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Evaluation of Area under the Constant 
Shape Bi-Weibull ROC Curve 
Sudesh Pundir 
Pondicherry University 
Puducherry, India  

R. Amala 
Pondicherry University 
Puducherry, India 

 
 
The Receiver Operating Characteristic (ROC) curve generated based on assuming a 
constant shape Bi-Weibull distribution is studied. In the context of ROC curve analysis, it 
is assumed that biomarker values from controls and cases follow some specific 
distribution and the accuracy is evaluated by using the ROC model developed from that 
specified distribution. This article assumes that the biomarker values from the two groups 
follow Weibull distributions with equal shape parameter and different scale parameters. 
The ROC model, area under the ROC curve (AUC), asymptotic and bootstrap confidence 
intervals for the AUC are derived. Theoretical results are validated by simulation studies. 
 
Keywords: Constant shape Bi-Weibull ROC model, area under the ROC curve, 
asymptotic variance of accuracy, confidence interval, parametric bootstrap variance 
 

Notations and Terminologies 
X Random variable representing controls t Cut-off point of classification, t x y    

Y Random variable representing cases I(θ) Fisher Information matrix 

m Number of controls y(x) ROC model 

n Number of cases MLE Maximum Likelihood Estimate  

f(x) Probability Density Function (PDF) of X x(t) False Positive Rate (FPR) at cut-off t 

g(y) PDF of Y y(t) True Positive Rate (TPR) at cut-off t 

F(x) Distribution function of X TPR Probability that cases are correctly  
identified (Sensitivity) 

G(y) Distribution function of Y FPR Probability that controls are wrongly 
identified as cases (1-Specificity) 

AUC  Population Area under the ROC curve α0, α1 Shape parameters of X and Y, respectively 

AUC  Observed Area Under the ROC curve β0, β1 Scale parameters of X and Y, respectively 

mailto:sudeshpundir19@gmail.com
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Introduction 

A Receiver Operating Characteristic (ROC) curve provides quick access to the 
quality of classification in many medical diagnoses. In ROC curve analysis, the 
accuracy has been analyzed in terms of a model relating the parameters of cases 
and controls called as the ROC model. ROC model can be defined as the TPR 
obtained as a function of FPR which takes the form 
 
        11 1 ; 0 1y x G F x t x t       (1) 

 
where x(t) and y(t) are defined as follows: 
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0

( ) ( ) ( ) 1- ( ) 1 ( )

( ) ( ) ( ) 1- ( ) 1 ( )
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t
t

t

x t P X t f x dx f x dx F t

y t P Y t g y dy g y dy G t






      



     



 

 

  (2) 

 
Graphically, a ROC curve is a graph of TPR versus FPR for all possible 

threshold values. The ROC curve can be plotted by three approaches viz. 
parametric, non-parametric and semi-parametric. This article considers the 
parametric way of plotting the ROC curve. After the ROC curve is generated the 
intrinsic accuracy provided by the biomarker must be interpreted. To summarize 
the information contained in a ROC curve, many indices have been used. Among 
them, area under the ROC curve is most commonly adopted index. In this article, 
the inference about the area under the ROC curve is of primary interest.  

The problem of assessing the accuracy of diagnosis/Biomarker has been 
studied by several authors by assuming various distributions to the biomarker 
values. They are Bi-Normal ROC model (Zhou, Obuchowski & McClish, 2002), 
Bi-Logistic ROC model (Oglive & Creelman, 1968), Bi-Lomax ROC model 
(Campbell & Ratnaparkhi, 1993), Bi-Gamma ROC model (Dorfman et al., 1996), 
Bi-Exponential ROC model (Betinec, 2008), Generalized Bi-Exponential ROC 
model (Hussain, 2011), Bi-Rayleigh ROC model and its comparison with Bi-
Normal model (Pundir & Amala, 2012), comparison of Bi-Rayleigh ROC model 
with Bi-Normal and Bi-Gamma ROC models (Pundir & Amala, 2012) and a 
review of all parametric ROC models in case of continuous data (Pundir & Amala, 
2014), Normal-Exponential (Pundir & Amala, 2014).  
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A constant shape Bi-Weibull ROC model is proposed for non-normal data. 
Two parameter Weibull distribution is a most widely used life distribution in 
various fields viz. Survival analysis, Reliability engineering and recently in ROC 
curve analysis. Let 0 0~ ( , )X W   and 1 1~ ( , ),Y W   then the ROC model 
developed from two parameter Bi-Weibull distribution is given by 

