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Incorporating Sampling Weights Into The Generalizability Theory 
For Large-Scale Analyses 

 
          Christopher W.T. Chiu          Ronald S. Fecso 
   Law School Admission Council  National Science Foundation 
 
 
 
Large scale studies frequently use complex sampling procedures, disproportionate sampling weights, and 
adjustment techniques to account for potential bias due to nonresponses and to ensure that results from the 
sample can be generalized to a larger population. Survey researchers are concerned about measurement error 
and the use of weights in developing models. Consequently, multiple weighting factors are used and these 
weighting factors are manifested as a final survey (composite) weight available for analysis. We developed a 
method to incorporate an external weighting factor like this for analyses of measurement errors in the theory 
of generalizability to provide researchers with a tool to evaluate the measurement error components of survey 
quality and undesirable error components of large-scale assessment programs such as national and state 
assessments. 
 
Key words: Generalizability theory, large-scale performance assessment, rater reliability, sampling, Survey of 
Doctorate Recipients (SDR), variance component, weighting 
 
 

Introduction 
 
The focus of this research is to illustrate how to 
incorporate weights in the framework of 
generalizability theory (Brennan, 1992a; 
Cronbach, Gleser, Nanda, and Rajaratnam, 1972; 
and Shavelson and Webb, 1991) when it is applied 
to large-scale studies such as national surveys and 
educational assessments. 
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The authors thank Robert Brennan, Neil Timm, 
and Loan Tran for their suggestions and 
comments. Information in this article represents 
the opinions of the authors and is not NSF, the 
ASA, the University of Pittsburgh, and the LSAC. 
 

This research is important because 
educational researchers need to determine variance 
components and reliability coefficients to 
accurately reflect measurement errors in statewide 
or nationwide assessment programs, which often 
test only a sample of students for accountability 
purposes. Generalizability theory is a well-known 
method in educational and psychological research, 
but today, no one has examined the effect of 
sample survey data on the method. In addition, 
survey researchers can use such knowledge to 
understand, monitor, and improve survey quality. 
If a weighting scheme was used but researchers 
ignored the weights in generalizability studies (G 
studies), as is often the case with such a model, the 
estimated errors will be biased (Rosenbaum, 
1987). In addition, the standard error of the 
variance component estimates will be 
inappropriate.  

A very popular model in generalizability 
theory is the two-facet crossed model, which is 
frequently used in monitoring measurement errors 
(e.g., Brennan et al., 1995, Brennan, 2000b; Chiu 
and Wolfe, 2002; Lane et al., 1996) when human 
judgments are involved. The model can partition 
error variances into specific sources so that 
researchers can determine which error source(s) is/ 
are most in need for reduction. For example, one 
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can determine the score consistency in high-stake 
examinations where test-takers respond to a set of 
test questions scored by a group of raters (i.e., a 
person x item x rater two-facet model). 
Alternatively, one can use a two-facet crossed 
model (i.e., respondent x item x coding method) to 
determine the coding consistency in survey 
analysis where survey responses are coded using 
different schemes (e.g., self-report versus 
objectively coded responses). 

Despite the common applications of the 
generalizability theory in survey studies (Adam 
and Ujwal, 1999; Johnson and Bell, 1985; Shipper, 
et al., 1986), we did not find references discussing 
how one could incorporate weights into G studies 
— we searched monographs on G theory 
(Brennan, 1992a; Brennan, 2001b; Chiu, 2001; 
Cronbach, et. al., 1972; Fyans, 1983; Shavelson 
and Webb, 1991) and on variance estimations 
(Rao, 1997; and Wolter, 1985) using the five 
major modes of searching: footnote chasing, 
consultation, searches in subject indices, browsing, 
and citation searchers (White, 1994). Also, we 
contacted experts in G theory (Brennan, 2001b; 
Cronbach, 2000) and searched journal articles and 
electronic databases (PSYINFO, 1887–2001; 
ERIC, 1966-2001; MEDLINE, 1966-2001; 
JSTOR, 1887-1996; Sociological Abstracts, 1963-
2001). 
 In the current study, we first reviewed the 
purposes and importance of survey weights 
followed by a summary of the traditional variance 
component estimation procedures. Second, we 
discussed the concepts and essential steps of a new 
weighting method in G studies (i.e., the Chiu-
Fecso G-method, denoted CFG hereafter). 
Specifically, we used two examples to illustrate 
the method. The first example was a hypothetical 
dataset with a context in educational assessment 
and the other was an operational dataset from a 
large-scale survey used for research on science 
and engineering education. (The Survey of 
Doctorate Recipients is a longitudinal survey 
administered by the Division of Science Resources 
Statistics (SRS) at the National Science 
Foundation (NSF). Details of the survey can be 
found in the homepage of SRS: 
http://www.nsf.gov/sbe/srs).  We intentionally 
used a simple case in the first example to 
demonstrate the computational procedures of the 
new method. The example was simple enough for 

hand calculation. The second example, based on 
an operational dataset from a national study, was 
used to show the capacity of the method for a real 
data set. Given the wide applications of the two-
facet crossed model, we focus our discussions on 
the two-facet model throughout the manuscript. 
 
Basic Concepts of G Theory and Weighting 

An extension of the Classical Test Theory 
(Crocker and Algina, 1986) and the Analysis of 
Variance (ANOVA) methods, G theory has been 
applied to examine the reliability and validity of 
measurement procedures in educational 
assessments, psychological measurement, program 
evaluations, and survey analysis. As Shavelson 
and Webb (1991) stated: 

 
“The strength of G theory is that 
multiple sources of error in a 
measurement can be estimated 
separately in a single analysis. 
Consequently, in a manner similar 
to the way the Spearman-Brown 
‘prophecy formula’ is used to 
forecast reliability as a function of 
test length in classical test theory, 
G theory enables the decision 
maker to determine how many 
occasions, test forms, and 
administrators are needed to 
obtain dependable scores. In the 
process, G theory provides a 
summary coefficient reflecting the 
level of dependability, a 
generalizability coefficient that is 
analogous to classical test theory’s 
reliability coefficient.” (p. 2) 
 
Brennan (1992a, 1992b, and 2000a) and 

Shavelosn and Webb (1991) provided a succinct 
treatment of the essential features of G theory. 
Chiu (1999a, 2001) developed a subdividing 
method to estimate variance components in large-
scale performance assessments with missing 
observations. Brennan (2000a) discussed the 
misconceptions about the theory. Brennan and 
Johnson (1995) and Cronbach, Linn, Brennan, and 
Haertel (1997) covered basic concepts in G theory. 
Brennan (1997) and Shavelson and Webb (1981) 
summarized the history of the G theory. Despite 
the popularity of G theory, all of the 
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aforementioned studies assumed that simple 
random sampling was used.  

