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The Linear Failure Rate Distribution (LFRD) is considered. The graphs of its probability 
density function are examined for selected parameter combinations. Some of them are 
similar to the well-known exponential distribution. Incidentally exponential distribution 
is one of the two component models of the LFRD model. In view of the simpler form of 
exponential model as applicable in inference, looking at the frequency curves of LFRD, a 
test statistic is proposed based on ratio of likelihood functions containing the standard 
forms of the density functions of both LFRD and Exponential to discriminate between 
LFRD and exponential models. The critical values and the powers of the test statistic are 
developed. 
 
Keywords: Linear failure rate distribution, likelihood ratio type, test statistic, power  
 

Introduction 

In reliability studies, series systems are one of many popular system 
configurations. If a series system has two components having independently 
distributed lifetime random variables with failure rate functions ℎ1(𝑥) and ℎ2(𝑥) 
then the reliability of the series system is 
 

     1 20
( )

x
R x exp h t h t dt   

     (1) 

 
The corresponding cumulative distribution function, failure density function 

and failure rate function are respectively given by 
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     1 20
( ) 1

x
F x exp h dt h tt    

     (2) 

 

 ( ) ( )df x F x
dx

   (3) 

 

 ( )( )
( )

f xh x
R x

   (4) 

 
Taking 1 2( ), ( )h x h x , as the failure rates of the exponential and Rayleigh 

distributions in (1) results in the most commonly used Linear Failure Rate 
Distribution (LFRD). More specifically, if 1( )h x a  and 2( )h x bx then the 
failure density function, cumulative distribution function, hazard or failure rate 
function of LFRD is: 
 

  

2

2( ) ; 0, 0, 0
bxax

f x a bx e x a b
 

   
        (5) 

 

 
2

2( ) 1 ; 0, 0, 0
bxax

F x e x a b
 

   
        (6) 

 
 ( )h x a bx    (7) 

 
Bain (1974) seems to be one of the earliest works that has touched upon 

LFRD as a model useful for analysis in life testing. Ananda Sen (2005) gave a 
detailed review along with the distributional characteristics and inferential aspects 
of LFRD. Some basic features of LFRD are as follows: 
 
Mean:  
 

 
2

22 1 (
a

b ae
b b


 
 

  
 

  (8) 

 
 

where   denotes the cumulative distribution function of a standard normal variate. 
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Variance:  
 

  2 22 1 a
b

       (9) 

 
Mode: 
 

  21 aM I a b
b b

 
    
 

  (10) 

 
where I(.) denotes indicator function. 
 
100 pth Percentile: 
 

  
2

1 2log(1 )a p aF p
b b b

  
   

 
  (11) 

 
and hence median is 
 

 
2 2log(0.5)

d
a aM
b b b

 
   

 
  (12) 

 
In biological sciences this is called 50% survival time denoted by t50. 
 
Recurrence relation for raw moments is 
 

 1 ' '
1 2;   0,1,2...

1 2k k k
a b k

k k
     

 
  (13) 

 
The second, third and fourth non-central moments are  
 

  '
2

2 1 a
b

     (14) 
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b b b b

 
 

    
 

  (16) 

 
where µ is the mean of the distribution given by (8).  

It can be seen from (10) that LFRD has a non-zero mode only if its 
parameters a and b satisfy the relation 𝑎2 < 𝑏 with a> 0, b> 0. 

The graphs of LFRD density function for some combinations of the 
parameters a, b are shown in the following figures. 
 
 

 
 
Figure 1. LFRD Density function when  
a = 2.5, b = 0.5 
 

 
 
Figure 3. LFRD Density function when  
a = 3.5, b = 1 

 
 
Figure 2. LFRD Density function when  
a = 3, b = 0.5 
 

 
 
Figure 4. LFRD Density function when  
a = 5, b = 0.5 

 



LIKELIHOOD RATIO TYPE TEST FOR LINEAR FAILURE RATE 

178 

 
 

Figure 5. LFRD Density function when a = 5, b = 1 
 
 

