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A generalization of the Half Logistic Distribution is developed through exponentiation of 
its survival function and named the Type II Generalized Half Logistic Distribution 
(GHLD). The distributional characteristics are presented and estimation of its parameters 
using maximum likelihood and modified maximum likelihood methods is studied with 
comparisons. Discrimination between Type II GHLD and exponential distribution in 
pairs is conducted via likelihood ratio criterion. 
 
Keywords:  Generalized Half Logistic Distribution (GHLD), maximum likelihood 
estimation (MLE), modified maximum likelihood estimation (MMLE), mean square error 
(MSE), likelihood ratio type criterion, percentiles, power of the test 
 

Introduction 

In life testing and reliability studies a combination of monotone and constant 
failure rates over various segments of the range of lifetime of a random variable is 
also known as bath tub or non-monotone failure rate. In biological and 
engineering sciences, situations of non-monotone failure rates are common (see 
Rajarshi & Rajarshi (1988) for a comprehensive narration of these models). 
Mudholkar, et al. (1995) presented an extension of the Weibull family that 
contains unimodel distributions with bathtub failure rates and also allows for a 
broader class of monotone hazard rates. They named their extended version the 
Exponentiated Weibull Family.  

Gupta and Kundu (1999) proposed a new model called the generalized 
exponential distribution. If  is a positive real number and F(x) is the cumulative 
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distribution function (cdf) of a continuous positive random variable, then [F(x)]θ 
and the corresponding probability distribution may be termed an exponentiated or 
generalized version of F(x). 

A half logistic model obtained as the distribution of absolute standard 
logistic variate is a probability model of recent origin (Balakrishnan, 1985). Its 
standard probability density function, cumulative distribution function and hazard 
functions are given by: 
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Kantam et al. (2011) adopted this generalization to the well-known half logistic 
distribution, and named it the Type-I Generalized Half Logistic Distribution 
(GHLD).  

Consider a series system of  components with individually and identically 
distributed (iid) individual lifetimes, for example, F(x). The reliability function of 
such a system is given by [1 – F(x)]θ; hence, the distribution function of the 
lifetime random variable of a series system is 1 – [1 – F(x)]θ. 

Taking F(x) as the half logistic model given by Equation (2), the 
corresponding distribution is termed the Type-II Generalized Half Logistic 
Distribution (GHLD-II). Its pdf, cdf and hazard function are given by:  
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Balakrishnan and Sandhu (1995) suggested a new probability model with a 
standard pdf and cdf given by: 
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The limits of (7) and (8) as k→∞ are respectively (1) and (2) – the pdf and cdf of 
HLD. Balakrishnan and Sandhu (1995) called the distribution (7) and (8) 
Generalized HLD. 

Olapade (2008) considered two distributions and discussed their 
distributional properties, order statistics in samples from these distributions: He 
named these distributions type-I and type-III GHLD, respectively. The types of 
generalized HLD of Olapade (2008) are through truncation of the type-I and type-
III generalized logistic distributions from Balakrishnan and Leung (1988) at the 
origin. Thus, this type-II GHLD is conceptually different from the GHLDs of 
Balakrishnan and Sandhu (1995) and Olapade (2008). Hence, the proposed 
models motivated a separate research study.  
 

Estimation in Type-II Generalized Half Logistic Distribution 
(GHLD-II)  
 
The probability density function and distribution function of GHLD-II with scale 
parameter  and power parameter  are given by: 
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Let x1 < x2 < … < xn be an ordered sample of size n from GHLD-II. The log 
likelihood function of the sample is  
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 The log likelihood equations to estimate the parameters  and  are given 
by  
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It can be seen that these two equations must be solved iteratively for  and  for a 
given sample. The asymptotic variances and covariances of MLEs of  and  can 
be obtained by inverting the information matrix whose elements are the 
mathematical expectation of the following expressions:  
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These equations, evaluated at estimates of  and , provide am estimated 
dispersion matrix. In order to obtain an analytical estimator for , its estimating 
equation is approximated by some admissible expression.  

Equation (11) to get MLE of , after simplification would become  
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To obtain the analytical expression for , approximate the following 

expression in (16) by some linear function in the corresponding population 
quartile. Let, 
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This estimator is named the MMLE of , which is a linear estimator in xi’s 

To obtain i, i, let ; 1,2,...,
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where F(.) is cdf of GHLD-II. 

The intercept i and slope i of linear approximation in the Equation (18) 
are respectively given by 
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Using distribution function F(.) of GHLD-II, the expressions for *,i it t  are 

given by 
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Table 1 shows the values of αi, βi for various ө and n. The MMLE of σ can 

be shown to be equivalent to the exact MLE with respect to the asymptotic 
variance. Their performance in small samples is also studied through simulation 
because the exact MLE is an iterative solution. The empirical sample 
characteristics are given in Table 2, which indicates the following: 

 
1. The empirical sample characteristics bias, variance and MSE 

decrease as sample size increases. 
 