Traditionally, G theory assumes less than 
or equal to simple random sampling (Bell, 1985; 
Brennan, 1992a; Cronbach et al., 1972), only that 
every person has the same probability of being 
sampled from a population or, that every element 
is assigned a unit weight. Such an assumption is 
not viable in national studies where complex 
sampling procedures (e.g., disproportionate 
sampling of smaller demographic groups) are 
used. To create representative estimates in such 
cases, variable probabilities of selection or 
variable weights are needed. 

Another purpose of weighting is to adjust 
for the effects of non-respondents (Kish, 1995; 
Lee, Forthofer, and Lorimer, 1989; and Sarndal, 
1980). Bailar, Bailey, and Corby (1978) 
summarized the purposes and compared some 
adjustment and weighting procedures (e.g., 
reweighting, substitution, regression) that were 
actually used at the US Bureau of the Census, for 
survey data. The National Science Foundation 
provided a concise summary of using survey 
weights, for the Survey of Doctorate Recipients 
(SDR) — a longitudinal panel survey of 
individuals who have received their doctorates 
mainly in the sciences or engineering fields (the 
data of this survey is used as an example in 
subsequent sections): 

 
Sampling weights were 

defined as the reciprocal of the 
probability of selection for each 
sampled units, and the weights 
were adjusted by using weighting 
class or poststratification 
adjustment procedures. The final 
adjusted sampling weights 
become the analysis weights [also 
called Final Survey Weights], 
which have been added to each 
individual’s record in the survey 
database. (Author, 2002) 

 
 
Instead of making available multiple weights to 
researchers, survey developers create a single 
composite weight also called the final survey 
weight (e.g., in the Survey of Doctorate 
Recipients) for analysis. Designed as a proxy for 

all the weighting factors in the survey, the Final 
Survey Weights may be the only weighting 
information available in the survey data. In this 
paper, we first derived the methodological 
adjustments to incorporate such a composite 
weight on G theory estimation. We then applied 
the methodology in the context of a large-scale 
survey to examine the impact of the 
methodological change and substantively the 
occupational stability in the engineering 
profession of the United States. The methodology 
developed here can be used directly in any crossed 
design with two facets. The three principles of the 
weighting method discussed in this paper, 
however, can be used for other designs with any 
number of facets.  However, our intention is to 
focus on a two facet crossed design, which has a 
variety of applications in measurement. 
 

Methodology 
 
Detecting Measurement Errors and Estimating 
Variance Components 

Many have contributed to the methods in 
monitoring measurement errors and in estimating 
variance components. In the survey research 
context, Biemer and Fecso (1995), Rao and Sitter 
(1997), and Reiser, Fecso, and Chua (1992) 
discussed methods to characterize measurement 
errors. In the statistics and educational assessment 
context, Brennan (1992a), Chiu (1999a, 1999b), 
Chiu and Wolfe (1997), Corbeil and Searle (1976), 
Millman and Glass (1967), and Searle, Casella, 
and McCulloch (1992) among others, provided in-
depth discussions on variance component 
estimation methods. Brennan (1992a) offered an 
extensive treatment on the topic geared toward 
generalizability theory. Also, he used synthetic 
datasets to illustrate the computational steps for 
variance component estimations. Instead of 
repeating the details, we summarized the general 
procedures below and used the summary as 
building blocks to develop a weighted variance 
component method based on G theory discussed in 
the subsequent sections. 

In G theory, variance component estimates 
can be obtained by solving a set of Expected Mean 
Square (EMS) equations (Brennan, 1992a, chapter 
2 and 3; appendices A through B) relating the 
variance components and mean squares. In the 
sections that follow, we used a fully crossed two-
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faceted design (Brennan, 1992a) as an example. 
Unless stated otherwise, the universe of admissible  
observations contains person (p), item (i), and 
rater (r). The EMS equations can be expressed in 
the following matrix formula,  

 

 22 ˆˆ =s C a     (1) 

 

where C is an f x f upper-triangular matrix of 
coefficients for the variance components 
estimated, and f = 1,2, …, 7 represent the seven 

variance component estimates in a two faceted 

design. The column vector 2â  is a set of mean 
squares for the effects observed in the data 
(Brennan, 1992a). One can also explicitly write 

out the elements in C and 2â  as follows. 
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The mean squares vector 2â , in the above, can be estimated by dividing the set of “sum of squared means” 
by their corresponding degrees of freedom (Brennan, 1992a, p. 36). We represented such computations using 
Equation (3), whose elements are explicitly shown in Equation (4). 
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The elements of the D matrix in equations (3) and 
(4) are the sample sizes (np, ni, nr) involved in the 
seven variance components of the two faceted 
crossed design. The “sum of squared mean” 
denoted fT  is computed for each facet and for the 

grand mean, such that 1[ ,..., ] 'fT T=t . The 
rightmost side of equations (3) and (4), t , can be 
computed by summing individual scores, taking 
the average, squaring the mean, and multiplying 
the squared mean by the number of levels in the 
facet(s) other than the facet for which the sum of 
squared mean is computed. See equation (5). 
 

pir

2
i r

p i ri r
2

i r
p

2
p r

i
2

p i
r

2
r

p i

2
i

p r

2
p,

i r

2

p i r

2
p i r

1
n n (( ) )

n n
n n x

n n x

n n x

n x
=

n x

n x

x

 n n n x

p..

i..

r..

pi.

pr.

ir.

p

i

r

p i

pr

ir

p i r e

pir

x

T
T
T
T
T
T

T
Tµ

 
 
 

   
   
   
   
   
   = =   
   
   
   
   
    

 
 
  