 

  
1

00
1 0 1 0

1

ln( ( ))
( ) , , 0,  , 0

x t
y x Exp




   



 
 

    
 
 

  (3) 

 
One major disadvantage of assuming two parameter Weibull distribution to 

the biomarker is that the accuracy cannot be expressed in closed form. By 
substituting the MLE’s 0 1 0 1

ˆ ˆˆ ˆ, ,  and ,     the accuracy can be evaluated 
numerically using Monte Carlo integration or any other numerical procedure. In 
the absence of closed form expression, the statistical inference on the accuracy 
measure will not be possible. To overcome this problem and to obtain a closed 
form expression, equal shape parameter and different scale parameters are 
assumed. Moreover, the original accuracy of the diagnosis is not affected by 
taking equal shape parameter. The ROC model developed from this assumption is 
called the constant shape Bi-Weibull ROC model.  

Research interest may lie in comparing the effectiveness of two separate 
diagnostic tests or the efficiency of biomarkers in predicting the disease. The 
comparison can be accomplished either by AUC or sensitivity of the test. In order 
to compare the AUC and to construct the confidence interval, the Standard Error 
(SE) of AUC are needed. Here, the standard error of accuracy is studied by 
different methods viz. Monte Carlo, asymptotic MLE, parametric bootstrap and 
non-parametric methods. For parametric, the delta method will yield variance and 
SE with the help of asymptotic expressions for the variance and co-variances of 
the parameters.  

Constant Shape Bi-Weibull ROC Model 

The constant shape Bi-Weibull ROC model assumes that the biomarker values 
from controls and cases follow two parameter Weibull distribution with same 
shape parameter and different scale parameters.  
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The PDF of controls and cases take the form 
 

 1
0

0 0

( ) exp , 0, , 0xf x x x



 

 


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  (4) 

 
and 
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1

1 1
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  (5) 

 
respectively. 

The probabilities, Sensitivity and 1−Specificity for constant shape Bi-

Weibull distribution can be given as follows: 

 

 1

1 1 1

exp exp
t

y tSensitivity y dy
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   (6) 

 

 1

0 0 0

1 exp exp
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x tSpecificity x dx
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  




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   (7) 

 
Hence, the ROC model is given by  

 

 
0

1y( x ) x( t ) ;0 x( t ) 1




 
 
    .  (8) 

 
The ROC curve can be estimated by substituting the MLE of parameters in 

equation (8) and plotted by taking x(t) in equation (7) on x-axis and y(x) in 
equation (8) on y-axis. Also, one can plot the ROC curve by taking 1−Specificity 
on X axis and Sensitivity on Y axis. The area under the ROC curve is obtained by 
integrating the joint density function of X and Y and it has the following form.
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 

2y 1

0 0 0 1 1 0

1

1 0

y xA P( X Y ) xy Exp dxdy
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   
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  (9) 

 
The MLEs of 0  and 1  can be used again to estimate the AUC. And the 

performance of the estimator AUC  can be assessed through variance estimate. 

Maximum Likelihood Estimate of Parameters 

The MLE of two parameter Weibull distribution has been discussed by (Kundu & 
Gupta, 2006) in the context of Reliability estimation. Let X1, X2,…..Xm be a 
random sample of size m from W(α, β0) and Y1, Y2,…..Yn be a random sample of 
size n from W(α, β1). The likelihood function of the selected sample is given by 
 

 0 1
1 1

( , / ) ( / , ) ( / , )
m n

i j X i Y j
i j

L x y f x f y    
 

    (10) 

 
where '

0 1( , , )     
The log-likelihood function is 
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j i 1

j 1 i 1
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0 j i

j 1 i 11 0

LnL ( m n )ln ( -1) ln y ln x nln

1 1mln y x 
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 
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  (11) 

 
Differentiating (11) with respect to α results in 
 

 

 n m
j i

j 1 i 1

n m
j j i i

j 1 i 11 0

LnL ( m n ) ln y ln x

1 1y ln y x ln x 

 
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  (12) 
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By differentiating the log-likelihood function with respect to 0 , 1  and equating 
to zero, we get the estimates. The MLE’s of β1 and β0 are determined as, 
 

 1 1
1 0

ˆ ˆ( )    and    ( )

n m

j i
j i

y x

n m

 

   
  

 
  (13) 

 
Substituting 0̂  and 1̂  in equation (12) and equating it to 0, results in a non-
linear equation: 
 

 1 1

1 1

1 1

ˆ( )
ln ln

n m

j i
i i

m n

i i i j
i i

m n

i j
i i

m n y x
h

m x x n y y

x y

 

 

 
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 

 
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



 

 

 

  (14) 

 
Hence, ̂  can be determined as a solution of non-linear equation (14). By 

substituting equation (13) and (14) in equation (9), an estimate of AUC ( AUC ) 
will result.  