 
In Figures 1 – 5, the combinations of a and b are bound by a2 > b, accordingly the 
mode is zero and the graphs are similar to that of exponential distribution. These 
characteristics of LFRD and its component distribution-exponential, motivated us 
to study the discriminatory aspect between LFRD and exponential through 
statistical test procedures. Such studies of discriminatory problems between 
probability models are made by Gupta, et al. (2002), Gupta and Kundu (2003a), 
Gupta and Kundu (2003b), Kundu and Gupta (2004a, 2004b), Kundu and 
Manglick (2004), Kundu, et al. (2005), Kundu and Manglick (2005), Kundu 
(2005), Kundu and Raqab (2007), Arabin and Kundu (2009), Arabin and Kundu 
(2010), Arabin and Kundu (2012a), Arabin and Kundu (2012b) and the references 
therein. The rest of the article is organised as follows. The methodology of the 
proposed LR type criterion for testing is described in the next section. The critical 
values of the test statistic are presented in following section. The aspects of power 
of the proposed test statistic are given in the final section, with a comparative 
study. 

LR Type Methodology 

Consider LFRD as a null population for example, P0, the exponential model is 
regarded as an alternative population such as P1. Let 1 2, , , nx x x  be a given 
random sample of size n. Let L1 denote the value of the likelihood function at the 
sample 1 2, , , nx x x  with reference to the population P1. L1 is obtained as follows. 
Considering 1 2, , , nx x x  as a sample from P1 with some method of point 
estimation using the P1 as the mathematical model, substituting the values of the 
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estimates so obtained and the sample observations 1 2, , , nx x x  in L1 results in a 
value of L1 from the sample 1 2, , , nx x x  with respect to P1. Using the sample  

1 2, , , nx x x  with P0 as the model one can get estimates of the parameters of P0 

thereby getting the value of the likelihood function in relation to P0 at 1 2, , , nx x x  
the parameters of P0 as estimated using 1 2, , , nx x x . L0 is thus the value of 
likelihood function substituting the same sample 1 2, , , nx x x  and the estimates of 
P0. Thus for the same sample 1 2, , , nx x x , two values of likelihood function with 
respect to P0 as well as P1 were obtained. 

Generally in likelihood ratio test procedure the MLEs of the parameters in 
L1 and L0 are substituted thereby getting the value of L1/L0 at a given samples 

1 2, , , nx x x  with the parameters of P1, P0 estimated by ML method using the 
respective models. Because likelihood is also joint probability of the sample 

1 2, , , nx x x , had the sample belonged to P0 the ratio L1/L0 tends to be very small. 
If it is the other way—that is the sample is truly from P1—then the ratio L1/L0 
tends to be very large. Hence the ratio L1/L0 can be a criterion to test whether the 
sample 1 2, , , nx x x  actually belongs to the population P1 or P0. If L1/L0 is very 
small it may be stated that the sample belongs to P0. Thus the ratio L1/L0 decides 
the sample to have belonged to either P1 or P0. It is therefore necessary to get 
critical values for L1/L0 to decide whether a given sample belongs to P1 or P0. In 
turn this leads to the knowledge of percentiles of the sampling distribution of 
L1/L0. In the proposed method of testing LFRD vs. exponential, point estimates of 
the parameters were used in both null and alternative populations using any other 
point estimation instead of the classical ML method, because MLEs of LFRD 
parameters are not analytically available. Similar testing processes were adopted 
by other researchers (Gupta & Kundu, 2003a; Kundu, et al., 2005). The proposed 
method is named the LR Type Criterion. In the discussion, the methods of point 
estimation that are considered are Least Squares estimators, Percentiles estimators, 
and Weighted Least Squares Estimators. The sampling distribution of L1/L0 is not 
mathematically tractable. The percentiles of L1/L0 were obtained through Monte-
Carlo simulation as described in the following section. For comparison purposes, 
the following parametric combinations were chosen. 
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Table 1. Parametric combinations chosen for the study. 
 