∑ ∑
∑

∑
∑

∑∑

∑∑
∑∑

∑∑∑

t

2

p r
i p rr

2

p i
r p ii

2

r
p i rr

2

i
p r ii

2
p

i r p

2

p i r

2

p i r
p i rp i r

1
n n ( ( ))

n
1

n n ( ( ))
n

1
n ( )

n  
1

n ( )
n

n ( )

1
n n n ( )

n n n pir

pir

pir

pir

pir

pir

pir

x

x

x

x

x

x

x

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

∑

∑ ∑ ∑

∑ ∑ ∑

∑∑ ∑

∑∑ ∑

∑∑∑
∑∑∑

∑∑∑  (5) 

 
Conceptual Framework of the Chiu-Fecso G-
Method 

One limitation of the traditional method is 
that it assumes that every person carries the same 
weight in an analysis. This assumption is often 
violated in sample surveys where persons typically 
receives a different weight as a result of complex 
sampling and valid response adjustments 
discussed earlier (See Basic Concepts of G Theory 
and Weighting). The Chiu-Fecso method enables 
such a weight (a composite weight supplied to 
analysts by survey developers and statisticians) to 
be incorporated in generalizability studies. See 
Equation (5) for the “sum of squared mean” shown 
in the t  vector. Prior to a thorough treatment in 
computing the weighed sum of squared means, we 
introduced three fundamental principles used in 
the Chiu-Fecso G-method. 
 

Multiplication Principle  
The summations in Equation (5) simply 

add up individual scores, assuming that each score 
occurs once in the data. For example, the total of a 
set of scores {2, 1, 3, 4} is obtained by 1•2 + 1•1 
+ 1•3 + 1•4 = 10. This approach, assuming that 
each score received a unit weight, is used in the 
traditional framework of G theory (Brennan, 
1992a, 1992b), discussed in the previous section. 
The Chiu-Fecso approach relaxed such assumption 
by allowing each score to have a different weight. 
This difference is critical when incorporating 
survey weights for computing the “sum of squared 
means” because the idea of using survey weights 
is equivalent to replicating an observed value by 
the number of times specified in the weights. 
Rosenbaum (1987) called such weighting 
approach “direct adjustment.” He pointed out that 
direct adjustment has two attractive properties: (a) 
it does not require explicit modeling of the 
stratification in the sampling design and (b) it 
produces parallel adjustments in the original 
statistical procedures so that only little 
modifications are needed in adapting the original 
procedures. Consistent with Rosenbaum (1987), 
Lee, Forthofer, and Lorimor (1989) advocated the 
use of weights, which they called the weights 
“expansion weights,” to compute unbiased 
estimates for means and sums. However, they did 
not develop a method for variance components. 
This limitation motivates the current study. To 
begin, we review the expansion weights. First, 
assume that the first two scores {2, 1} in the 
previous example came from a minority group, 
and each received a composite weight of 49. 
Further assume that the last two scores came from 
a majority group and thus received a unit 
composite weight. The total became 49•2 + 49•1 
+ 1•3 + 1•4 = 154. In the following two sections, 
we modified the “expansion weight” to obtain the 
adjusted degrees of freedom (using the Adjustment 
Principle) and the weighted mean (using the 
Relative Weighting Principle). These two 
quantities serve as the building blocks for the 
weighted variance components discussed in the 
subsequent section (Computational Equation of 
the Chiu-Fecso Method). 
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Adjustment Principle  
 The goal of inferential statistics is to 
determine the extent to which we can infer the 
results from a sample to a target population. A 
crit ical factor in making correct inferences is to 
determine the correct degrees of freedom 
reflecting the sample size. In the previous 
example, a sample size of 4 was collected and 
each person received a weight assigned by survey 
developers, statisticians, or policy makers. As 
shown earlier, if we were to apply the 
multiplication principle directly, we would obtain 
a total of 154 (49•2 + 49•1 + 1•3 + 1•4 = 154). 
However, this approach is problematic because it 
assumes that a sample of 100 was collected 
(49+49+1+1). Put differently, this approach 
erroneously expanded the degrees of freedom. To 
correct for this problem, we use an adjustment 
principle so that the weights reflect the actual 
sample size (n = 4) and also the correct degrees of 
freedom. Such adjustment is accomplished 
through dividing each weight in the vector of 
weight w = [49  49  1  1] by the mean of the 
weights (Σwp/n). After the adjustment, the 
“adjusted expansion weights” became w / (Σ wp / 
n)  = [49  49  1  1] / 25 = [1.96  1.96  0.04  0.04]. 
Note that the total of the adjusted expansion 
weights matches the sample size (n = 4) and the 
ratio between the first and third cases remains 49 
to 1. In general, the ratios among all the cases 
remain unchanged. 
 
Relative Weighting Principle  

One way to obtain the weighted mean for a 
set of values is to add up all the weighted scores in a 
set and then divided the total by the total weight or 
the number of scores in the set, (Σwx/Σw). An 
alternative is to multiply each unique value of a set 
of scores by its relative frequency and then add up 
the products (i.e., Σf(x)•x). For instance, the 
weighted average of the previous example is 0.49•2 
+ 0.49•1 + 0.01•3 + 0.01•4 = 1.54, where 0.49 was 
obtained by dividing the sampling weight for the 
first case by the total weight of the four cases (i.e., 
49 / 100). Hereafter we referred to f(x) as the relative 
frequency. 

With the multiplication principle, the 
adjustment principle, and the relative weighting 
principle, we have computed the adjusted total, 
adjusted degrees of freedom, and adjusted means 

in the above sections. Next we introduce the CFG 
method to analytically compute the weighted 
variance component estimates. 
 
Computational Equation of the Chiu-Fecso 
Method 

An assumption and three steps are 
involved in our modification of the G theory. We 
assume that a set of composite weights is given 
and stored in a row vector w. With this set of 
weights, we first compute the adjusted expansion 
weights (using the adjustment principle). Second, 
we compute the relative weights based on the 
adjusted expansion weights (using the relative 
weighting principle). Third, we apply two decision 
rules to determine when and how to use the two 
sets of weights obtained in steps 1 and 2. 
 
Step 1: Compute Adjusted Expansion Weights  

 
In general, a row vector of the 
adjusted expansion weights (wp) is 
obtained by dividing each of the 
weights in w by the mean of all 
the weights. That is, wp = [w1  w2  

w3 … wp] / (Σw/n). 
 