Asymptotic Distribution of area under constant shape Bi-
Weibull ROC Model 

To evaluate the significance of the statistic AUC, its variance and standard error 
must be computed. The following theorem evaluates the variance of the estimate, 
AUC . 
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Theorem 1 
The area under the constant shape Bi-Weibull ROC curve will converge in 
distribution to a Normal random variable with mean zero and variance  
 

 

 

  

2
0

2 2
10 1

4 " ' 2
2 20 1

ln
m n
mn m n 1



 


  

   
   
      

    
 
    

for large N, where N m n  . 

 

Proof:  Let  / ,L x y ;  0 1, ,      be the likelihood function of the 
sample observations from X and Y which is given by  

 

 

0

m n
1 i j

i 1 j 1

m n
i j

i 1 j 10 1

ln L( / x, y ) ( m n )ln mln

nln ( 1) ln x ln y

1 1x y 

  

 

 

 

 

 

 

  

 
    

 
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  (15) 

 
Asymptotic normality of MLE states that a consistent solution of the 

likelihood equation is asymptotically normally distributed about the true value 

i.e.  1ˆ ~ N ,I ( ) .  

 
 
 1ˆN( ) N(0,I ( )).       (16) 
 
where I(θ) is the Fisher Information matrix which is given by 
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  

2 2 2

2
0 1

112 2 2

2
0 0 10

2 2 2

2
1 1 0 1

ln L ln L ln LE E E

a a
ln L ln L ln LI E E E

ln L ln L ln LE E E

   


   

    

        
                    
 

       
                   

                            

12 13

21 22 23

31 32 33

a
a a a .
a a a

 
 
 
  

 (17) 

 
where  
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The 1( )I  is calculated as: 
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Because the area under the ROC curve is a function of parameters θ = (α, β0, 

β1)', the Delta method will be adopted for finding the approximate variance. 
V( AUC )  can be defined as: 

 

 

22

1 0
1 0

0 1
0 1

AUC AUCˆ ˆV( AUC ) V( ) V( )

AUC AUC ˆ ˆ2 Cov( , ).

 
 

 
 

   
    

    

   
   

   

  (20) 

 

  
    

2
0

2 2
10 1

4 " ' 2
2 20 1

ln
m nV AUC .
mn m n 1



 


  

   
   
       

    
 
  

  (21) 

 

where 1̂( )V  , 0
ˆ( )V   and 0 1

ˆ ˆ( , )Cov    are taken from the matrix 1( )I  . The 
estimate of variance is obtained by substituting the estimates of the parameters 

0 1, .   Hence, the estimate of accuracy follows that  
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 ( ) (0,1).N AUC AUC N



   (22) 

 
where τ is obtained in equation (20) and it is proven that  ~ 0,AUC N  , 

  1 1

1
1 !

n

n n k
k

n 


 
      

 
  where γ is Euler-Mascheroni constant approximately 

equal to 0.5772. Note: AUC is an Unbiased Estimator of AUC (See Appendix D 
for the proof). 
 

Confidence Interval for AÛC  

Asymptotic Confidence Interval 
The asymptotic 100(1−α)% confidence interval for accuracy is given by 
 

  
2 2

AUC Z SE( AUC ), AUC Z SE( AUC ) . 
 

   
  (23) 

 
where SE( AUC ) can be obtained from equation (21), α is the level of significance 
and 

2

Z  is the critical value. For example, 
2

Z  for a 5% level of significance is 

1.96. 

Bootstrap Confidence Interval 
The parametric bootstrap is a resampling technique which can be used to find the 
variance of any estimator. The idea of bootstrap is to create or resample an 
artificial dataset from an empirical distribution with same sample size and 
structure as the original for large number of times. Once the dataset is created, the 
parameters of interest are to be estimated for each data set. The bootstrap variance 
of parameter is nothing but the variance of all estimated parameters. 

