption is primarily related 
to the Type I error rate involved with the F tests. Because statistical significance 
of the ANOVA results was not our primary interest, meeting this assumption was 
less of a concern for this study. 

All five conditions produced statistically significant main effects with 
p<.001 in all cases. It is apparent from examination of the η2 values, however, that 
not all of the main effects were noteworthy. The sample size to ratio variable 
explained the greatest amount of variation in function I bias, accounting for 51% 
(η2=.51; ω2=.51) of the variation in the DV. The only other condition that had a 
somewhat notable effect on the DV was the correlation matrix, and it displayed a 
considerably weaker relationship with the DV than the sample size to variable 
ratio. The correlation matrix variable explained 11% (η2=.11; ω2=.11) of the 
variation in function I bias. 

Based on these results, it is apparent that, of the five conditions manipulated 
in this study, the sample size to variable ratio had the largest effect on function I 
bias (depicted in Figure 1). And, this effect was considerable given the fact that it 
could explain approximately half of the function I bias variation. It is worth 
noting that the 3:1 sample size to variable ratio had, by far, the greatest bias of all 
the ratios (M=.26, SD=.17), with less bias for the 10:1, 25:1, and 40:1 ratios 
(M=.07, SD=.07; M=.03, SD=.04; and M=.02, SD=.03; respectively). Larger 
sample size to variable ratios seemed to help decrease bias in Rc

2, particularly 
when n:v ≥ 10:1. The correlation matrix variable demonstrated a small, but still 
noteworthy effect in comparison (depicted in Figure 2). The correlation matrices 
with larger between- and within-set correlations – correlation matrices F and G 
(rb=.43, rw=.50 and rb=.50, rw=.50, respectively)  – had less bias than matrices A, 
B, C, D, and E, leading to the conclusion that larger correlations may help 
decrease bias in Rc

2. 
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Figure 1: Boxplot of function I Rc
2 bias by sample size to variable ratio across all other 

conditions (N=3,360,000; n=840,000). 
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Figure 2: Boxplot of function I Rc

2 bias by correlation matrix across all other conditions 
(N=3,360,000; n=480,000). Correlation matrix A was created with rb= 0 and rw = 0, 
correlation matrix B with rb = .1 and rw = .3, correlation matrix C with rb = .1 and rw = .5, 
correlation matrix D with rb = .3 and rw = .3, correlation matrix E  with rb = .3 and rw = .5, 
correlation matrix F  with rb = .5 and rw = .3, and correlation matrix G  with rb = .5 and rw 
= .5. 
 

 

Conclusion 

Overall, a large percentage of the first function results (47.92% of 672 total 
combinations) across correlation matrices provided minimal amounts of bias. 
With the exceptions of two minimal mean differences for the normal distribution 
of correlation matrix B data (i.e., the matrix with rb=.10 and rw=.30), all cases 
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with minimal bias were found with the correlation matrices reporting 
combinations of between-set and within-set correlations that were each greater 
than or equal to .30 (i.e., correlation matrices D, E, F, and G). 

As demonstrated by the ANOVA results, the accuracy of Rc
2 was largely 

impacted by the sample size to variable ratio. This can be seen in the bias values; 
as the sample size to variable ratio increased, bias consistently decreased. This 
finding is not surprising given the impact of both sample size and the number of 
variables on the theoretical amount of sampling error present. As sample size 
increases, sampling error theoretically decreases. The number of variables in a 
model typically has the opposite effect on sampling error; as the number of 
variables increases, so does the theoretical amount of sampling error present in a 
sample. It logically follows that a larger sample size to variable ratio would likely 
help decrease the amount of sampling error (i.e., bias) in canonical results.  