2. MMLE is generally more biased than MLE; with reference to 

variance as well as MSE, MMLE is better than MLE for small 
samples.  
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Table 1. Intercept and Slope of the Approximation G(Zi) = αi + βi zi (GHLD –II) 
 

  θ = 2  θ = 3   θ = 4 
n i αi βi  αi βi   αi βi 
5 1 0.0000 0.7752  0.0000 1.2528   0.0000 1.7410 

 2 -0.0612 1.0780  -0.0391 1.5442   -0.0286 2.0251 

 3 -0.2071 1.4122  -0.1407 1.8906   -0.1060 2.3751 

 4 -0.4780 1.7832  -0.3573 2.3293   -0.2823 2.8464 

 5 -0.4013 1.5789  -0.3942 2.2353   -0.3891 2.8947 
10 1 0.0000 0.6432  0.0000 1.1294   0.0000 1.6223 

 2 -0.0150 0.7934  -0.0092 1.2679   -0.0066 1.7545 

 3 -0.0477 0.9512  -0.0299 1.4170   -0.0216 1.8985 

 4 -0.1010 1.1170  -0.0650 1.5785   -0.0476 2.0569 

 5 -0.1789 1.2912  -0.1187 1.7552   -0.0883 2.2334 

 6 -0.2866 1.4743  -0.1974 1.9509   -0.1496 2.4334 

 7 -0.4310 1.6668  -0.3111 2.1713   -0.2413 2.6662 

 8 -0.6219 1.8683  -0.4780 2.4268   -0.3826 2.9484 

 9 -0.8720 2.0755  -0.7370 2.7393   -0.6201 3.3206 

 10 -0.5324 1.7681  -0.5479 2.4572   -0.5547 3.1336 
15 1 0.0000 0.5960  0.0000 1.0870   0.0000 1.5020 

 2 -0.0066 0.6969  -0.0040 1.1781   -0.0028 1.6684 

 3 -0.0207 0.8003  -0.0127 1.2736   -0.0091 1.7596 

 4 -0.0430 0.9072  -0.0268 1.3739   -0.0193 1.8563 

 5 -0.0744 1.0176  -0.0472 1.4797   -0.0343 1.9591 

 6 -0.1161 1.1318  -0.0749 1.5917   0.0550 2.0691 

 7 -0.1698 1.2498  -0.1116 1.7106   0.0827 2.1875 

 8 -0.2357 1.3719  -0.1589 1.8377   -0.1191 2.3158 

 9 -0.3171 1.4981  -0.2196 1.9744   -0.1668 2.4564 

 10 -0.4159 1.6286  -0.2972 2.1226   -0.2292 2.6121 

 11 -0.5350 1.7632  -0.3970 2.2852   -0.3120 2.7877 

 12 -0.6781 1.9015  -0.5274 2.4665   -0.4245 2.9907 

 13 -0.8492 2.0417  -0.7032 2.6737   -0.5843 3.2348 

 14 -1.0496 2.1780  -0.9559 2.9223   -0.8344 3.5533 

 15 -0.5925 1.8548  -0.6260 2.5684   -0.6430 3.2610 
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Table 1, continued 

  θ = 2  θ = 3   θ = 4 
n i αi βi  αi βi   αi βi 

20 1 0.0000 0.5732  0.0000 1.0656   0.0000 1.5617 

 2 0.0037 0.6482  -0.0022 1.1334   0.0016 1.6259 

 3 0.0115 0.7251  -0.0070 1.2037   0.0050 1.6927 

 4 -0.0237 0.8039  -0.0146 1.2766   -0.0104 1.7623 

 5 -0.0406 0.8847  -0.0252 1.3522   -0.0182 1.8351 

 6 -0.0627 0.9675  -0.0394 1.4309   -0.0285 1.9112 

 7 -0.0903 1.0525  -0.0575 1.5129   -0.0419 1.9913 

 8 -0.1241 1.1395  -0.0802 1.5986   0.0588 2.0755 

 9 -0.1645 1.2288  -0.1080 1.6883   -0.0798 2.1647 

 10 -0.2123 1.3204  -0.1417 1.7825   -0.1057 2.2593 

 11 -0.2683 1.4143  -0.1825 1.8818   -0.1373 2.3603 

 12 -0.3332 1.5107  -0.2314 1.9869   -0.1760 2.4686 

 13 -0.4084 1.6094  -0.2904 2.0987   -0.2234 2.5859 

 14 -0.4948 1.7105  -0.3615 2.2183   -0.2819 2.7138 

 15 -0.5942 1.8139  -0.4479 2.3474   -0.3548 2.8551 

 16 -0.7081 1.9192  -0.5543 2.4881   -0.4475 3.1039 

 17 -0.8383 2.0254  -0.6878 2.6439   -0.5687 3.1967 

 18 -0.9857 2.1303  -0.8609 2.8203   -0.7349 3.4153 

 19 -1.1453 2.2265  -1.0994 3.0286   -0.9857 3.6982 

 20 -0.6282 1.9063  -0.6757 2.6416   -0.7012 3.3450 
 
 
Table 2. Empirical Sample Characteristics (Type-II GHLD) 
 