Parametric bootstrap is very similar to the non-parametric bootstrap method. 
In non-parametric bootstrap the sample is simulated from empirical distribution 
but in parametric bootstrap it is simulated from specified parametric distribution.  
The following are the steps involved in finding the parametric bootstrap estimate: 
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Step 1: Let X1, X2,…, Xm be a random sample of size m from W(α0, β0) and 
Y1, Y2,…, Yn be a random sample of size n from W(α1, β1).  By using equation (13) 
and (14), the ML estimates of the parameters α, β0, β1 are estimated.    

Step 2: By using the estimated parameters 0 1
ˆ ˆˆ,   ,and    the random 

observations Xb of size m and Yb of size n (Bootstrap samples) are generated. 
From Xb and Yb, the bootstrap estimates viz. 0 1

ˆ ˆˆ ,   b b band    are obtained. Using 
these bootstrap estimates the accuracy ( bAUC ) is obtained.  

Step 3: Step 2 is repeated 10,000 times.  The mean of all 10,000 estimates 
of 0 1

ˆ ˆˆ 's, 's  'b b band s    are called the bootstrap estimates of parameters

0 1,   and    respectively and mean of all bAUC ' s  is called the estimated 
bootstrap accuracy. The standard deviation of all estimates bAUC is called the 
standard error of bAUC . 

Step 4: The 100(1−α)% confidence interval for bAUC  is obtained as 
follows: 

 b b b b
2 2

AUC Z SE( AUC ), AUC Z SE( AUC ) . 
 

     
 
where α is the level of significance and 

2

Z  is the critical value. 

Simulation Studies 

Thus, the accuracy, standard error of AUC  and 95 % confidence interval for 
AUC  have been computed through four different techniques via Monte Carlo 
method, asymptotic MLE method, parametric bootstrap and non-parametric 
method. 

Monte Carlo Method 
The model in equation (3) does not possess a closed form, so Monte Carlo 
integration of equation (3) is necessary. A Monte Carlo simulation was performed 
to inspect the accuracy obtained by Monte Carlo integration. The Monte Carlo 
estimate of AUC, SE ( AUC ) and 95% confidence interval for AUC  is presented 
in Table 1. The R codes for the Monte Carlo simulation is provided in Appendix 
A. 
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Table 1. Accuracy, standard error and Confidence interval of AUC  based on Constant 

Shape Bi-Weibull ROC model through Monte Carlo Simulation 
 

SL. No. 0̂  1̂  0̂  1̂  AUC  V( AUC ) 
95% Confidence 

Interval 
Band 
Width 

1 3.0 2.0 9 45 0.9188 0.051969 [0.816923, 1] 0.1831 

2 3.0 2.0 9 30 0.8835 0.072986 [0.740444, 1] 0.2596 

3 2.5 1.5 9 12 0.7590 0.124569 [0.514798, 1] 0.4852 

4 3.5 2.5 9 10 0.6727 0.180434 [0.319085, 1] 0.6809 

 

Asymptotic MLE Method 
Numerical experiments were carried out to inspect how the MLE’s of AUC and 
their asymptotic results work for simulated data sets. Four different samples of 
size (m, n) = (30, 30) with different parametric values were considered as 
mentioned in column 2, 3 and 4 of Table 2. The corresponding accuracy, SE, 95% 
confidence interval and the band width are shown in 5, 6, 7, 8 columns of Table 1. 
As the accuracy increases, the SE tend to decrease, simultaneously, the coverage 
area of the confidence band are tends to decrease as accuracy increases. Because 
the asymptotic distribution is independent of α, α may be kept constant or it may 
vary. From the sample α is estimated using iterative procedure from equation (14) 
and using α, the other two parameters using were found using equation (13). 
Hence, the ML estimate of AUC is obtained. The 95% asymptotic confidence 
interval and the confidence width are also calculated. 
 
 

Table 2. Accuracy, standard error and Confidence interval of Â  based on Constant 
Shape Bi-Weibull ROC model through Asymptotic MLE method 
 

Sl. 
No. ̂  1̂  0̂  Â  ˆ( )V A  95% Confidence 

Interval 
Band 
Width 

1 2.530 12136 245.4000 0.980 0.00913 [0.9623, 0.99133] 0.02903 

2 3.140 66.123 6.8201 0.907 0.02924 [0.8491, 0.96380] 0.11460 

3 1.520 249.980 43.7500 0.850 0.03960 [0.7735, 0.92860] 0.15510 

4 1.430 167.430 47.3900 0.778 0.04950 [0.6824, 0.87638] 0.19398 

5 1.085 36.290 18.7200 0.660 0.05990 [0.5425, 0.77700] 0.23450 
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Table 3 shows simulated independent samples of m controls and n cases (m 
= n = 5, 10, 40, 50, 80, 100) to assess the behavior of asymptotic MLE’s and 
confidence interval over different sample sizes by fixing 0

ˆ 5   and for different 

values of 1̂  viz. 8, 12, 20, 100. In Tables 3 and 4, first row represents the AUC, 
second row gives the SE, third row gives the lower confidence limit and the 
fourth row represents the upper confidence limit. It is observed that, as the sample 
size increases the variance decreases and the coverage area of confidence interval 
is narrow. 
 