Step 2: Compute Relative Weights 
 

The relative weights, denoted 
wf(p), are obtained by dividing 
each of the adjusted expansion 
weights above by the sum of these 
weights. That is, wf(p) = [ wp1  w p2  

wp3
 … w pp

] / (Σwp). Since the sum 
of all the adjusted expansion 
weight equals to the sample size, 
an alternative is: wf(p) = [ wp1  w p2  

w p3
 … w pp

] / n. 
 
Step 3: Apply Decision Rules 
 

Rule #1: When finding the 
weighted sum in a facet of 
interest, we pre-multiply the 
adjusted expansion weighting 
vector ( pw , a row vector) to a set 
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of scores (s , a column vector), 
resulting in pw • s .  
Rule #2:  When finding the 
weighted average score in the 
facet of interest, we pre-multiply 
the vector of relative weights to 
the column vector of scores (i.e., 
wf(p) • s).  

 
How do we apply the two decision rules to the 
theory of generalizability? We replace all 

p
∑ in 

Equation (5) with 
p
∑wp when the facet of interest 

involves the weighting facet (in this case, the 
Object of Measurement, person); otherwise, we 
replace 

p
∑  in Equation (5) with 

p
∑wf(p). For 

example, the first entry in t of Equation (5) is the 
Object of Measurement (p), which is also the 
weighting facet, so we insert wp to 

p
∑, resulting 

p
∑wp. In the second entry of t of Equation (5), the 

facet of interest involves item (i) and does not 
involve the weighting facet (p), so we replace 

p
∑ 

with 
p
∑wf(p). By the same token, we apply the same 

rule to the remaining entries in t of Equation (5). 
Consequently, we have Equation (6). We 
highlighted wp in circle and w f(p) in square to show 
where to insert the weights. 
 

 

 

pi

p..

i..

r..

pi.

pr.

ir.

i r p
p i r

2
i r

p

2
p r

i
2

p i
r

2
r

( ) p i

2
i

p r

2
p,

i r
2
pir

p i r

2
p i r

1
n n ((

n n
n n x

n n x

n n x

n x
 = 

n x

n x

x

 n n n x

p

i

r

w pi

pr

ir

pir e

w x

T

T
T

T
T
T

T
Tµ

 
 
 

   
   
   
   
   
   = =   
   
   
   
   
    

 
 
  

∑
∑

∑
∑

∑∑

∑∑

∑∑
∑∑∑

t

r

2

i r

2
p r f(p)

i p rr

2
p i f(p)

r p ii

2

r p
p i rr

2
i p

p r ii
2

p f(p)
i r p

2
p

p i r

2
p i r p

p i rp i r

) )

1
n n ( ( ))

n

1
n n ( ( ))

n

1
n ( ( ) )

n

1
n ( ( ) )

n

n ( )

1
n n n ( )

n n n pir

pir

pir

pir

pir

pir

pir

w x

w x

w x

w x

w x

w x

w x

 
 
 
 
 
 
 















 

∑∑

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

∑∑∑

∑ ∑∑

∑ ∑∑
















  (6) 

 
where  wp  is the adjusted expansion weight for 
person p and wf(p) is the relative weight for person 
p. 

With the updated “sum of mean scores” in 
Equation (6), we obtained the weighted variance 
component estimates using the following steps. 
First, compute the weighted “sum of mean scores” 
vector ( ( )wt ) as shown in Equation (6). Second, 

substitute ( )wt  back to Equation (4) to obtain the 
updated Mean Squares 2 ( )ˆ[ ] wa , which in turn is 
substituted back to equation (2) to obtain weighted 
variance component estimates 2 ( )ˆ[ ] ws . In 
summary, we estimate the weighted variance 
component estimates using: 
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( )

8x17x 87x 1 7x 7

( )2ˆ
w

w 
  =
  

ts C D  (7) 

 
The standard error of the weighted 

variance components can be obtained by 

substituting the weighted means squares ( )w
jMS , 

their coefficients jc , and degrees of freedom jdf  
into Equation (8). Brennan (1992a) and Chiu 
(1999a) provided an in-depth discussion for the 
unweighted standard error equations. Chiu (2001, 
p. 127, Equations 34 through 40) expressed the 
standard errors in terms of variance components 
and the number of levels in each facet. Brennan 
(1992a, p. 101, equation 6.2.1) provided the 
general form of the equation. We modified the 
general equation to incorporate the composite 
weights as follows: 

 
( ) 2

( )2 2( )
[SE( )]ˆ

2

w
j jw

f j
j

c MS
df

σ =
+∑  (8) 

 
 One cautious note to Equation (8) is the 
distinction between the subscripts f and j. The 
former denotes the f th  variance component and the 
latter denotes the j th  Mean Square term for the f th 
variance component. As shown in Equation (2), 
each variance component estimate involves a 
different number of Mean Square terms and for 
this reason, J, the total number of mean square 
terms varies for each variance component 
estimate. For simplicity and consistency with the 
G theory literature, we use a single subscript 
notation j as opposed to the double subscript 
notation j f, although they are interchangeable in 
this context.  
 

Results 
 
Validation of the Weighted Method 

Being able to incorporate weights in 
generalizability studies are particularly important 
when the weights differ greatly among the 
samples. We used a published data set with 10 
hypothetical cases and purposely assigned highly 
disproportionate weights to the data set (one case 
received a weight of 10 while the rest received a 
unit weight). As a result, the ratio of the weighted 

and unweighted variance component estimates 
was between 0.3459 and 2.9865, for the seven 
components, indicating that the weighted estimates 
could be almost three times larger or three times 
lower than the unweighted estimates (See 
Appendix B). Such a result reminds researchers 
that weighted estimates could be different from 
their unweighted counterparts when extreme 
values appear in the weights. The extent to which 
the two types of estimates would become 
drastically different depends on the weighting 
scheme provided in the survey.  

We purposely chose an extreme example 
to contrast the weighted and unweighted results. 
Such an example is realistic because when 
applying a two-facet model where test items or 
tasks are involved, researchers may desire to 
explore the effect of assigning a much larger 
weight to one important item — a 300 word essay 
requiring 45 minutes of testing time may be 
weighted as much as 10 times more than a 
multiple-choice question requiring lower than two 
minutes of testing time. 
 The aforementioned example (discussed 
fully in Appendix B) also served as a benchmark 
comparison between the Chiu-Fecso method and 
the traditional unweighted method (Brennan, 
1992a). Appendix B shows that the unweighted 
method was a special case of the weighted method 
because when the weights were set to unity, the 
CFG method yielded identical variance component 
estimates to the traditional method.  
 
