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Wavelet transformation is commonly used in calibration models as a preprocessing step. 
This preprocessing does not involve all results of a spectrum discretization; consequently, 
a lot of information can be missing. To avoid missing information, a symmetric padding 
extension (SPE) can be used to place all data points into dyadic scales, however, high 
dimensional discretization points need to be reduced. Dimension reduction can be 
performed with Daubechies wavelet transformation (DWT). Scale function and 
Daubechies wavelet are continuous functions, thus they perform a faster approximation. 
SPE-DWT preprocessing combines SPE and DWT. Multicollinearity often occurs in 
calibration models; the ridge regression (RR) method can be used to solve 
multicollinearity problems. This article proposes the RR method with SPE-DWT 
preprocessing. The proposed method is applied to determine a model for predicting the 
content of curcumin in turmeric. Selection of the best model is carried out by comparing 
coefficient of determinations, p-values of the Kolmogorov-Smirnov (KS) error models, 
and Root Mean Square Error Prediction (RMSEP). Results show that the RR method with 
SPE-DWT preprocessing gives an accurate prediction. 
 
Keywords: Calibration models, Daubechies wavelet transform, symmetric padding 
extension 
 

Introduction 

In calibration models, the number of observations is usually much smaller than 
the number of points resulted from the spectrum discretization obtained from 
Fourier Transform Infrared (FTIR). In preprocessing calibration models, some 
researchers use Daubechies wavelet transformation (DWT) without involving all 
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points resulted from discretization; this means that a lot of information will be 
missing in building models. Using DWT, Brown et al. (2001) involved 28 of 700 
points in building models to estimate the content of fat, sugar, flour and water in 
bread dough. Using Haar wavelet transform, Sunaryo and Retnaningsih (2008) 
used 210 of 1,866 points to estimate the content of gingerol in ginger. In these two 
studies there are as many as 444 and 842 missing information points, respectively. 

To avoid missing information, symmetric padding extension (SPE) can be 
used with all data points in dyadic scales. Spectrum discretization points are 
predictor variables with an original size of p, changed to q = 2M, where M is a 
positive integer and q ≥ p. Dimension reduction can be performed with DWT. The 
scale function and Daubechies wavelet are continuous functions; thus, they can 
perform a faster approximation. 

To date, SPE-DWT preprocessing, which combines SPE and DWT in 
calibration models, has not been used. SPE-DWT preprocessing avoids 
information loss during preprocess and determines the orthogonal matrix in 
dimension reduction process. Multicollinearity often occurs in calibration models; 
the ridge regression (RR) method can be used to solve multicollinearity problem. 
This manuscript proposes a RR method with SPE-DWT preprocessing. 

Methodology 

Several methods are available to categorize discretization points of wavelength 
into dyadic scales; one method is the SPE. According to Boggess & Narcowich 
(2001), SPE is defined as a spectrum that is evenly extended at the endpoints by 
reflection in two ways: (i) discretization points are reflected around mid-line 
between the end point and the next point, expressed by SPE1, and (ii) 
discretization points are reflected in the line through the two end points, expressed 
with SPE2. Figures 1(a) and 1(b) illustrate the SPE1 and SPE2 of 10 
discretization points. 
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(1a)  (1b) 

 
Figure 1: SPE1 (1a) and SPE2 (1b) of 10 Discretization Points 

 

 
 

If the discretization points are matrix 1

* ,n pX then centering and SPE are performed 

on this matrix, the resulting matrix will be 1

* .n qX  The next step is determining the 
orthogonal matrix, size q × q, for dimension reduction process by using the 
wavelet analysis. 

There are two main functions in wavelet analysis: scale function   (father 
wavelet) and wavelet function   (mother wavelet). Both functions produce a 
family of functions that can be used to solve or reconstruct a spectrum (Boggess 
& Narcowich, 2001). Daubechies wavelet (Daubechies, 1992) is one of these 
wavelet functions. The scale function and Daubechies wavelet are continuous 
functions and, thus, can perform a faster approximation. Advantages of the 
Daubechies wavelet are compact support (closed and bounded), and that the width 
of support depends on the number of vanishing moments L  (which limits the 
pedestal width) (Daubechies, 1992).  

A smoother scaling function and the Daubechies wavelet function can be 
determined by choosing the power 2 1L   and filter length 2N L . In the 
Daubechies wavelet, for each L  number of vanishing moments, there will be 2L  
coefficient scales with non-zero values. The scale and Daubechies wavelet 
functions are located on the interval 0 2 1t L   . Daubechies wavelet is 
commonly expressed by dbN  for 2,  ,  10L   or by db2L for 2,  ,  10L   
(Burrus et al., 1998; Boggess & Narcowich, 2001). To define the Daubechies 
wavelets, consider the two functions t( )  and t ( )  which are solutions to the 
following equations:  
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equation of scale function, 
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Filter coefficients of the scale function t( )  in (1) for the Daubechies wavelet 
must satisfy: 
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A set sequence of scale filter numbers  0 1 2 1
, , , ,