 

 
 
Figure 1. Constant Shape Bi-Weibull ROC model plotted for different AUC 

 

 
 

Table 4 shows simulated independent samples of m controls and n cases (m 
= n = 40, 50, 80, 100) to inspect the behavior of asymptotic MLE and confidence 
interval over different sample sizes by fixing 1̂ 45   and for different values of 

0̂  viz. 3, 8, 10, 20. It is observed that, as the sample size increases the variance 
decreases and the coverage area of confidence interval is narrow. 
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Table 3. Accuracy, Variance and 95% confidence Interval for AUC when 0̂  = 5 for 

different sample size 
 
Sample 
Size m = n = 5 m = n = 10 m = n = 40 m = n = 50 m = n = 80 m = n = 100 

1
ˆ 8   

0.6154 
0.0232 
0.3171 
0.9137 

0.6137 
0.0116 
0.4045 
0.8263 

0.6137 
0.0029 
0.5099 
0.7192 

0.6137 
0.0023 
0.5210 
0.7080 

0.6137 
0.0012 
0.5408 
0.6883 

0.6137 
0.0012 
0.5487 
0.6804 

       

1
ˆ 12   

0.7059 
0.0193 
0.4339 
0.9778 

0.7057 
0.0096 
0.5136 
0.8982 

0.7057 
0.0024 
0.6097 
0.8020 

0.7057 
0.0019 
0.6199 
0.7918 

0.7057 
0.0012 
0.6379 
0.7738 

0.70570 
0.00096 
0.64510 
0.76610 

       

1
ˆ 20   

0.8000 
0.0132 
0.5745 
1.0000 

0.8000 
0.0066 
0.6406 
0.9594 

0.8000 
0.0017 
0.7203 
0.8797 

0.8000 
0.0013 
0.7287 
0.8730 

0.80000 
0.00083 
0.74360 
0.85640 

0.8000 
0.0007 
0.7496 
0.8504 

       

1
ˆ 100   

0.9524 
0.0019 
0.8659 
1.0000 

0.9500 
0.0028 
0.7961 
1.0000 

0.95000 
0.00024 
0.92180 
0.98060 

0.9500 
0.0001 
0.9250 
0.9773 

0.95000 
0.00012 
0.93080 
0.97160 

0.95000 
0.00009 
0.93310 
0.96930 

 
 

Table 4: Accuracy, SE and 95% confidence Interval for AUC when 1̂ 45   for different 

sample size 
 
Sample 
Size m = n = 5 m = n = 10 m = n = 40 m = n = 50 m = n = 80 m = n = 100 

0
ˆ 3   

0.9375 
0.0029 
0.8318 
1.0000 

0.9375 
0.0015 
0.8628 
1.0000 

0.93750 
0.00036 
0.90010 
0.97490 

0.93750 
0.00029 
0.90410 
0.97090 

0.93750 
0.00018 
0.91110 
0.96390 

0.93750 
0.00015 
0.91390 
0.96110 

 

      

0
ˆ 8   

0.8490 
0.0096 
0.6575 
1.0000 

0.8491 
0.0048 
0.7136 
0.9845 

0.849100 
0.001194 
0.781300 
0.916782 

0.84910 
0.00096 
0.78850 
0.90960 

0.8491 
0.0006 
0.8012 
0.8969 

0.84910 
0.00047 
0.80620 
0.89190 

 

      

0
ˆ 10   

0.8182 
0.0119 
0.6044 
1.0000 

0.8182 
0.0059 
0.6670 
0.9694 

0.8182 
0.0015 
0.7426 
0.8938 

0.8182 
0.0012 
0.7506 
0.8858 

0.81820 
0.00074 
0.76470 
0.87160 

0.818200 
0.000595 
0.770400 
0.865900 

 

      