The current results speak directly to the sample size needed to obtain 
reasonable outcomes from CCA analyses. It is apparent from the descriptive 
statistics in Table 2 that, across all condition combinations, the 3:1 sample size to 
variable ratio produced substantial bias; bias dramatically decreased when a 
sample size to variable ratio of at least 10:1 was used. Larger sample sizes (e.g., 
25:1 and 40:1) produced even less biased results, further demonstrating the fact 
that larger sample size to variable ratios are ideal conditions for decreasing bias in 
Rc

2. This finding echoes that found by Thompson (1990), who found the sample 
size to variable ratio to be the best predictor of bias in the squared canonical 
correlation coefficient. Furthermore, Thompson found that, though the estimates 
of Rc were somewhat positively biased, the bias was minimal unless a ratio of “as 
small as three to one” was used (p. 27). This was also the case in this study. 
Dramatic decreases in bias were seen between the sample size to variable ratios of 
3:1 and 10:1. Thompson pointed out, however, that, with a small sample size to 
variable ratio (e.g., n:v=3:1), the bias could be minimized in some situations if the 
value of Rc was moderate to large. As can be seen across the matrices, this was 
somewhat true for the data with higher between- and within-set correlations in 
this study.  

None of the other conditions, including the marginal kurtosis level, notably 
impacted the accuracy of Rc

2. These results mirror Barcikowski and Stevens 
(1975) and Thompson (1990) that involved normal distributions. Keep in mind, 
however, that this study was limited to negligibly and moderately kurtotic 
distributions; data with more extreme kurtosis could have a differential effect on 
Rc

2 estimates. 
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In this study, precision of the Rc
2 values was examined only through 

descriptive analyses (i.e., standard deviation of the differences between the 
population and sample Rc

2 values) because there is only one value in each cell for 
all replications. Although conclusions are limited as a result of the descriptive 
analyses, some general comments about the precision of Rc

2 can be made. As with 
the accuracy of the Rc

2 estimates, it appears that the precision of Rc
2 may increase 

as the n:v ratio increases. This is logical given the effect of larger samples and 
fewer variables on sampling error. When sample size is maximized and the 
number of variables are minimized, a greater n:v ratio will likely produce more 
precise Rc

2 results. The pattern of results by the variable sets is somewhat unclear 
and needs further investigation. More often than not, the (6 + 6) and (10 + 2) 
produced the most precise results. And, for correlation matrices A, B, C, D, and E, 
the precision values generally remained the same for the various marginal kurtosis 
levels. Matrices F and G with higher between- and within-set correlations saw 
greater precision by comparison. But, because these results are based on 
descriptive analyses alone, these results should be taken tentatively and should 
likely only be used to inform future studies. 

Recommendations for Practice 
Based on the results of the study, several recommendations are warranted in the 
use of canonical correlation analyses in educational and psychological research. 
First, it is recommended that a sample size to variable ratio of at least 10:1 be 
used in CCA analyses to lessen the bias that may affect Rc

2 results. As was seen in 
the descriptive statistics presented in Table 2, under these study conditions, using 
an n:v ratio of 10:1 versus 3:1 led to dramatic reductions in bias. It would not be 
unlikely to expect similar results in applied studies under similar conditions.  

Greater sample size to variable ratios may also provide more precise results 
as well. Because larger sample size to variable ratios reduce bias even more, 
however, researchers are encouraged to use the largest sample that is available to 
them and the fewest variables that will adequately represent their model. 
Maximizing the sample size and minimizing the number of study variables will 
help to increase the n:v ratio and subsequently likely reduce bias and increase 
precision in the results.  

Second, because the univariate kurtosis level was shown to not substantially 
impact results, researchers can be relatively confident that, when k is homogenous 
across variables and within the range of -1 to 8, Rc

2 bias is not likely to be greater 
or less than that that would be found with results from a normal distribution. 
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Therefore, it is reasonable that multivariate distributions that consist of 
moderately kurtotic univariate distributions can be treated in the same manner as 
normal distributions.  These results may be encouraging to applied researchers 
given the fact that in practice, educational and psychological distributions are 
rarely exactly normally distributed (Blair, 1981; Bradley, 1968, 1982; Micceri, 
1989; Pearson & Please, 1975). Resulting Rc

2 values are likely to be accurate in 
cases even with data that are moderately kurtotic. 

Recommendations should be heeded with the limitations of the study in 
mind, however. Because the data were simulated, we were not able to model 
every conceivable condition that could impact the squared canonical correlation 
coefficient. Further research could seek to extend this study with a larger range of 
population effect sizes, sample sizes, distributional shapes, and numbers of 
variables.  