Example 1: Performance Assessment 

Performance assessment has been popular 
in the recent decades (Bejar and Braun, 1999; 
Bennett and Sebrechts, 1996; Braun, Bennett, 
Frye, and Soloway, 1990; Brennan, 2000b; Chiu, 
2001; Clauser, 2000). Many educational and 
professional testing programs employ constructed-
response items to assess performance (e.g. the 
National Assessment of Educational Progress, the 
Texas Assessments of Academic Skills, and the 
United States Medical Licensing Examination). 
Generalizability analysis is one of the popular 
techniques to examine the quality of test scores 
and it can provide guidance regarding the potential 
to reduce measurement error (Brennan, 2000b; 
Clauser, 2000). Of the many models in G theory, 
the two-facet crossed model (Brennan, 2000; Chiu, 
2001) is frequently used. Utilizing a two-faceted 
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model, the following hypothetical data set (3 items 
x 2 raters) demonstrates the computational 
procedures of the Chiu-Fecso method. As shown 
in the data matrix X, each of the four persons has 
six scores arranged in a row. Columns one through 
three represent the scores on the three items 
judged by the first rater; Columns four through six 
represent the scores on the same three items 
judged by the second rater. The gap between the 
third and forth columns is intended to visually 
separate the scores for the two raters.  

 

X = 

1 1 1    0 0 0
1 1 1    1 0 1
1 0 0 0 1 1
0 0 0 0 0 1

 
 
 
 
 
 

 (9) 

 
Assume that a final survey weight is derived by 
survey developers and it is the only weighting 
information available in the data given to the 
analyst. Further assume that the weights for the 
four persons are stored in a row vector [2 3 4 1] 
which is given to the analyst. We then obtained the 
adjusted expansion weights and relative weights as 
follows.  
 
wp = [0.8  1.2  1.6  0.4] = [2 3 4 1] / ( (2 + 3 + 4 
+1) / 4 ) and 
 
wf(p) = [0.2  0.3  0.4  0.1] = [0.8  1.2  1.6  0.4] /  
((0.8 + 1.2 + 1.6 + 0.4) ). 
 

With the wp and wf(p) computed, we used 
Equation (6) to obtain ( )wt  as shown below (see 
Appendix A for the step-by-step illustrations). 
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By using n p = 4, n j = 3, and n r = 2, and 
equation (4), we post-multiplied ( )wt  to D . The 
product became the weighted mean square vector 

2 ( )[ ] wa . See equation (11) 
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 (11) 

 
 Next, we post-multiplied the mean square 
vector 2 ( )[ ] wa to the C  matrix to obtain the 
variance component estimates. See equation (12). 
Note that negative variance component estimates 
occurred in the hypothetical example because we 
used a randomly generated hypothetical data set, 
which had only a small sample (np = 4). Also, for 
simplicity, no distribution assumptions were 
specified in generating the data. In practice, one 
may not obtain negative estimates. Cronbach et. al. 
(1972) and Brennan (1992a) discussed the causes 
of negative variance components and developed 
methods to avoid negative variance component 
estimates. Those methods include Algorithm 2 
(Brennan, 1992a) and Bayesian procedures (see 
Box and Tiao, 1973; Searle, et al., 1992). 
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Example 2: Large-Scale Survey Analysis 

A panel sample of 2388 Engineers was 
obtained from a longitudinal survey for doctorate 
recipients. The survey was administered 
biennially. All survey respondents in the selected 
sample (a) were under the age 76, in 1999; (b) 
received at least one research doctorate in Science 
or Engineering from a U.S. institution in or prior 
to 1990; (c) were residing in the States on April 15 
in four survey years analyzed in the current study 
(1993, 95, 97, and 99); and (d) were employed in 
the Engineering profession for at least one of the 
four aforementioned survey years. The panel of 
2388 Engineers represented a population of 
approximately 50832 Engineers in the U.S. 
Engineers were broadly defined as those employed 
in professions such as Aerospace Engineering, 
Chemical Engineering, Civil and Architectural 
Engineering, Electrical, Electronic, Computer and 
Communications Engineering, Industrial 
Engineering, Mechanical Engineering, 
Postsecondary Engineering Teaching, and other 
Engineering fields. Using their age in 1999, the 

2388 Engineers with Ph.D degrees can be divided 
into the following age groups.  

 
Age 

Groups 
Below 

30 35-39 40-44 45-49 50-54 

Sample 
Size 

3 202 439 400 440 

      
Age 

Groups 
55-59 60-64 65-69 

Above 
70 

 

Sample 
Size 

392 256 140 116  

 
Respondents were given a list of 126 job 

codes and were asked to choose the most 
appropriate title for their principal jobs (i.e., self-
reported job codes). In addition, the respondents 
also reported their employment history and 
background information (e.g., sector of 
employment, work activities, number of people 
supervised directly). Such information was used to 
derive a second measure of occupational title, 
which was called the “best codes” of occupational 
titles. The best codes were derived using 
employment history, job activities, and such. 
Comprehensive discussions of the best coding 
process can be found in Hardy and Eisenhower 
(1994), McGuinness (1997), Rak, Chen, and Gray 
(1997).  

Due to complex sampling and adjustment 
of nonresponse rate, respondents were selected 
with a different probability and thus a weighting 
scheme was used to ensure the representativeness 
of the sample. The average weight for Engineers 
was 21.29 (SD = 9.71; median = 22.98; minimum 
= 1.05; maximum = 46.72).  