N
h h hhH


  called low-pass 

filters in a pyramid algorithm can be obtained from (3), (4), (5) and (6) (see 
Burrus et al. (1998) for a detailed discussion about the pyramid). The relationship 
between the scale filter coefficients 

k
h  and wavelet filter coefficients 

k
g : 

 
 

1
1 k

k N k
g h

 
 ( )   (7) 

 
A set sequence of wavelet filter numbers  0 1 1, , , NG g g g   called high-

pass filters in the pyramid algorithm is obtained from (7); based on the orthogonal 
wavelet matrix that satisfies (1) and (2) it can be determined using: 

 
 ** * *( ) ( )t t

q
 W W W W I .  (8) 
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After centering and SPE are performed, the matrix *tW  in (8) is used for 
dimension reduction. Dimension reduction can be done by determining the 
diagonal of matrix *

q q  which are the eigenvalues of symmetric matrix t
q qX X( )  

(Anton & Rorres, 2005, p566, eq1) Hence, the diagonal of matrix *
q q  is 

obtained from:  
* * *( ) ( ) .t t

q q q q q q q q   W X X W( )   
 

Considering the proportion of 
 

* * * * * * *
1 2 1 2( ) ( ) / ( ),r r qp               

 
matrix t

q rW for dimension reduction is obtained, where .r q  Dimension 

reduction of predictor variables and parameters is determined with: 
 

1 1

t
n r n q q r  Z X W  and 1 1r r q q   W 

 
 
Because the points of the spectrum discretization resulted in calibration 

models are generally highly correlated, it is necessary to carry out muticollinearity 
detection. According to Shi-ji & Zhi-bin (1993), by taking into account the type of 
condition number 

max

min
cond( )t 


Z Z ,

 
 

multicollinearity can be detected through: 
 

i. If 0 ( ) 100tcond Z Z , there is no muticollinearity (Type I); 
ii. If 100 ( ) 1000tcond Z Z , there is some moderate or stronger degree of 

muticollinearity (Type II);  
iii. If ( ) 1000tcond Z Z , there is some serious degree of muticollinearity 

(Type III). 
 

In this study, the active compound curcumin in turmeric is the response 
variable determined from extraction using High Performance Liquid 
Chromatography (HPLC). Because data for this response variable does not follow 
a normal distribution, Johnson Transformation (JT) is carried out. The original 



RIDGE REGRESSION IN CALIBRATION MODELS 

260 

response variable is 
1

*
1n y , whereas 

1 1n y  is the response variable that has been 

transformed and centered. Given the normal distribution of *y : 
 

 
2* 2/2* 1( ) e , 
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 

 


 
for  
 

*,  0,  .y         
 
If *y  is not normally distributed, the JT can be determined using: 

 
2* /2 *1( ) e , ,  

2
vf y v y



          

 
where *( , , ),  1,  2,  3,iv f y i       v  is a standard normal random variable, 
  and   are the shape parameters,   is a scale parameter and   is a location 
parameter. It is assumed that 0   and 0.   Based on its curve, the JT can be 
differentiated into three systems (George, 2007): 
 

i. 
BSv

 
with 1f  Bounded system, 
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ii. 
LSv

 
with 2f  Log-normal system and 

*
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iii. 
USv

 
with 3f  

Unbounded system, 
*

* 1 *
3( , , ) sinh ,yf y y

 


  
     

 
 

 

where:
2* * *

1sinh ln 1 .y y y  

  



 
                      

 

 After the dimensional 

reduction process, calibration models are obtained as (Naes et al., 2002): 
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can be obtained from (9), where 
1 2 r
      and 0,  1,  2, ,

i
i r   . The 

parameter estimation using ordinary least square can be defined as: 
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1 1
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One of the methods to overcome the multicollinearity problem is the RR 

method (Hoerl & Kennard, 1970). From (10) ridge parameter estimation can be 
obtained as: 

1

1

1 1
ˆ ( )

t t

q q q q n q



   
 Z Z I Z y ( )   

 
 

where 0,   and the ridge paramater can be determined using k  iterations (see 
Shi-ji & Zhi-bin (1993) for a detailed explanation of RR). 

In the process of building models it is important to validate the selected 
regression models. According to Neter et al. (1989), the regression models can be 
validated by dividing the data into two parts 

1 2
( ).n n n   The first set of data 1,n  

called the model building set, is used to build the model. The second data set 2 ,n  
called the validation or prediction set, is applied to validate the model.  



RIDGE REGRESSION IN CALIBRATION MODELS 

262 

Results 

Calibration models using the RR method with SPE-DWT preprocessing are built 
to predict the content of curcumin in turmeric. The discretization points resulted 
from FTIR spectrum and the content of curcumin in turmeric determined by 
HPLC is shown in Figure 2. Figure 2(a) shows the FTIR spectrum of a sample 
with 1866p   points, Figure 2(b) demonstrates the 616 first discretization points 
of the first sample data, Figure 2(c) illustrates the FTIR spectrum of 40 samples 
and Figure 2(d) shows the percentage of curcumin in turmeric as determined by 
the HPLC from 40 samples. These 40 samples are then divided into two parts, the 
first part of the data set consists of n1 = 30  samples as a model building set and 
the second part of data set comprises of, n2 = 10 samples as a prediction set. 
 