Least Squares Estimators  Percentiles Estimators  
Weighted Least Squares 

Estimators 
a b   a b   a b 

0.5 4.0  0.5 4.0  0.5 4.0 
2.5 0.5  2.5 0.5  2.5 0.5 
3.0 0.5  3.0 0.5  3.0 0.5 
3.5 1.0  3.5 1.0  3.5 1.0 
5.0 0.5  5.0 0.5  5.0 0.5 
5.0 1.0   5.0 1.0   5.0 1.0 

 

LR Type Test Statistic – Critical Values 

A random sample of size n is generated from LFRD (P0) with parameter 
combinations as specified in the Table 1. Using that sample the parameters of 
LFRD are estimated by least square method / percentile method / weighted least 
square method given method of estimation. The estimates so obtained are 
substituted in P0 in the respective places of the parameters along with the sample 
observations used to get those estimates thus having an estimated value of L0. 
Using the same sample, the parameters appearing in P1 are estimated by a least 
square method / percentile method / weighted least square method in succession 
using the model P1 method suitable for P1. Here because P1 is an exponential 
distribution the MLEs of parameters of P1 were calculated using formulae and 
expressions suitable for P1. The estimates of the parameters of P1 so obtained are 
then substituted in P1 along with the sample observations used to get the estimates. 
Thus estimated likelihood function L1 are obtained by three separate methods. The 
ratio L1/L0 for different samples with the same parameter combinations as 
described in the previous section is calculated for each sample. This procedure 
was repeated 10,000 times for accuracy and precision. Among these 10,000 
values, various specified cut off points (percentiles) would form the critical values 
of L1/L0 useful for testing. These are given below in the following Tables 2 and 3, 
for only the parameters (a=2.5, b=0.5), (a=3, b=0.5). Results of other parameter 
combinations are available from the authors. 
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Table 2a: Percentiles of L1/L0 :: P0: LFRD vs P1: EXP, Least Square Estimation, (a=2.5, 
b=0.5) 
 

 
Least Square Estimation 

n 5 10 15 20 
0.00100 0.05555 0.00866 0.00641 0.00495 

0.00135 0.05579 0.00980 0.00700 0.00551 

0.00270 0.05802 0.01389 0.01311 0.01005 

0.00500 0.06338 0.01944 0.01997 0.01839 

0.01000 0.07127 0.03196 0.03634 0.04059 

0.02500 0.09607 0.07852 0.09572 0.09172 

0.05000 0.15049 0.17091 0.17663 0.16909 

0.10000 0.27829 0.32933 0.33165 0.32362 

0.90000 1.45170 1.30077 1.31607 1.35776 

0.95000 2.36966 1.56559 1.55775 1.59782 

0.97500 4.97214 2.00069 1.86525 1.85212 

0.99000 20.67554 3.27230 2.50671 2.34857 

0.99500 89.41741 6.02098 3.90709 3.01258 

0.99730 206.88170 10.79545 5.50735 4.79198 

0.99865 938.89170 20.64189 19.63486 12.46792 

0.99000 1441.98200 40.78289 23.69878 36.68090 

 
 
Table 2b: Percentiles of L1/L0 :: P0: LFRD vs P1: EXP, Weighted Least Square Estimation, 
(a=2.5, b=0.5) 
 

 
Weighted Least Square Estimation 

n 5 10 15 20 
0.00100 0.05558 0.00865 0.00560 0.00541 

0.00135 0.05639 0.00958 0.00619 0.00693 

0.00270 0.06081 0.01370 0.01244 0.00971 

0.00500 0.06562 0.01851 0.01819 0.01855 

0.01000 0.07279 0.03215 0.03719 0.04195 

0.02500 0.09342 0.07797 0.09896 0.09637 

0.05000 0.14239 0.16794 0.17843 0.18065 

0.10000 0.26167 0.32321 0.33875 0.34647 

0.90000 1.42631 1.28926 1.36464 1.46510 

0.95000 2.39327 1.58677 1.65037 1.76804 

0.97500 5.02094 2.18780 2.14986 2.28297 

0.99000 19.63531 3.80238 4.02971 3.72403 

0.99500 88.76622 9.38806 9.31526 8.65864 

0.99730 222.91150 19.79771 28.90935 27.69206 

0.99865 825.53910 58.24844 314.41790 122.53770 

0.99000 1537.66000 125.22960 826.64140 388.92530 
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Table 2c: Percentiles of L1/L0 :: P0: LFRD vs P1: EXP, Percentile Estimation, (a=2.5, 
b=0.5) 
 