Despite its limitations, the findings from this study revealed important 
conditions to consider in the use of the squared canonical correlation coefficient, 
particularly under nonnormal data conditions. These findings and 
recommendations are meant to impact research practice and provide more 
accurate applications of canonical correlation analysis, particularly as regards the 
use of the squared canonical correlation coefficient. 
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Appendix A 

Procedures presented by Fleishman (1978), Kaiser and Dickman (1962), Vale and 
Maurelli (1983) were used to generate the multivariate random distributions in 
this study. More extreme values of kurtosis (e.g., k = 15, 25) were considered, but 
rejected because the data generation procedure could not produce distributions 
that contained the desired levels of nonnormality. 

Forty-two populations (i.e., one for each combination of the 6 kurtosis levels 
and 7 correlation matrices) were generated, and sample canonical analyses were 
performed using SAS® (SAS Institute, Inc., Cary, NC, www.sas.com) version 
9.1.3 syntax. It is important to note that correlation matrix F was intended to have 
rb=.3 and rw=.5, but the resulting matrix was not of full rank. For that reason, we 
generated correlation matrix F to have rb=.43 and rw=.5, the correlations that were 
the closest to the intended values that would generate a matrix of full rank. The 
syntax was written by the authors using the reference by Fan, Felsővályi, Sivo, 
and Keenan (2002).  For the sake of brevity, the syntax was not included in this 
article; copies can be obtained from the authors.  

Several checks were incorporated into the SAS® code to insure its accuracy. 
First, the variables in each of the populations were checked to make sure that they 
truly approximated the pre-specified correlations and kurtosis levels. Second, 
values of the condition variables were saved for each of the 3,360,000 canonical 
analyses so that they could be compared with the expected values. Third, 
calculations for randomly selected cases were manually checked to verify their 
accuracy. 
  

http://www.sas.com/
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Appendix B 

Table A1: Bias and Precision of Function I Sample 
2
cR  Values for Correlation Matrix A 

 

  
Expected k 

Var. Set n: v  -1 0 1 3 5 8 

v=12 (6+6) 3.1 .45a  (.09)b .45  (.09) .45  (.09) .45  (.09) .45  (.09) .45  (.10) 

 
10.1 .14  (.04) .14  (.03) .14  (.04) .14  (.04) .14  (.04) .14  (.04) 

 
25.1 .06  (.02) .06  (.02) .06  (.02) .06  (.02) .06  (.02) .06  (.02) 

 
40.1 .04  (.01) .03  (.01) .04  (.01) .04  (.01) .04  (.01) .04  (.01) 

v=8 (4+4) 3.1 .41  (.12) .41  (.12) .41  (.12) .41  (.12) .41  (.12) .41  (.13) 

 
10.1 .13  (.05) .13  (.05) .13  (.05) .13  (.05) .13  (.05) .13  (.05) 

 
25.1 .05  (.02) .05  (.02) .05  (.02) .05  (.02) .05  (.02) .05  (.02) 

 
40.1 .03  (.01) .03  (.01) .03  (.01) .03   (.01) .03  (.01) .03  (.01) 

v=6 (4+2) 3.1 .36  (.14) .36  (.15) .36  (.14) .36  (.14) .36  (.15) .36  (.15) 

 
10.1 .11  (.05) .11  (.05) .11  (.05) .11  (.05) .11  (.05) .11  (.06) 

 
25.1 .04  (.02) .04  (.02) .04  (.02) .04  (.02) .04  (.02) .04  (.02) 

 
40.1 .03  (.01) .03  (.01) .03  (.01) .03  (.01) .03  (.01) .03  (.01) 

v=12 (10+2) 3.1 .38  (.10) .38  (.10) .38  (.10) .38  (.10) .38  (.10) .38  (.11) 

 
10.1 .11  (.04) .11  (.04) .11  (.04) .12  (.04) .12  (.04) .12  (.04) 

 
25.1 .05  (.02) .05  (.02) .05  (.02) .05  (.02) .05  (.02) .05  (.02) 

  40.1 .03  (.01) .03  (.01) .03  (.01) .03  (.01) .03  (.01) .03  (.01) 
 

Note. Correlation matrix A was created with rw=0 and rb=0. k denotes univariate kurtosis. n=5,000 per cell. 
Bolded entries represent values that exceeded the ±.30 Rc