  Bias  Variance  MSE 
θ n MLE MMLE  MLE MMLE  MLE MMLE 
2 5 0.1077 0.0910  0.0651 0.0121  0.0766 0.0203 

 10 0.0551 0.0659  0.0320 0.0079  0.0350 0.0122 

 15 0.0364 0.0522  0.0206 0.0060  0.0219 0.0087 

 20 0.0273 0.0427  0.0153 0.0048  0.0160 0.0066 
3 5 0.1064 0.0977  0.0643 0.0125  0.0756 0.0220 

 10 0.0549 0.0667  0.0320 0.0081  0.0350 0.0125 

 15 0.0364 0.0530  0.0207 0.0061  0.0220 0.0089 

 20 0.0274 0.0435  0.0154 0.0049  0.0161 0.0067 
4 5 0.1055 0.0926  0.0636 0.0131  0.0747 0.0216 

 10 0.0546 0.0676  0.0318 0.0085  0.0347 0.0130 

 15 0.0362 0.0538  0.0206 0.0064  0.0219 0.0092 

 20 0.0273 0.0443  0.0153 0.0051  0.0160 0.0070 
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GHLD-II vs. Exponential Model 

The discrimination between GHLD-II and the exponential model is made using 
the likelihood ratio (LR) criterion. Specify GHLD-II as null population (P0) and 
the exponential model as alternative population (P1). A null hypothesis is 
proposed as H0: a given sample belongs to GHLD-II (P0) versus an alternative 
hypothesis H1: the sample belongs to the population Exponential model (P1). Let 
L1, L0, respectively, stand for the likelihood function of a sample with population 
P1 and P0. The percentiles of the LR criterion L1/L0 are obtained by simulation 
as:  

10,000 random samples of sizes n = 5, 10, 15, 20 are generated from the null 
population P0 and its parameters are estimated using each sample. The value of 
the likelihood function of the null population is computed at the generated sample 
observations and the corresponding parameter estimates; this value is denoted by 
L0. Using the same sample, generated from P0, the parameters and likelihood 
function value of the alternative population are calculated, for example, L1. The 
values of L1/L0 over 10,000 runs are sorted and selected percentiles are identified 
for a given n, θ (see Table 3).  
 
 
Table 3. Percentiles of L1/L0 (P0 : GHLD-II, P1: Exponential) 
 

θ n \ p 0.00135 0.01 0.025 500 0.95 0.975 0.99865 

2 

5 0.7468 0.9743 1.3335 1.7250 2.5433 2.6067 4.4061 

10 0.4786 0.7651 1.2327 1.6918 4.7663 4.8496 6.6528 

15 0.3369 0.7567 1.1770 1.6473 6.0976 7.4550 8.6546 

20 0.2520 0.7344 1.0456 1.5327 8.9127 8.9845 10.7528 

3 

5 1.6877 1.9325 2.2646 2.6432 3.4623 4.6379 20.6042 

10 2.5396 3.0615 4.0111 5.0243 8.7750 9.0357 39.9667 

15 3.1753 5.4376 7.9391 9.8175 18.5364 18.7628 50.6341 

20 3.9089 9.7390 14.7436 19.4296 54.4206 69.0316 80.0497 

4 
5 3.6630 4.5150 5.1328 4.0879 18.2493 18.4501 73.5894 

10 10.1778 12.7498 16.3453 12.4361 30.6046 31.1481 81.5585 
 
 

The entries under the column headings 0.95 in Table 3 may be taken as 5% 
level of significance critical values for discriminating between the GHLD-II and 
exponential models. The powers of the test statistic L1/L0 are also evaluated 
through simulation by calculating L1/L0 with samples generated from exponential 
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population (P1) and estimating, the parameters calculating the values of the 
likelihood functions L1, L0 with sample from P1. The proportion of L1/L0 values 
falling above 95th percentile of L1/L0 would become the power of the LR test 
criterion (see Table 4). It is observed that the discrimination between GHLD-II 
and exponential models falls with increased sample size, indicating less 
distinguishability between the exponential model and GHLD-II.  
 
 
Table 4. Powers of LR Test Criterion at α = 0.05 
 

θ n \ Distributions GHLD-II vs. Exponential 

2 

5 0.9123 
10 0.9239 
15 0.9373 
20 0.9441 

3 

5 0.9135 
10 0.9159 
15 0.9176 
20 0.9161 

4 

5 0.9072 
10 0.9057 
15 0.9053 
20 0.9025 
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