We conducted a generalizability study 
with a crossed design (G study, Brennan, 1992a; 
1992b) to measure occupational changes. 
Specifically, we employed the p x y x m design 
(person x year x method) in which all survey 
respondents (p) provided their occupational title in  
all four survey years (y). Whether or not one was 
classified as an Engineer was determined by two 
methods (m), namely the best and self coded 
methods. The universe of admissible observations 
(UAO, Brennan, 1992a), therefore, contains 
50,832 doctorate recipients who were ever 
employed in the Engineering profession between 
1993 and 1999. For any particular survey year, an 
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Engineer received a value 1 if s/he was employed 
in Engineering and a 0 otherwise. The 
generalizability analysis allowed one to determine 
the extent to which (1) the professionals were 
employed the same number of years in 
Engineering; (2) the Engineering occupation 
employed a similar number of Ph.D.s across the 
survey years; (3) survey respondents reported their 
occupations as consistently as the objectively 
derived occupation; and (4) the interactions of 
these three factors. 

Similar to Example 1, we estimated seven 
variance components (p, y, m, py, pm, ym, pym,e). 
Table 1 shows the estimates for the seven variance 
components and their corresponding standard 
errors. Both the weighted and unweighted methods 
yielded very similar results in the point estimate 
and the standard error of the variance components. 
For example, the ratio between the unweighted 
and weighted standard errors of the person effects 
was close to one because 0.00299 / 0.00296 = 

1.0102 (i.e., 
2 2( )ˆ ˆ w

p p
SE SEσ σ   

    ). 

 
 
 Table 1: Comparisons of Variance Component Estimates (Weighted VS Unweighted) 

 2ˆ pσ  2ˆ yσ  2ˆ mσ  2ˆ pyσ  2ˆ pmσ  2ˆ ymσ  2
,ˆ pymeσ  

 person year method 

 
person by 

year 
 

person by 
method 

year by 
method 

person by 
year by 
method, 

other 
errors 

Weighted 0.0675 0.0002 0.0008 0.0980 0.0047 0.0009 0.0477 

Unweighted 0.0690 0.0002 0.0007 0.0969 0.0047 0.0008 0.0471 

Ratio 1.0217 0.8984 0.9077 0.9888 0.9970 0.8485 0.9868 

        

Weighted SE 0.0030 0.0006 0.0009 0.0021 0.0005 0.0006 0.0008 

Unweighted SE 0.0030 0.0005 0.0008 0.0021 0.0005 0.0005 0.0008 

Ratio 1.0102 0.8711 0.8940 0.9884 0.9893 0.8514 0.9868 

Note: “Ratio” is the ratio of the unweighted estimates to the weighted estimates. The ratios 
were computed before the estimates were rounded to four decimal places. 

 
Table 2 shows the percent contribution for 

each of the variance component estimates. The 

largest component was 2ˆ pyσ  (0.098), which 
contributed to approximately 44.6% of the total 
variance in measuring occupationa l changes. Such 
results suggested that one can differentiate those 
who worked in the Engineering occupations for 
the same number of year by their job-switching 
patterns, where a job-switching pattern is 
characterized by the survey years in which a Ph.D. 
was employed in the Engineering profession as 
well as the years the doctorate was employed in 
other non-Engineering occupations (we summarize 
job switching patterns below and Chiu and Fecso, 

under review, offer an in-depth discussion). For 
example, two Ph.Ds. can be considered to have a 
different job-switching pattern even though they 
were both employed in an Engineering occupation 
for only one of the four survey years — 
hypothetically speaking, person A could work in 
an Engineering profession in 1993 but in a non-
engineering profession in the subsequent years 
(the occupation pattern for person A would be [0 0 
0 1], where the first, second, third, and fourth 
entries are binary variables for an Engineering 
employment in 1999, 1997, 1995, and 1993, 
respectively); person B could work in an non-
engineering profession prior to becoming an 
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Engineer in 1999 (person B would have an 
occupation pattern [1 0 0 0]). Indeed, among the 
487 doctorate recipients employed in Engineering 
for only one of the four survey years, 212 were 
employed in an Engineering occupation in only 
1993; 90 were in only 1995; 61 were in only 1997; 
and 124 were in only 1999. The aforementioned 
differential job-switching pattern explained the 

relatively large 2ˆ pyσ . 
 
Table 2: Comparisons of Variance Component 
Estimates Weighted VS Unweighted (Percent  
Contribution) 

 2ˆ pσ  
2ˆ yσ  

2ˆ mσ  2ˆ pyσ  

Weighted 30.7% 0.1% 0.4% 44.6% 
Unweighted 31.4% 0.1% 0.3% 44.2% 

     

 2ˆ pmσ  
2ˆ ymσ  

2
,ˆ pymeσ   

Weighted 2.1% 0.4% 21.7%  
Unweighted 2.1% 0.4% 21.5%  

 
The second large variance component 

estimate was 2ˆ pσ , which indicated that, on average 
across all survey years and measurement methods, 
some Engineers had been employed in the 
profession for a longer duration than the others 
and the difference in duration accounted for 
approximately one third (30%) of the total job 
change variation. 

Comparing the number of professionals 
employed in Engineering in different years can 
shed light in the stability of the occupation –– 
having a similar number of Engineers across 
different years can provide some evidence of 
stability whereas having a drastically different 
number of Engineers can provide some evidence 

of instability. The result that 2ˆ yσ  accounted for 
only 0.1% of variation of the total job change 
suggested that the profession employed a similar 
number of Engineers in the survey years.  

Like 2ˆ yσ , the 2ˆ mσ  accounted for only a 
small portion of total job change variation (0.4%) 
suggesting the objectively derived (best coding 
practice) and self-reported methods were relatively 
consistent in coding the Engineering profession. 
Resembling the 2ˆ yσ  and the 2ˆ mσ ,  the 2ˆ ymσ  was 

relatively small suggesting that the two 
measurement methods were implemented 
consistently across the survey years.  

The variance component estimate 2ˆ pmσ , 
however, contributed to a larger share (2.1%) of 

the total variation than 2ˆ yσ  and 2ˆ mσ . One can 

interpret 2ˆ pmσ as an interaction between the 
variations due to person and method. It showed 
that the two occupational-determining methods 
were slightly more consistent for some survey 
respondents than the others but such differential 
consistency was rela tively small comparing to the 
other sources of variation.  

The person-by-year-by-method with any 
systematic and unsystematic variability 2

,ˆ pymeσ  
accounted for 21.7% of the total variation, 
suggesting that about one fifth of the job change 
variability in Engineering was due to: (a) the 
observation that Engineers changed jobs 
differentially in different survey years and the 
extent to which such a differential change 
occurred depends on which method was used to 
measure occupational titles; (b) any systematic 
variability such as the possibility that Engineers in 
some geographical regions were more mobile; 
and/ or (c) any unsystematic variability that was 
not measured. 