 

 
(2a) 

 

 
(2c) 

 
(2b) 

 

 
(2d) 

 
Figure 2. Data of Curcumin in Turmeric 
 



NURWIANI ET AL 

263 

In general, the number of samples in the calibration models is limited, 
therefore, it is important to conduct normality test for the response variables. 
There are 30 observations of curcumin in turmeric that do not meet the normality 
assumption as shown with the Kolmogorov-Smirnov (KS)  value 3.7478 13p e   
(see Figure 3(a)). The JT on the response variable yields: 

 

*
1 0.7084650.568871 0.784968 sinh  

0.0817548US
yv   

    
 

 

 
with the KS  value 0.6320.p   Further, y , a centered value of 

USv , is defined and 
illustrated in Figure 3(b). In this study, the building set is carried out only for 
SPE1 on predictor variables, thus, the number of discretization points is 112q  . 

Using DWT through the pyramid algorithm of 
k

h and 
k

g  for 10,N   an 
orthogonal matrix *

2048
W  is obtained. In data processing, the RR method requires 

1 1r n   where 1 30.n  Hence dimension reduction is done by determining the 
number of transformation matrices for 1,  2,  , 28,r   and finally, the reduced 
matrix 2048

ˆ t
rW  is obtained.  

For 1 and 2,r r   the reduced matrix 2048
ˆ t

rW  yields cond( )tZ Z  of Type I, 
while for 3,r   it yields cond( )tZ Z  of Type II. For 4,  5,  ,  28r   the reduced 
matrix 2048

ˆ t
rW  yields cond( )tZ Z  of Type III. 

The RR method to overcome the multicollinearity problem among predictor 
variables is completed with multiple iterations. Table 1 presents the results of this 
study. The best model gives the coefficient of determination (Johnson & 
Whincern, 2002; Seber & Lee, 2003) 2 0.85R  , has the smallest root mean 
square error (RMSE) (Naes et al., 2002) and has a KS  valuep  error model more 
than 0.05 (Marsaglia et al., 2003). As Table 1 shows, the RR method with the 
SPE-DWT preprocessing can be used to build the best models for accurate 
prediction. 
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Table 1: SPE1-Wavelet Daubechies Ridge Regression Models 
 

SPE1 Iteration 
KS 

 valuep  
error model 

2R  RMSEP 

     

1r   

cond( ) 1t Z Z
 

*
1( ) 83.9266p    

12,000 
12,100 
12,200 
12,225 
12,230 
12,235 

0.3333 
0.3123 
0.2922 
0.2873 
0.2864 
0.2854 

85.8942 
91.4549 
97.5712 
99.1949 
99.5245 
99.8556 

0.4513 
0.4551 
0.4592 
0.4603 
0.4605 
0.4607 

     
     
 

2r   
*
2( ) 90.0857p  

 
cond( ) 23.3715Z Zt  

11,650 
11.700 
11,800 
11,850 
11,875 
11,885 
11,888 

0.3337 
0.3228 
0.3017 
0.2915 
0.2865 
0.2846 
0.2840 

85.4124 
88.1813 
94.1391 
97.3455 
99.0096 
99.6871 
99.8917 

0.4518 
0.4537 
0.4578 
0.4599 
0.4610 
0.4615 
0.4616 

     
     
 
 

3r   
*
3( ) 92.8664p  

 
cond( ) 901.7588Z Zt  

8,625 
8,650 
8,700 
8,725 
8,750 
8,775 
8,785 
8,790 
8,791 
8,792 

0.3828 
0.3727 
0.3517 
0.3416 
0.3316 
0.3218 
0.3179 
0.3160 
0.3156 
0.3152 

85.3135 
87.2917 
91.4624 
93.6611 
95.9399 
98.3023 
99.2715 
99.7615 
99.8599 
99.9584 

0.3258 
0.3261 
0.3268 
0.3272 
0.3276 
0.3280 
0.3282 
0.3283 
0.3283 
0.3283 

     
 
 

 
(3a) 

 
(3b) 

 
Figure 3: Normal Probability Plot of 30 Curcumin Data 
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Conclusion 

In calibration models, response variables often do not meet the normal 
distribution assumption; therefore, the JT is necessary to fulfil model assumptions. 
The SPE-DWT with filter 10 is able to reduce the dimension, however, there is no 
guarantee that it can cope with multicollinearity problem. An effective method is 
needed to overcome the multicollinearity problem. This study shows that the 
combination of JT and SPE-DWT preprocessing in the RR method can be used to 
build models that will give accurate predictions. Further study is suggested by 
implementing the RR method with determination of optimum ridge parameter. 
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