2 criterion for extreme bias. aThe bias of the Rc
2 

values is denoted as the mean difference between the known population value of Rc
2 and the average sample 

value of Rc
2 across 5,000 sample replications. bThe precision of the Rc

2 values is denoted as the standard 
deviation of the accuracy values. 
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Table A2: Bias and Precision of Function I Sample 
2
cR  Values for Correlation Matrix B 

 

  
Expected k 

Var. Set n: v  -1 0 1 3 5 8 

v=12 (6+6) 3.1 .41a (.09)b .41   (.09) .41   (.09) .41   (.09) .41   (.09) .41   (.10) 

 
10.1 .11   (.05) .11   (.04) .11   (.05) .11   (.05) .12   (.05) .12   (.05) 

 
25.1 .04   (.03) .04   (.04) .04   (.03) .04   (.03) .04   (.03) .04   (.03) 

 
40.1 .02   (.02) .02   (.02)  .02   (.02) .02   (.02) .02   (.02) .02   (.02) 

v=8 (4+4) 3.1 .39   (.12) .38   (.12) .38   (.12) .38   (.12) .39   (.13) .39   (.13) 

 
10.1 .11   (.05) .11   (.05) .11   (.06) .11   (.06) .11   (.06) .11   (.06) 

 
25.1 .04   (.03) .04   (.03) .04   (.03) .04   (.03) .04   (.03) .04   (.03) 

 
40.1 .02   (.02) .02   (.02) .02   (.02) .02   (.02) .02   (.02) .02   (.03) 

v=6 (4+2) 3.1 .34   (.14) .34   (.15) .34   (.15) .34   (.15) .34   (.15) .34   (.16) 

 
10.1 .10   (.06) .10   (.06) .10   (.06) .10   (.06) .10   (.06) .10   (.07) 

 
25.1 .04   (.03) .04   (.03) .04   (.03) .04   (.03) .04   (.03) .04   (.04) 

 
40.1 .02   (.02) .02   (.02) .02   (.02) .02   (.02) .02   (.02) .02   (.03) 

v=12 (10+2) 3.1 .36   (.10) .30   (.10) .36   (.10) .36   (.10) .36   (.11) .36   (.11) 

 
10.1 .10   (.05) .08   (.06) .10   (.05) .10   (.05) .10   (.05) .10   (.05) 

 
25.1 .04   (.03) .03   (.04) .04   (.03) .04   (.03) .04   (.03) .04   (.03) 

  40.1 .02   (.02) .02   (.03) .02   (.02) .02   (.02) .02   (.02) .02   (.02) 
 

Note. Correlation matrix B was created with rw=.3 and rb=.1  k denotes univariate kurtosis. n=5,000 per cell. 
Bolded entries represent values that exceeded the ±.30 Rc

2 criterion for extreme bias. aThe bias of the Rc
2 

values is denoted as the mean difference between the known population value of Rc
2 and the average sample 

value of Rc
2 across 5,000 sample replications. bThe precision of the Rc

2 values is denoted as the standard 
deviation of the accuracy values. 
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Table A3: Bias and Precision of Function I Sample 
2
cR  Values for Correlation Matrix C 

 

  
Expected k 

Var. Set n: v  -1 0 1 3 5 8 

v=12 (6+6) 3.1 .43a (.09)b .43  (.09) .42  (.09) .43  (.09) .43  (.10) .44  (.10) 

 
10.1 .13  (.04) .13  (.04) .13  (.04) .13  (.04) .13  (.04) .13  (.05) 

 
25.1 .05  (.02) .05  (.02) .04  (.02) .05  (.02) .05  (.02) .05  (.02) 

 
40.1 .03  (.02) .03  (.02) .03  (.02) .03  (.02) .03  (.02) .03  (.02) 

v=8 (4+4) 3.1 .40  (.12) .40  (.12) .40  (.12) .40  (.12) .40  (.12) .40  (.13) 

 
10.1 .12  (.05) .12  (.05) .11  (.05) .12  (.05) .12  (.06) .12  (.05) 

 
25.1 .04  (.03) .04  (.03) .04  (.03) .04  (.03) .04  (.03) .04  (.03) 

 
40.1 .03  (.02) .03  (.02) .03  (.02) .03  (.02) .02  (.02) .03  (.02) 

v=6 (4+2) 3.1 .35  (.14) .35  (.14) .35  (.15) .35  (.15) .35  (.15) .35  (.15) 