 
Conclusion 

 
The goal of incorporating sampling or survey 
weights into the framework of generalizability is 
to ensure that variance component are correctly 
estimated. The Chiu-Fecso method is designed for 
this purpose. In practice, the CFG method can be 
applied to educational assessment, psychological 
measurement, professional testing, and survey 
research where generalizability studies are called 
for to examine desirable variations and undesirable 
variations (measurement errors). Regardless of its 
dependence on sampling, the traditional G Theory 
framework assumes that simple random sampling 
is used. Indeed, national surveys and large-scale 
assessment programs use a variety of 
disproportional sampling techniques to ensure 
sample representations and account for non-
responses. To this end a composite weight (final 
survey weight) is provided to analysts. Given that 
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the composite weight is frequently the only 
weighting information available to analysts, the 
current study extended the capacity of the G 
theory so that it can allow weights to be used. 
 In this article, we first introduced three 
principles in deriving the weighting method by 
showing how to estimate means and sums 
correctly. We then used the same principles to 
illustrate how to estimate variance components. 
Rules and step-by-step procedures were discussed. 
We validated the method using a published data 
set. The validation study suggested that weighted 
and unweighted variance component estimates can 
differ drastically if some cases receive a weight 
differ drastically from the others. Also, we showed 
that the traditional generalizability analysis is a 
special case of the weighted generalizability 
analysis. Two examples were provided to illustrate 
the applications of the weighting method in 
performance assessment and survey analysis. The 
weighted and unweighted variance component 
estimates of a large-scale operational data set 
yielded very similar conclusions.  
 Although the object of measurement, 
person, was the weighting facet in the two 
examples, this is not necessary to be the case. In 
practice, the weighting facet can be any facet in a 
crossed-two-faceted design (the main effect facets 
or the interaction effect facets). For instance, in 
standardized psychological or educational testing 
programs, researchers may desire to designate the 
item facet to be the weighting facet. This can be 
useful in examining the reliability of test scores 
when examinees do not respond to all items within 
the standard time. In the event that speededness 
happens, researchers can assign a lower weight to 
“not reached” items (those presented in the end of 
the test) than items presented in the beginning. 
Reese (1999) found that the true ability of low 
performing examinees is overestimated and that of 
high performing examinees is underestimated, 
when items are “locally dependent” or not reached 
by examinees (e.g., due to fatigue). The CFG 
method discussed in the current paper can be used 
to assign lower weights to not reached or locally 
dependent items. Future research can further 
investigate the extent to which different weights 
will change the reliability of test scores. Due to the 
page limits, it is not our intention to examine this 
topic in the current study. 

 Sometimes researchers are interested in 
assigning weights to multiple facets. For example, 
in educational assessment, one might be interested 
in oversampling minority students from the target 
population (i.e., weighting is used to adjust for the 
design effect). The weights to oversample 
minority students can be incorporated into a G 
study by assigning them to the facet related to 
persons (i.e., the object of measurement, Brennan, 
1992a). In addition to assigning weights to the 
object of measurement, one can also weight the 
person-by-item facet. This can allow items to be 
weighted differently for individual students. Such 
an adaptive weighting mechanism can enable 
psychometricians to take into consideration the 
“opportunity to learn” when deciding the 
importance of an item on the test score. For 
example, one might assign a lower weight to an 
item when it is responded by a student whose 
school does not emphasize the learning objective 
of the item than when it is responded by another 
student who came from a school with a strong 
emphasis on the same item. 
 Similarly, in survey analysis, statisticians 
may desire to assign one set of weights to the 
sample of respondents and a completely different 
set of weights to the measurement methods. By 
doing so, survey statisticians could put a stronger 
emphasis on one measurement method (e.g., 
objective method) than the other (e.g., self-
reported method) in evaluating quality of survey 
data. The aforementioned goal can be 
accomplished by developing a method to 
incorporate weighting schemes into multiple facets 
of a generalizability study (e.g., person and 
person-by-item). Future pursuit in developing a 
multifacet weighting scheme can apply the three 
principles discussed in the current study. 
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Appendix A: Derivations and Computational Examples for the Sum of Mean Scores used in Example One 
 
Matrix notations were adopted from Scott (1997). 

- diag is the operator to create a diagonal matrix. 
 

- ⊗  is the Kronecker product operator, which multiplies the entire matrix in the right side of the 
operator to every element in the matrix to the left of the Kronecker operator. If A is an m x n 
matrix and B is a p x q matrix, then the Kronecker product of A and B, denoted A⊗ B , is the mp 
x nq matrix. 

 

11 12 1

21 22 2

1 2

. . .

. . .
. . . . . .
. . . . . .
. . . . . .

. . .

n

n

m m mn

a a a

a a a

a a a

 
 
 
 
 
 
 
 
  

B B B

B B B

B B B

 

-    We defined w and wf(p) as row vectors. They are equivalent to the traditional matrix notation 
(Scott, 1997), which would define the two row vectors as transposes (i.e.,  wT and wT

f(p)). 
 

- e , the Hadamard operator, is the elementwise multiplication operator for two matrices. The 
traditional Hadamard operator e  requires that two quantities to be expressed separately in the 
left and in the right sides of the operator. This becomes cumbersome when the two quantities are 
identical, because one would have to repeat a quantity twice. For example, to perform an 
elementwise multiplication of f(p)

x x1
( (1/ ))

r r i
i

n n n
n• • ⊗ •w X I 1 to itself, one would write: 

f(p)
x x1

( (1/ ))
r r i

i
n n n

n• • ⊗ •w X I 1 e f(p)
x x1

( (1/ ))
r r i

i
n n n

n• • ⊗ •w X I 1 . To save space, we defined a 

parsimonious version of the Hadamard operator, to represent an elementwise power 
multiplication. For example, X  e 2 indicates that the elements in X were raised to the second 
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power. Using the new operator, the aforementioned cumbersome notation can be simplified as 
follows. f(p)

x x1
( (1/ ))

r r i
i

n n n
n• • ⊗ •w X I 1 e 2. In summary, X  e 2 = Xe X. 