 
Percentile Estimation 

n 5 10 15 20 
0.00100 0.07292 0.01208 0.00611 0.00468 

0.00135 0.07628 0.01361 0.00718 0.00559 

0.00270 0.08055 0.01710 0.00989 0.00979 

0.00500 0.08669 0.02131 0.01592 0.01877 

0.01000 0.09456 0.03308 0.03379 0.03679 

0.02500 0.12043 0.07695 0.08074 0.07452 

0.05000 0.16311 0.15190 0.15107 0.15069 

0.10000 0.24330 0.28240 0.28224 0.28175 

0.90000 2.08305 1.52860 1.46043 1.44967 

0.95000 4.89041 2.23917 1.97528 1.82456 

0.97500 14.79908 4.16817 3.02435 2.50522 

0.99000 123.33970 19.42763 7.95037 5.62689 

0.99500 748.87240 71.67762 31.90508 13.60665 

0.99730 2710.38500 246.98620 100.23880 55.98616 

0.99865 71595.25000 623.14900 454.89490 233.64480 

0.99000 190377.10000 897.07890 952.26130 833.10900 

 
 
Table 3a: Percentiles of L1/L0 :: P0: LFRD vs P1: EXP, Least Square Estimation, (a=3.0, 
b=0.5) 
 

 
Least Square Estimation 

n 5 10 15 20 
0.00100 0.05603 0.01062 0.00596 0.00513 

0.00135 0.05691 0.01139 0.00662 0.00634 

0.00270 0.06038 0.01314 0.01177 0.01171 

0.00500 0.06443 0.02129 0.02265 0.02324 

0.01000 0.06995 0.03725 0.04223 0.04346 

0.02500 0.08877 0.09321 0.09890 0.09904 

0.05000 0.13725 0.17716 0.17834 0.18288 

0.10000 0.26580 0.33410 0.34319 0.33358 

0.90000 1.43639 1.33367 1.35457 1.37469 

0.95000 2.31841 1.62922 1.59357 1.61963 

0.97500 4.98869 2.14252 1.94302 1.93538 

0.99000 21.02987 4.00168 2.80106 2.50630 

0.99500 80.51004 8.20346 3.78306 3.15834 

0.99730 252.88440 20.03408 6.46744 3.97503 

0.99865 3116.18000 71.98767 11.33482 6.36183 

0.99000 59094.28000 179.53870 17.87834 7.78476 
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Table 3b: Percentiles of L1/L0 :: P0: LFRD vs P1: EXP, Weighted Least Square Estimation, 
(a=3.0, b=0.5) 
 

 
Weighted Least Square Estimation 

n 5 10 15 20 
0.00100 0.05647 0.01066 0.00576 0.00664 

0.00135 0.05761 0.01104 0.00669 0.00795 

0.00270 0.06264 0.01395 0.01140 0.01456 

0.00500 0.06704 0.02150 0.02225 0.02212 

0.01000 0.07299 0.03735 0.04243 0.04817 

0.02500 0.08761 0.08531 0.09748 0.10723 

0.05000 0.12932 0.17186 0.18351 0.19496 

0.10000 0.25456 0.32422 0.34730 0.36366 

0.90000 1.42080 1.31768 1.38883 1.49770 

0.95000 2.32665 1.65014 1.67716 1.86482 

0.97500 4.88276 2.28681 2.14252 2.36452 

0.99000 20.92875 4.86321 3.67318 3.89300 

0.99500 72.31535 11.28078 6.79731 6.48627 

0.99730 281.68090 32.09840 21.00146 24.05159 

0.99865 2668.58100 204.66170 82.91345 187.71560 

0.99000 60999.62000 313.55800 123.97500 744.18340 

 
 
Table 3c: Percentiles of L1/L0 :: P0: LFRD vs P1: EXP, Percentile Estimation, (a=3.0, 
b=0.5) 
 

