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Conventional clustering algorithms are restricted for use with data containing ratio or 
interval scale variables; hence, distances are used. As social studies require merely 
categorical data, the literature is enriched with more complicated clustering techniques 
and algorithms of categorical data. These techniques are based on similarity or 
dissimilarity matrices. The algorithms are using density based or pattern based 
approaches. A probabilistic nature to similarity structure is proposed. The entropy 
dissimilarity measure has comparable results with simple matching dissimilarity at 
hierarchical clustering. It overcomes dimension increase through binarization of the 
categorical data. This approach is also functional with the clustering methods, where a-
priori cluster number information is available. 
 
Keywords: Categorical data, clustering, dissimilarity, entropy  
 

Introduction 

Clustering analysis is a process used for classifying objects so that homogeneous 
subsets are built in heterogeneous groups. A variety of distance/similarity criteria 
are used when classifying objects in groups according to their similarity. One 
important criterion for choosing the distance or similarity measure, when 
classifying objects into groups, is the type of the data. In the literature it can be 
seen that most studies examine the clustering of continuous data. If the data set 
consists of continuous data, Euclid and Manhattan are the distance measures most 
widely used in applications. However, in a data set with categorical data it is not 
possible to use this type of distance measures. These variables are first 
transformed into binary data and then the analysis is applied, which increases the 
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number of dimensions when there are multinomial variables in the data. This 
procedure increases memory allocation. 

There are different techniques and approaches for finding clusters with 
categorical data. One includes transformation of categorical variable into dummy 
variable, independently from calculation of distances. Applications of such 
hierarchical method algorithms are single linkage, complete linkage, average 
linkage, etc. (Chaturvedi et al., 2001). 

Another approach uses the k-means algorithm for clustering of categorical 
data developed by Ralambondrainy (1995). In this approach multiple category 
attributes are turned into binary variables, which are assumed to be numeric 
variables and thus, the k-means algorithm is applied. The drawback of this 
approach is the increase in the number of binary variables when there are too 
many categories in variables. Further, cluster centres, given as 0 and 1, do not 
reflect the real characteristics of clusters (Huang, 1998). The basics of K-medoids 
algorithm is founded on finding k number of objects representative of several 
structural features of data. A Medoid is the most central point of the cluster with 
minimum average distance to other objects that are located in the same cluster 
(Kaufman and Rousseeuw, 2005; Xu and Wunsch, 2009). Due to the distance 
measure used in K-means algorithm, this method is not used in clustering 
categorical data. As the data set consists of categorical data, k-modes method, 
which is an extension of k-means model, is used for clustering categorical data, 
which was developed by Huang (1998). In this algorithm,  

 
1. simple matching dissimilarity measure for categorical objects, 
2. mod is used for clusters instead of mean, 
3. frequency-based method is used for updating modes (Huang, 1998). 
 
An extended–modes algorithm was proposed by Aranganayagi and 

Thangwell (2010), which uses a probability weighted single matching 
dissimilarity function. 

Initially, expectation maximization algorithm assigns randomly different 
possibilities to each class or category. These probabilities are determined with 
consecutive iterations so as to maximize the similarity value of the data, which 
will also fit a pre-set number of clusters. The EM algorithm assumes that the 
model is suitable for a non-observable latent variable and that the stochastic 
model performs maximum likelihood estimations of the parameters (Agarwal et 
al., 2010). The optimization algorithm determines the convergence of the 
parameters. 
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ROCK (RObust Clustering using linKs) is an adaptation of the hierarchical 
clustering algorithm developed for clustering of categorical data. In this algorithm 
similarity value between two objects is calculated using Jaccard coefficient, then 
the threshold value ( ), defined between 0 and 1 by the researcher, is compared 
to decide adjacent points. In order that a given point qi is adjacent to a point qj for 
an ith object in an m-dimensional space, similarity value has to exceed threshold 
value (θ) (Guha et al., 1999). 

 
( , )i jsim q q    

 
If this condition is met, it can be said that the points are neighbours. This 

algorithm classifies the objects into clusters according to their link ability. The 
link ability between two clusters gives the number of common adjacent points 
between qi and qj. The higher the linkability of qi and qj, the higher is the 
possibility of qi and qj being in the same cluster.  