 
- In each of the following equations, the first line shows the summation notation of the sums of 

squared means and the second line shows the matrix notation of the same quantity.  
 

p.. pir

2 2
p

p p i ri r

x 1 x 1

1
x (( ) )

n n
diag(( ) (1/ ) ) (( ) (1/ ) )

ir ir
ir ir

n n

w x

n n

=

= • • • • • •

∑ ∑ ∑∑
w X 1 X 1

  (13) 

i..

22
f(p)

i i p rr

x x
f(p) f(p) x1

x x

1
x ( ( ))

n

( (1/ ) diag( (1/ )))i i i i

i

i i i i

pir

n n n n
r r n

n n n n

w x

n w n

=

   
   = • • • • • • • •
      

∑ ∑ ∑ ∑
I I

w X X 1
I I

 (14)  

r..

22
f(p)

r r p ii

f(p) x x1 x1

1
x ( ( ))

n

( (1/ )) 2
r r i r

pir

in n n n

w x

n

=

= • • ⊗ • •

∑ ∑ ∑ ∑
w X I 1 1e   (15) 

pi.

22
p

p i p i rr

x1 x x1

1
x ( ( ) )

n

(( ( )) (1/ )) 2
r i i r

pir

rn n n n

w x

n

=

= • • ⊗ • •
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w X 1 I 1e   (16) 

pr.

22
p

p r p r ii

x x1 x1

1
x ( ( ) )

n

( ( ) (1/ )) 2
r r i r

pir

in n n n

w x

n

=

= • • ⊗ • •
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w X I 1 1e   (17) 

ir.

2 2
f(p)

i r i r p

2
f(p) x 1

x ( )

( )
ir

pir

n

w x=

= • •
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2 2
pir p

p i r p i r
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x 1

x
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pir

n
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x 

1 1 1 0 0 0
0 1 1 1 0 1
1 0 0 0 1 1
0 0 0 0 0 1

p irn n

 
 
 =
 
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X   (21) 

[ ]p
1x
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pn

=w   (22) 

[ ]f(p)
1

0.2 0.3 0.4 0.1
pn

=
x

w   (23) 

1/ 1 3in =    (24) 

1/ 1 / 2rn =    (25) 

1/ 1 / 6irn =    (26) 

1/ 1/24pirn =    (27) 

[ ]T
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x x 1

1 0
1 0

1
1 0 1 0

1 1
0 1 0 1

1
0 1
0 1

r r in n n

 
 
  
    ⊗ = ⊗ =            
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I   (34) 

By substituting (21) through (34) into the corresponding elements in (13) through (20), following results are 
obtained and used to compute the weighted sum of squared mean shown in (10). 
 

p..

2

p

x 1.444=∑  (35) 

i..

2

i

x 0.8275=∑  (36) 

r..

2

r

x 0.5344=∑  (37) 

pi.

2

p i

x 3.7000=∑∑  (38) 

pr.

2

p r

x 2.8000=∑ ∑  (39) 

ir.

2

i r

x 1.7500=∑∑  (40) 

2
pir

p i r

x 12.400=∑∑∑  (41) 

2x 0.2669=  (42) 
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Appendix B: A Comparison between the Traditional Unweighted and the Chiu-
Fecso Weighted Methods. 
  Unweighted VC Unweighted VC Weighted VC Ratio: 

 Brennan, 1992 Chiu-Fecso Chiu-Fecso Weighted VC / 

  
(p.38) Unit Weights Disproportionate 

Weights 
Unweighted VC 

 
    

P 0.5528 0.5528 0.9634 1.7428 
I 0.4417 0.4417 0.5656 1.2805 
R 0.0074 0.0074 0.0221 2.9865 
Pi 0.575 0.575 0.4432 0.7708 
Pr 0.1009 0.1009 0.0349 0.3459 
Ir 0.1565 0.1565 0.0562 0.3591 
pir,e 0.9352 0.9352 0.5776 0.6176 
Notes: Unit weights:  w = [1 1 1 1 1   1 1 1 1 1] , Disproportionate weights:  
   w = [1 1 1 1 1   1 1 1 1 10]. Data source: Brennan (1992a, p.38). 
 
Appendix C: Weighted Variance Component Estimates by Age Group for Example Two.  

Age Group Below 
30 35-39 40-44 45-49 50-54 55-59 60-64 65-69 Above 

70 

          
 

Variance Component Estimates      

p  0.1667 0.055 0.0658 0.0753 0.0732 0.0661 0.0677 0.0561 0.0398 
y  0 0.001 0.0002 0 0 0 0 0.0157 0.0203 
m  0 0.0003 0.0003 0.0007 0.0008 0.0013 0.0015 0.0002 0.0002 
py  0.0833 0.0848 0.0805 0.0943 0.0865 0.0973 0.0972 0.1314 0.1528 
pm  0 0.0022 0.0029 0.0029 0.0064 0.0076 0.0067 0.001 0.0056 
ym  0 0.0002 0.0001 0.0006 0.0011 0.0013 0.0015 0.001 0.0025 
pym,e  0 0.0332 0.044 0.0509 0.0525 0.0523 0.0475 0.0425 0.0348 
 p: person, y: year, m: method; py = person by year; pm: person by method, 

ym: year by method, pym,e: person by year by method and other errors. 
 

Percent Contribution       

Age Group Below 
30 35-39 40-44 45-49 50-54 55-59 60-64 65-69 Above 

70 
p  66.7% 31.1% 34.0% 33.5% 33.2% 29.3% 30.5% 22.6% 15.5% 
y  0.0% 0.6% 0.1% 0.0% 0.0% 0.0% 0.0% 6.3% 7.9% 
m  0.0% 0.1% 0.2% 0.3% 0.4% 0.6% 0.7% 0.1% 0.1% 
py  33.3% 48.0% 41.5% 42.0% 39.2% 43.1% 43.8% 53.0% 59.7% 
pm  0.0% 1.3% 1.5% 1.3% 2.9% 3.4% 3.0% 0.4% 2.2% 
ym  0.0% 0.1% 0.0% 0.3% 0.5% 0.6% 0.7% 0.4% 1.0% 
pym,e  0.0% 18.8% 22.7% 22.6% 23.8% 23.2% 21.4% 17.1% 13.6% 

Sample Size 3 202 439 400 440 392 256 140 116 
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