0
ˆ 20   

0.6923 
0.0200 
0.4154 
0.9693 

0.6923 
0.0100 
0.8881 
0.4965 

0.9500 
0.0025 
0.5944 
0.7902 

0.6923 
0.0019 
0.6048 
0.7799 

0.6923 
0.0012 
0.6231 
0.7615 

0.692300 
0.000998 
0.630400 
0.754200 
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Estimation of Bootstrap Variance 
For parametric bootstrapping, the data was generated from a uniform distribution 
using (m, n) as specified in Table 5. Then by inverse transformation method, it is 
converted into Weibull variate with the values of 0  and 0 1 1, ,    . Using Step 1 

results in the estimates as 0 ˆˆ , ,  1
ˆ .  By using Step 2, the estimate of bootstrap 

sample is obtained as b0 b1,  and b
ˆ ˆ   . From these 10,000 estimates of parameters, 

one can find an estimate of AUC by using the equation (10). By averaging these 
10,000 numbers of estimates of AUC, one can estimate the bootstrap estimate 
AUC. Standard error of bAUC  is nothing but the standard deviation of the b 

number '
bAUC s. By Step 4, the 95% confidence interval for bootstrap AUC is 

obtained as usual. Table 5 shows the bootstrap area under the curve, SE and 
confidence interval for bAUC . 
 
 

Table 5. Accuracy, standard error and Confidence interval of AUC  based on Constant 

Shape Bi-Weibull ROC model through Bootstrap Simulation 
 

(m, n) b̂  b0̂  b1̂  bAUC  bSE( AUC )  
95% 

Confidence 
Interval 

Band 
Width 

(10, 10) 2.6709 7.5414 201.8100 0.9249 0.04700 
[0.8328, 
1.0000] 

0.1672 

(20, 20) 2.5274 6.3739 103.9060 0.9240 0.03366 
[0.8581, 
0.9899] 

0.1318 

(30, 30) 2.4662 5.8770 84.2817 0.9220 0.02680 
[0.8695, 
0.9745] 

0.1050 

(50, 50) 2.4340 5.6493 74.3820 0.9222 0.02110 
[0.8581, 
0.9636] 

0.1055 

(100,100) 2.3948 5.4283 66.5260 0.9211 0.01450 
[0.8926, 
0.9496] 

0.0570 

 
 

Comparing asymptotic and bootstrap variance, both perform at the same 
level. The asymptotic variance does not perform well for small samples such as (5, 
5) and (10, 10) where the bound for accuracy has reached below 0.5 which is not 
regarded as a good estimate. Hence, the asymptotic variance holds for large 
samples only. 
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Sensitivity and Specificity  
To generate a Weibull random variate with parametric values 

 0 1 03; 2; 9      and 1 45  . The data is  
 

X = {0.76261, 0.803019, 0.863084, 0.905439, 1.146029, 1.338408, 1.366008, 
1.39672, 1.415312, 1.432053, 1.592267, 1.608494, 1.673259, 1.710255, 1.81614, 
1.899346, 1.903763, 1.991144, 2.011153, 2.024541, 2.05607, 2.31567, 2.36017, 
2.376429, 2.516461, 2.660371, 2.663695, 2.669402, 2.73371, 3.092265} 

 
Y = {1.183838, 1.472276, 1.849655, 3.121439, 3.298009, 3.478297, 3.512602, 

3.853157, 4.751021, 5.094757, 5.143248, 5.263026, 5.682114, 5.824499, 6.555983, 
6.71353, 6.747835, 7.373468, 7.736402, 7.743548, 8.111, 8.393854, 9.171785, 9.313726, 
9.789551, 10.28716, 10.63431, 11.08168, 12.01407, 12.10905} 

 
Using equations (12) and (13), ML estimates are found to be 

2.705 6.539 and 245.02690 1, .      Using equations (6) and (7) the 
sensitivity and specificity of the test were also calculated: the sensitivity of the 
test is 94% and specificity is 89%. To the data generated above all the four 
methods were applied and compared (see Table 6). The non-parametric estimates 
are obtained by the method of Hanley and McNeil (1982), and the R codes are 
given in Appendix F. 
 
 

 
 
Figure 2. Constant Shape Bi-Weibull ROC curve plotted for simulated data 
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Conclusion 

This article considered a ROC model developed from two parameter Weibull 
distributions for evaluating the accuracy of biomarkers in predicting disease status. 
It did not yield a closed form expression for area under the ROC curve. For this 
reason, equal shape parameter and different scale parameter were assumed. It 
should be noted that, the accuracy remains unchanged by this assumption. Hence, 
estimation of area under the constant shape Bi-Weibull ROC curve is a main 
objective for this study. 