COOLCAT is proposed for categorical clustering analysis as an entropy-
based algorithm (Barbara et al., 2002). The entropy-based algorithm consists of 
two steps, namely initialization and incremental steps. In the initialization step K 
most dissimilar records are selected from the sample. In the next step remaining 
records in the data set are assigned to appropriate clusters. The algorithm groups 
objects in the data set trying to minimize the expected entropy of the clusters. 
Similarly, He et al. (2005) maximized Ensemble algorithms with the average 
normalized mutual information [0,1] function based on entropy in separating of 
units with the purpose of categorical clustering. 

Definitions and Notations 

X and Y are two categorical objects defined by n and m attributes, the dissimilarity 
measure between X and Y is the sum of mismatches in relevant variable attributes 
of the two objects. The smaller the number of mismatches, the more similar are 
two objects. This measure is also a kind of generalized Hamming distance (Ng et 
al., 2007). 
 

    
1
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m

k k
k
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

   (1) 
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As statistics is applied to physics, the development of statistical physics 

earned entropy new meanings with entropy, which is an indicator of the 
irregularity and uncertainty in a physical system. The increase in irregularity in 
the system is proportionate to the increase in entropy. The uncertainty of 
occurrence of xi situation in system X, which is the entropy of xi situation, is 
shown as    logi ic p p x  , while the entropy of the system is expressed as 
(Roy, 2002; Müller, 2003) 

 

      
1

log
n

i

H X P x P x


  .  (3) 

 
As the logarithmic operations are performed, the entropy becomes an 

additive quantity for independent systems (Georgii, 2003). 

For a given n, when      1
1

n np x p x p x
n

    ,  

 

 
 

1 1 1 1log log

log
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max

H n
n n n n

H n

   



   (4) 

 
is obtained. This means that H reaches its maximum value when it is equal to 
log(n). When a two-dimensional (X, Y) random variable is in question, P joint 
probability matrix becomes    ,ij i jP p P X x Y y     and thus the entropy 

becomes  
 

  
1 1

l g, o
n m

ij ij
i j

H i j p p
 

  .  (5) 

 
The uncertainty coefficient calculated asymmetrically and symmetrically 

based on entropy in cross-tables is more appropriate for use. The uncertainty 
coefficient for symmetric structures is calculated as 
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Proposed Method 

Taking observation units as variables, the proposed method ensures that 
calculation of combined entropy values remains on the same constant (log m) for 
m number of categorical attributes. 

The S matrix, which shows that n number of objects take identical values, 
provides the basis of entropy dissimilarity measure approach, unlike the simple 
matching dissimilarity measures matrix. Each row/column in this matrix shows 
the number of similar objects for each m variables. Therefore each row/column of 
the matrix is the frequency distribution of its similarity with another observation. 
The uncertainty coefficient given in equation (6) aims that a single value is 
generated for a cross-table; thus, the formula has been organized with the help of 
the following equations with the purpose of measuring uncertainty based on 
entropy.  
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If X and Y are independent random variables, combined entropy is equal to 

the sum of the entropies of these two random variables  
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Equation (8) displays a symmetric dissimilarity matrix which does not 

consist of constant values: the reason for this is that the entropy of an object with 
itself depends on the frequency of encountering the characteristics in the total 
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distribution. The uncertainty of an object with frequently observable 
characteristics will be proportionately low. If two objects have no common 
features, pij = 0 and as logarithm is non-defined, maximum entropy dissimilarity 
value of −2 is used. However, as algorithm software used for clustering will 
accept a symmetric dissimilarity matrix with constant diagonal (0), U(i,j) values 
are proportioned and corrected in 0-1 interval.  

 

  
   

 
* , diag ,

,
2 diag ,

U i j U i j
U i j

U i j





  (9) 

 
The numerator of fraction brings the diagonal values, which are the smallest 

values of each row and column, to zero, whereas denominator proportions the 
dissimilarity of other values according to the maximum value and earns the value 
1 for maximum dissimilarity. 

Empirical Results 

Dissimilarity matrices were formed based on simple matching dissimilarity 
measure and entropy in this article. The results obtained by using hierarchical 
methods in both dissimilarity matrices were compared with each other. The data 
used in the study was Teaching Assistant data obtained from UCI database (Loh, 
W. -Y. & Lim, T. -S., 1997). It was collected for evaluation of the performances 
of 151 research assistants at statistics department of Wisconsin-Madison 
University during three semesters and two summer schools. The scores were 
divided into 3 roughly equal-sized categories (low, medium, high) to form the 
class variable. The four variables chosen for determining the performance of 151 
research assistants is:  
 