 
10.1 .10  (.06) .10  (.06) .10  (.06) .10  (.06) .10  (.06) .10  (.06) 

 
25.1 .04  (.03) .04  (.03) .04  (.03) .04  (.03) .04  (.03) .04  (.03) 

 
40.1 .02  (.02) .02  (.02) .02  (.02) .02  (.02) .02  (.02) .02  (.02) 

v=12 (10+2) 3.1 .37  (.10) .37  (.10) .37  (.10) .37  (.10) .37  (.10) .37  (.11) 

 
10.1 .11  (.04) .11  (.04) .11  (.04) .11  (.04) .11  (.04) .11  (.05) 

 
25.1 .04  (.02) .04  (.02) .04  (.02) .04  (.02) .04  (.02) .04  (.02) 

  40.1 .02  (.02) .02  (.02) .02  (.02) .02  (.02) .02  (.02) .02  (.02) 
 

Note. Correlation matrix C was created with rw=.5and rb=.1.  k denotes univariate kurtosis. n=5,000 per cell.  
Bolded entries represent values that exceeded the ±.30Rc

2 criterion for extreme bias. aThe bias of the Rc
2 values 

is denoted as the mean difference between the known population value of Rc
2 and the average sample value of  

Rc
2 across 5,000 sample replications.  bThe precision of the Rc

2 values is denoted as the standard deviation of 
the accuracy values. 
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Table A4: Bias and Precision of Function I Sample 
2
cR  Values for Correlation Matrix D 

 

  
Expected k 

Var. Set n: v  -1 0 1 3 5 8 

v=12 (6+6) 3.1 .15a (.09)b  .16  (.09) .15  (.09) .16  (.09) .16  (.09) .17  (.09) 

 
10.1 .04  (.06) .04  (.06) .04  (.06) .04  (.06) .05  (.06) .05  (.06) 

 
25.1 .02  (.04) .02  (.04) .02  (.04) .02  (.04) .02  (.04) .02  (.04) 

 
40.1 .01  (.03) .01  (.03) .01  (.03) .01  (.03) .01  (.03) .01  (.03) 

v=8 (4+4) 3.1 .19  (.12) .19  (.12) .19  (.12) .20  (.13) .20  (.13) .21  (.13) 

 
10.1 .05  (.08) .05  (.08) .05  (.08) .05  (.08) .05  (.09) .06  (.09) 

 
25.1 .02  (.05) .02  (.05) .02  (.05) .02  (.05) .02  (.06) .02  (.06) 

 
40.1 .01  (.04) .01  (.04) .01  (.04) .01  (.04) .01  (.04) .01  (.05) 

v=6 (4+2) 3.1 .22  (.15) .22  (.15) .22  (.15) .22  (.16) .23  (.16) .23  (.16) 

 
10.1 .06  (.10) .06  (.09) .06  (.10) .06  (.10) .06  (.10) .07  (.11) 

 
25.1 .02  (.06) .02  (.06) .02  (.06) .02  (.06) .02  (.06) .03  (.07) 

 
40.1 .01  (.05) .01  (.05) .01  (.05) .01  (.05) .02  (.05) .02  (.05) 

v=12 (10+2) 3.1 .20  (.11) .20  (.11) .20  (.11) .20  (.11) .20  (.11) .22  (.11) 

 
10.1 .05  (.07) .05  (.07) .05  (.07) .06  (.07) .06  (.07) .07  (.07) 

 
25.1 .02  (.04) .02  (.04) .02  (.04) .02  (.04) .02  (.05) .03  (.05) 

  40.1 .01  (.04) .01  (.03) .01  (.03) .01  (.03) .02  (.04) .02  (.04) 
 

Note. Correlation matrix D was created with rw=.3 and rb=.3. k denotes univariate kurtosis. n=5,000 per cell.  
Bolded entries represent values that exceeded the ±.30 Rc

2 criterion for extreme bias. a The bias of the Rc
2 

values is denoted as the mean difference between the known population value of Rc
2 and the average sample 

value of  Rc
2 across 5,000 sample replications. b The precision of the Rc

2 values is denoted as the standard 
deviation of the accuracy values. 
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Table A5: Bias and Precision of Function I Sample 
2
cR  Values for Correlation Matrix E 