The Maximum Likelihood technique is adopted for estimating the 
parameters. The technique yielded an asymptotically unbiased estimate of the 
accuracy. The asymptotic distribution of AÛC, SE(AÛC) and 95% confidence 
interval were found. The behavior of asymptotic SE and confidence interval is 
studied through simulation. The parametric AUC is higher than the AUC obtained 
by other methods including Monte Carlo, non-parametric and parametric 
bootstrap. 
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Appendix A. R Code for Evaluation of AUC and Estimation 
of Standard Error Using Monte Carlo Simulation 
m<-100; a0<-2.9753; a1=2.30387; 
b0<-10295.0304;b1<-20646.898;x<-runif(m) 
auc<-mean(exp(-(1/b1)* ( (-b0*log(x))^(a1/a0) ) )) 
print(auc) 
v.auc<-var(exp(-(1/b1)* ( (-b0*log(x))^(a1/a0) ) )) 
print(v.auc); print(sqrt(v.auc)) 

Appendix B. Evaluation of AUC 
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Appendix C. Evaluation of Asymptotic Distribution of AUC 
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ix) The first order differentiation of Γn is given by Γnψ(n) where ψ(n) is 
called the digamma function. The value of Γ’n at n is equal to is 1‒γ; 
where γ is the Euler-Mascheroni constant has the approximate value 
0.5772. The second order differentiation of Γn can be representated 
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Appendix D. Unbiasedness of Estimated AUC 

An estimator T is said to be an unbiased estimator if it satisfies the condition 
E(T) = μ. The estimated accuracy is 
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Taking the expectation results in  
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Hence AÛC is an unbiased estimator of AUC. 
 

Appendix E. R Code for Evaluation of Bootstrap AUC and 
Confidence Interval 
k<-10000 ;al0<-3.9; al1<-2.84;be1<-38.56;be0<-11.31;m<-30;n<-30; 
df1 <-data.frame(array(dim=c(n,k))); df0 <-data.frame(array(dim=c(m,k))) 
dfw0<-data.frame(array(dim=c(m,k))); dfw1<-data.frame(array(dim=c(n,k))) 
a<-array(dim=k); ave<-array(dim=k); b1<-array(dim=k); b0<-array(dim=k) 
auc<-array(dim=k); SE<-array(dim=k); for(i in 1:k) 
{ 
df1[i]<-runif(30); df0[i]<-runif(30); 
dfw0[i]<-(-be0*log(1-df0[i]))^(1/al0); 
dfw1[i]<-(-be1*log(1-df1[i]))^(1/al1); 
loglik<-function(param) 
{ 
a[i]<-param[1]; b0[i]<-param[2]; b1[i]<-param[3] 
ll<-(m+n)*log(a[i])+(a[i]-1)*(sum(log(dfw1[i]))+sum(log(dfw0[i])))-n*log(b1[i])-
m*log(b0[i])-(sum(dfw1[i]^a[i])/b1[i])-(sum(dfw0[i]^a[i])/b0[i]) 
ll 
} 
M0<-maxNR(loglik,start=c(1,2,3)) 
a[i]<-M0$estimate[1]; b0[i]<-M0$estimate[2]; b1[i]<-M0$estimate[3] 
auc[i]<-(b1[i]/(b1[i]+b0[i])); dt<-data.frame(a[i],b0[i],b1[i],auc[i]) 
} 
print(dt); b.auc<-mean(auc); b.se.auc<-sd(auc); 
cat(“Bootstrap Accuracy=”,”\n”,b.auc,”\n”) 
cat(“Bootstrap Standard Error=”,”\n”, b.se.auc) 
lcl<-(b.se.auc-(1.96*b.se.auc)); ucl<-(b.se.auc+(1.96*b.se.auc)) 

Appendix F. R code for Sensitivity and Specificity Analysis 
s<-sort(c(h,d)); n<-length(d); m<-length(h); X<-array(dim=m+n-1) 
k<-m+n-1; 
for(i in 1:k) 
 { 
X[i]<-(s[i]+s[i+1])/2; 
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 } 
t<-c(s[1]-1,X,s[m+n]+1); print(t); a<-2.705492 ; b0<-6.538623 ;  
b1<-245.026947; # Estimated by MLE from data 
Sen<-exp((-t^a)/b1); Sp<-1-exp((-t^a)/b0); dt<-data.frame(t, Sen, Sp); 