1. Whether of not the TA is a native English speaker? (2 categories) 
2. Course instructor (25 categories) 
3. Course (26 categories) 
4. Summer or regular semester (2 categories) 
 
Within the scope of the study, Stata 11.0 program was used for application 

of hierarchical methods for entropy and simple matching dissimilarity measures. 
The results obtained from simple matching dissimilarity measure and hierarchical 
methods using single linkage, complete linkage and average linkage methods 
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were interpreted. In single linkage method, the two closest objects or clusters 
(minimum distance or biggest similarity) using distance/similarity values are 
combined. In complete linkage, the maximum of the distance between the new 
cluster formed after combining two clusters (objects) and the other cluster is taken. 
In the average linkage method, which is suggested as an alternative as it provides 
results between these two extreme techniques, the distance between two clusters 
is equal to the average values of the distances between observed couples located 
in two clusters. 

One of the measures used in evaluating the success and quality of clustering 
results is F measure. This measure consists of a combination of precision and 
recall measures. F measure is basically the harmonic mean of precision and recall 
(Işık and Çamurcu, 2007). F measure, which is one of the measures that ensures 
(i) comparison of the classification which is known in advance and the clusters 
obtained as a result of clustering analysis (Loh and Shin, 1997) and (ii) evaluation 
of clustering, is calculated as follows for j.cluster and i.class.  

 

 
   

   

2* , * ,
,

, ,
r i j p i j

F i j
r i j p i j




 

 
where r means recall and p means precision. 

 

   , ,ij ij

i j

n n
r i j p i j

n n
   

 
In nij, the number of observations in j.cluster and i.class, namely nj and ni, 

are respectively the magnitudes of j.cluster and i.class. Total F measure for a data 
set consisting of n number of observations is calculated as follows (Dalli, 2003):  

 

 ,i

i

nF max F i j
n

     

 
If single linkage is used with simple matching dissimilarity measure, as 

there are considerable number of connections, observations are not classified into 
clusters and combined in a single cluster. In complete linkage method while 
observations are assigned to maximum three clusters; however, if average linkage 
method is preferred, observations can form maximum 34 clusters but the F 
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measure obtained in the case that there are three clusters is as, F = 0,360 with 
simple matching dissimilarity and F = 0,387 with entropy dissimilarity. 

In single linkage, which is one of the three hierarchical methods, 
observations are classified into four clusters in the case that entropy dissimilarity 
is used. In the case that there are three clusters, 146 of the observations are 
assigned to the first cluster, four are assigned to the second cluster and one is 
assigned to the third cluster. In simple matching, dissimilarity observations cannot 
be classified into clusters, whereas clusters consisting of small number of 
observations occur in entropy dissimilarity. If the same measure is used in 
complete linkage method, as there are considerable number of connections, 
observations are not classified into clusters and combined in a single cluster. In 
average linkage method, however, observations are concentrated in the first 
cluster if there are three clusters.  

Performance in the data set was evaluated in three categories namely good, 
mediocre and poor. The results obtained according to both dissimilarity measures 
and two were compared with these three categories, the level of concordance were 
determined. Accordingly,  

 
In the average linkage method, 49 observations were correctly assigned (33 
percent) if entropy dissimilarity measure was used.  
 
In the average linkage method, 47 observations were correctly assigned (31 
percent) if simple matching dissimilarity measure was used.  
 
In the average linkage method, the F measure value obtained using simple 
matching dissimilarity, entropy measure were 0.36 and 0.38, respectively.  

Conclusion 

In categorical data, with the exception of data mining algorithms, clustering 
algorithms are applied with two-step clustering method and simple matching 
measure is used. Two-step clustering first digitalizes the categorical variables and 
then performs distance calculations. Parameter estimations require optimized 
solutions with iterations. The simple matching method however does not take the 
frequency of observing a certain characteristic in categorical variables and the 
possibility of a unit for having this unique characteristic into the consideration. 

The selection of distance and/or similarity measure lies in the foundation of 
all clustering methods. The findings are based on the selection of both clustering 



ÇILINGIRTÜRK & ERGÜT 

337 

methods and distance measure. Therefore, this study offers an estimation of 
entropy matrix based on dissimilarity of categorical variables. The method also 
provides a solution to the problem of increase in the number of variables by using 
dummy variable in the case of existence of categorical variables. The study can 
also be used for developing a different clustering algorithm with a non-constant 
diagonal, which therefore will take into consideration the low level of uncertainty 
that is caused by having frequently encountered characteristics.  
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