 

  
Expected k 

Var. Set n: v  -1 0 1 3 5 8 

v=12 (6+6) 3.1 .28a  (.10)b .28  (.10) .28  (.09) .28  (.10) .28  (.10) .30  (.11) 

 
10.1 .07  (.07) .07  (07) .07  (.07) .07  (.07) .07  (.07) .08  (.07) 

 
25.1 .03  (.04) .03  (.04) .03  (.04) .03  (.04) .03  (.05) .03  (.05) 

 
40.1 .02  (.03) .02  (.03) .02  (.03) .02  (.04) .02  (.04) .02  (.04) 

v=8 (4+4) 3.1 .28  (.12) .27  (.12) .27  (.13) .28  (.13) .28  (.13) .30  (.14) 

 
10.1 .07  (.08) .07  (.08) .07  (.08) .07  (.08) .08  (.08) .08  (.09) 

 
25.1 .03  (.05) .03  (.05) .03  (.05) .03  (.05) .03  (.05) .03  (.06) 

 
40.1 .02  (.04) .02  (.04) .02  (.04) .02  (.04) .02  (.04) .02  (.04) 

v=6 (4+2) 3.1 .27  (.16) .26  (.15) .26  (.15) .27  (.16) .27  (.16) .28  (.17) 

 
10.1 .07  (.09) .07  (.09) .06  (.09) .07  (.09) .07  (.10) .08  (.10) 

 
25.1 .02  (.06) .03  (.06) .02  (.06) .03  (.06) .03  (.05) .03  (.06) 

 
40.1 .02  (.05) .01  (.05) .02  (.05) .02  (.05) .02  (.05) .02  (.05) 

v=12 (10+2) 3.1 .27  (.11) .27  (.11) .27  (.11) .28  (.11) .27  (.11) .29  (.12) 

 
10.1 .07  (.07) .07  (.07) .07  (.07) .08  (.07) .08  (.07) .08  (.07) 

 
25.1 .03  (.04) .03  (.04) .03  (.04) .03  (.04) .03  (.04) .03  (.05) 

  40.1 .02  (.03) .02  (.03) .02  (.03) .02  (.03) .02  (.03) .02  (.04) 
 

Note. Correlation matrix E was created with rw=.5 and rb=.3. k denotes univariate kurtosis. n=5,000 per cell.  
Bolded entries represent values that exceeded the ±.30 Rc

2 criterion for extreme bias.  a The bias of the Rc
2 

values is denoted as the mean difference between the known population value of  Rc
2 and the average sample 

value of  Rc
2 across 5,000 sample replications. b The precision of the Rc

2 values is denoted as the standard 
deviation of the accuracy values. 
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Table A6: Bias and Precision of Function I Sample 
2
cR  Values for Correlation Matrix F 

 

  
Expected k 

Var. Set n: v  -1 0 1 3 5 8 

v=12 (6+6) 3.1 .03a (.02)b .03  (.02) .02  (.02) .03  (.02) .03  (.02) .04  (.02) 

 
10.1 .01  (.01) .01  (.02) .01  (.01) .01  (.02) .01  (.02) .01  (.02) 

 
25.1   <.01 (.01) <.01  (.01) <.01  (.01) <.01  (.01) <.01  (.01) .01  (.01) 

 
40.1 <.01 (.01) <.01  (.01) <.01  (.01) <.01  (.01) <.01  (.01) <.01  (.01) 

v=8 (4+4) 3.1 .07  (.07) .06  (.07) .06  (.07) .07  (.07) .07  (.07) .08  (.07) 

 
10.1 .02  (.04) .02  (.04) .02  (.04) .02  (.05) .02  (.05) .03  (.05) 

 
25.1 .01  (.03) .01  (.03) .01  (.03) .01  (.03) .01  (.03) .01  (.03) 

 
40.1 <.01 (.02) <.01  (.02) <.01  (.02) .01  (.02) .01  (.02) .01  (.03) 

v=6 (4+2) 3.1 .10  (.13) .10  (.12) .10  (.12) .11  (.12) .11  (.12) .13  (.12) 