 
Percentile Estimation 

n 5 10 15 20 
0.00100 0.07245 0.01317 0.00645 0.00460 

0.00135 0.07337 0.01435 0.00712 0.00557 

0.00270 0.08110 0.01997 0.01176 0.01181 

0.00500 0.08790 0.02728 0.01912 0.02171 

0.01000 0.09718 0.04102 0.03919 0.03662 

0.02500 0.11891 0.08040 0.08506 0.08822 

0.05000 0.16062 0.15065 0.15994 0.16028 

0.10000 0.25323 0.28654 0.30645 0.29008 

0.90000 2.06479 1.54506 1.49559 1.46275 

0.95000 5.04268 2.27774 1.96774 1.85958 

0.97500 14.98131 4.37480 3.03259 2.57786 

0.99000 95.64787 17.19165 7.48988 4.85088 

0.99500 765.44120 76.76962 19.14950 14.15270 

0.99730 4913.02900 229.08730 59.52394 70.34382 

0.99865 343286.90000 526.59070 325.89340 280.56010 

0.99000 2031568.00000 1125.17300 478.65110 711.98170 
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LR Type Test Statistic – Power 

The LR type statistic suggested would be meaningful only if it is able to 
distinguish between the null and alternative populations. As is generally 
considered, the level of significance was fixed at 0.05. The critical value of L1/L0 
corresponding to the level of significance 0.05 is (corresponding to the percentile 
at 0.95) identified from the relevant portion of Tables 2 and 3. 

10,000 random samples of size each n = 5 (5) 20, from the alternative 
population (exponential) are generated. The MLE (reciprocal of sample mean) of 
the parameter of the alternative population, the individual sample values are 
substituted in L1 to get the value of L1. Using the same sample the value of L0 as 
described in the previous section is also computed in order to get 10,000 values of 
L1/L0 for a given sample size, for a given parametric combination and for a given 
method of point estimation applied to the parameters of P0. The proportion of 
values of L1/L0 that exceeded the critical value (c0) out of 10,000 is computed and 
is considered as the power of the test statistic at level of significance 0.05.  
 
 
Table 4. Powers of LR Test Criterion at α = 0.05 Parameter Estimates Using P.E., L.S.E., 
W.L.S.E. Methods 

 

Estimation Method 

 
Percentile Least Squares Weighted Least Squares 

Parameter 
Combinations 

n=5 n=10 n=15 n=20 n=5 n=10 n=15 n=20 n=5 n=10 n=15 n=20 

a=2.5, b=0.5 0.0539 0.0601 0.0606 0.0729 0.0598 0.0692 0.0735 0.0737 0.0587 0.0672 0.0646 0.0697 

a=3, b=0.5 0.0516 0.0585 0.0608 0.0704 0.0612 0.0619 0.0676 0.0700 0.0608 0.0607 0.0609 0.0599 

a=3.5, b=1 0.0534 0.0586 0.0613 0.0726 0.0632 0.0714 0.0740 0.0786 0.0621 0.0668 0.0806 0.0678 

a=5, b=0.5 0.0505 0.0500 0.0533 0.0608 0.0581 0.0570 0.0592 0.0599 0.0589 0.0559 0.0525 0.0543 

a=5, b=1 0.0505 0.0540 0.0549 0.0606 0.0920 0.0639 0.0645 0.0619 0.0571 0.0613 0.0534 0.0589 

a=0.5, b=4 0.0517 0.1126 0.3692 0.6813 0.1987 0.4105 0.6137 0.7472 0.2018 0.0613 0.5280 0.6024 

 
 

A large value of the power shows that the test statistic is able to distinguish 
between the null and alternative populations. A small value of the power would 
show the indistinguishability between P1 and P0 as decided by LR type test 
statistic. The powers so obtained are given in Table 4, treated separately for each 
method of estimation at a specified level of significance 0.05. 

The tabulated power values are very poor touching a maximum of 0.092 at 
n=5, a=5, b=1. These recorded powers show that the LR type test statistic is not 
able to discriminate between LFRD and exponential at all the values of n and the 
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respective parametric combinations across the methods of estimation, except the 
last row of each table. It shows that exponential distribution can be used as an 
alternative for LFRD without much loss whereas the last row of each table shows 
that LFRD and exponential stand apart from each other for a=0.5, b=4. It is 
therefore concluded that the simple and powerful inferential tools available for 
exponential may be used for LFRD also. The discrimination between LFRD and 
exponential is clear as evident from the last row of each table. 
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