 

Appendix G. R code for Non-Parametric Method 
NP.ROC<-function(h,d) # Creating a function named NP.ROC() 
{ 
s<-sort(c(h,d)); n<-length(d); m0<-mean(h);m1<-mean(d);m<-length(h) 
X<-array(dim=m+n-1);k<-m+n-1; 
for(i in 1:k) 
 { 
X[i]<-(s[i]+s[i+1])/2; 
 } 
t<-c(s[1]-1,X,s[m+n]+1); print(t); 
TPR<-array(dim=length(t)) # Defining empty array to save calculations 
FPR<-array(dim=length(t)); TP<-array(dim=length(t)); TN<-array(dim=length(t));  
FN<-array(dim=length(t)); FP<-array(dim=length(t)); AUC<-array(dim=length(t)); 
SP<-array(dim=length(t)); TNR<-array(dim=length(t)); SplusS<-
array(dim=length(t)); 
se<-array(dim=length(t));q1<-array(dim=length(t));q2<-array(dim=length(t));v<-
array(dim=length(t)); 
 for(i in 1:length(t)) 
 { 
A<-d[d>=t[i]]# observations greater than or equal to t among diseased i.e. True 
Positives 
B<-d[d<t[i]] # observations less than t among diseased i.e. False Negatives 
C<-h[h>=t[i]]# observations greater than or equal to t among healthy i.e. False 
Positives 
D<-h[h<t[i]] # observations less than t among healthy i.e. True Negatives 
TP[i]<-length(A) # No. of TPs 
FP[i]<-length(C) # No. of FPs 
FN[i]<-length(B) # No. of FNs 
TN[i]<-length(D) # No. of TNs 
TPR[i]<-(TP[i]/n)  
FPR[i]<-(FP[i]/m) 
TNR[i]<-1-FPR[i] # or TN[i]/m 
AUC[i]<-(TP[i]+TN[i])/(TP[i]+TN[i]+FN[i]+FP[i]) 
SplusS[i]<-TPR[i]+TNR[i] # TNR+TPR  
q1[i]<-AUC[i]/(2-AUC[i]); q2[i]<-(2*AUC[i]^2)/(1+AUC[i]) 
v[i]<-(AUC[i]*(1-AUC[i])+(n-1)*(q1[i]-AUC[i]^2)+(m-1)*(q2[i]-AUC[i]^2))/(m*n) 
se[i]<-sqrt(v[i]); 
 } 
library(utils) 
write.csv(dt,"msanalysis.csv") # writing the data frame in CSV format for usage 
 m<-length(h); n<-length(d); l<-m*n; 
 sum=0; 
  for(i in 1 : m) 
  { 
  s<-c(0); 
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   for(j in 1 : n) 
   { 
    if(d[j]>h[i]) 
    { 
    s[j]=1; 
    } 
     else if (d[j]==h[i]) 
     { 
     s[j]=0.5; 
     } 
    else 
    s[j]=0 
   } 
  output=data.frame(s) 
  sum=sum+sum(output) 
  } 
value= sum/(m*n) 
print(value) 
dt<-data.frame (t, FPR, TPR, TP, TN, FP, FN, AUC, se) 
print(dt); Q1<-value/(2-value); Q2<-(2*value^2)/(1+value) 
V<-(value*(1-value)+(n-1)*(Q1-value^2)+(m-1)*(Q2-value^2))/(m*n) 
SE<-sqrt(V); # Standard Error of AUC 
lc<-value-(SE*1.96) # Lower Confidence Limit of AUC 
uc<-value+(SE*1.96) # Upper Confidence Limit of AUC 
if(uc>1){ # Sometimes if the standard error is high, the upper CI may go greater 
that one in which case approximating it to one. 
uc<-1.0 
} 
cat("---------------------------------------", 
"\n", "Healthy Mean","\t",":","\t",m0, 
"\n", "Diseased Mean","\t",":","\t",m1, 
"\n", "AUC","\t","\t",":","\t", value, 
"\n", "SE","\t","\t",":","\t", SE, 
"\n", "CI","\t","\t",":","\t","[", lc,",","\t",uc,"]", 
"\n","---------------------------------------","\n") 
plot(TPR~FPR,type="b",main="",xlab="FPR",ylab="TPR",xlim=c(0,1),ylim=c(0,1)) 
abline(lm(c(0:1)~c(0,1))) 
} 
NP.ROC(h,d); 
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