 
10.1 .03  (.08) .03  (.08) .02  (.07) .03  (.08) .03  (.08) .04  (.08) 

 
25.1 .01  (.05) .01  (.05) .01  (.05) .01  (.05) .01  (.05) .02  (.05) 

 
40.1 .01  (.04) .01  (.04) .01  (.04) .01  (.04) .01  (.04) .01  (.04) 

v=12 (10+2) 3.1 .09  (.07) .08  (.07) .08  (.06) .09  (.07) .09  (.07) .10  (.07) 

 
10.1 .02  (.04) .02  (.04) .02  (.04) .03  (.04) .03  (.04) .04  (.05) 

 
25.1 .01  (.03) .01  (.03) .01  (.03)  .01  (.03) .01  (.03) .02  (.03) 

  40.1 .01  (.02) .01  (.02) .01  (.02) .01  (.02) .01  (.02) .01  (.02) 
 

Note. Correlation matrix F was created to have  rw=.3 and rb=.5, but limitations with the data generation 
procedures required us to create a correlation matrix with rw=.43 and rb=.5.  k denotes univariate kurtosis. 
n=5,000 per cell.  Bolded entries represent values that exceeded the ±.30 Rc

2 criterion for extreme bias. a The 
bias of the Rc

2 values is denoted as the mean difference between the known population value of  Rc
2a\ and the 

average sample value of  Rc
2 across 5,000 sample replications. b The precision of the Rc

2 values is denoted as 
the standard deviation of the accuracy values. 
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Table A7: Bias and Precision of Function I Sample 
2
cR  Values for Correlation Matrix G 

 

  
Expected k 

Var. Set n: v  -1 0 1 3 5 8 

v=12 (6+6) 3.1 .08a (.06b) .08a (.06) .08  (.06) .08  (.06) .08  (.06) .09  (.06) 

 
10.1 .02  (.04) .02  (.04) .02  (.04) .03  (.04) .03  (.04) .03  (.04) 

 
25.1 .01  (.03) .01  (.03) .01  (.03) .01  (.03) .01  (.03) .01  (.03) 

 
40.1 .01  (.02) .01  (.02) <.01 (.02) .01  (.02) .01  (.02) .01  (.02) 

v=8 (4+4) 3.1 .11  (.10) .10  (.10) .10  (.10) .11  (.10) .11  (.10) .13  (.10) 

 
10.1 .03  (.06) .03  (.06) .03  (.06) .03  (.06) .04  (.07) .04  (.07) 

 
25.1 .01  (.04) .01  (.04) .01  (.04) .01  (.04) .02  (.04) .02  (.05) 

 
40.1 .01  (.03) .01  (.03) .01  (.03) .01  (.03) .01  (.03) .01  (.04) 

v=6 (4+2) 3.1 .13  (.14) .12  (.13) .12  (.13) .13  (.14) .14  (.14) .16  (.15) 

 
10.1 .03  (.09) .03  (.08) .03  (.09) .04  (.09) .04  (.09) .05  (.09) 

 
25.1 .01  (.06) .01  (.06) .01  (.06) .02  (.06) .02  (.06) .02  (.06) 

 
40.1 .01  (.04) .01  (.04) .01  (.04) .01  (.04) .01  (.05) .01   (.05) 

v=12 (10+2) 3.1 .12  (.08) .11  (.09) .12  (.08) .12  (.09) .13  (.09) .14  (.09) 

 
10.1 .04  (.05) .03  (.05) .03  (.05) .04  (.06) .04  (.06) .05  (.06) 

 
25.1 .01  (.04) .01  (.03) .01  (.03) .02  (.04) .02  (.04) .02  (.04) 

  40.1 .01  (.03) .01  (.03) .01  (.03) .01  (.03) .01  (.03) .01  (.03) 
 

Note. Correlation matrix G was created with rw=.5 and rb=.5.  k denotes univariate kurtosis. n=5,000 per cell.  
Bolded entries represent values that exceeded the ±.30 Rc

2 criterion for extreme bias. a The bias of the Rc
2 

alues is denoted as the mean difference between the known population value of  Rc
2 and the average sample 

value of  Rc
2 across 5,000 sample replications. b The precision of the Rc

2 values is denoted as the standard 
deviation of the accuracy values. 
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