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Change Point Estimation for Pareto Type-II 
Model 
Gyan Prakash 
S. N. Medical College 
Agra, U.P., India 
 
 
Some Bayes estimators of the change point for the Pareto Type-II model under right item 
failure-censoring scheme are proposed. The Bayes estimators are obtained here in two 
cases, the first is when one parameter is known and second when both parameters are 
considered as the random variable. The performances of the procedures are illustrated by 
simulation technique. 
 
Keywords: Change point, Pareto Type-II model, Bayes estimation  
 

Introduction 

The Pareto distribution and its close relatives provide a flexible family of fat-
tailed distributions, which may be used as a model for income distribution of 
higher income group and in socio-economic studies. This distribution has played 
important role in variety of other problems such as size of cities and firms, 
business mortality, service time in queuing system. It is often used as a model for 
analyzing areas including city population distribution, stock price fluctuation, oil 
field locations and military areas.  

It has been found to be suitable for approximating the right tails of 
distribution with positive skewness. Pareto distribution has a decreasing failure 
rate, so it has often been used for model survival after some medical procedures 
(the ability to survive for a longer time appears to increase, the longer one 
survives after certain medical procedures). 

Harries (1968) used this distribution in determining times of maintenance 
service while Dyer (1981) found that two-parameter Pareto distribution 
transformation is equivalent to the two-parameter exponential distribution. Madi 
& Raqab (2004) discussed about the forecasting of the temperatures records by 

mailto:ggyanji@yahoo.com


CHANGE POINT ESTIMATION FOR PARETO TYPE-II MODEL 

340 

Pareto distribution. Singh et al (2007) discussed about different types of test-
estimation for the Pareto Model. The length of Bayes prediction limits have been 
obtained recently by Prakash & Singh (2013) for the Pareto model. Panahi & 
Asadi (2011) presented stress-Strength model for a Lomax distribution. Some 
inferences regarding the Lomax distribution under the generalized order statistics 
has discussed by Moghadam et al. (2012). Nasiri & Hosseini (2012) presented 
Bayesian and classical statistical inferences for Lomax model based on record 
values. Recently, Al-Zahrani & Al-Sobhi (2013) presents some parameter 
estimation for Lomax distribution under general progressive censoring criterion. 

The probability density function of the considered Pareto Type-II model is 
given as 

 
 ( 1)( ; , )  ( )  ;  0,  0,  0f x x x               (1) 
 
Here,    is the shape parameter and    is the scale parameter. The proposed 
Pareto Type-II model is the result of mixture of the Exponential distribution with 
the parameter α, and the exponential scale parameter α is distributed as a Gamma 
with parameters   and  . 

This article discusses the Bayes estimation of change point for Pareto Type-
II model. The Bayes estimator has been obtained under the right item failure 
censoring criteria in two cases: the first is when the scale parameter is known and 
second when both parameters are considered as the random variable. A numerical 
study was carried out for illustration of the procedures in next section by MCMC 
technique. 

The Change Point 

In order to obtain information on their endurance, manufactured items such as 
mechanical or electronic components are often put to life tests and life times are 
observed periodically. Physical systems manufacturing the items are often subject 
to random fluctuations. It may happen that at some point of time, there is a change 
in the parameter. The objective of study is to find out when and where this change 
has started occurring, which is called the change point inference problem.  

Bayesian model may play an important role in the study of such change 
point estimation problem and have been studied by Broemeling & Tsurumi (1987), 
Jani & Pandya (1999), Ebrahimi & Ghose (2001), Goldenshluger, et al. (2006). 
Pandya & Jadav (2010) presents Bayesian estimation of change point in mixture 
of left truncated exponential and degenerate distribution. Some Bayes estimation 
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of shift point in Poisson model was presented by Srivastava (2012). Recently, 
Pandya (2013) presented Bayes estimation of auto regressive model with change 
point. 

Consider a sequence of independent random sample of size  3n   such as 

1 2 1 1,  ,..., ,  ,  ,...,m m m nx x x x x x   from the considered model with survival function 

1  ( )t  at time   ( 0)t   but later it is found that there is a change in the system at 
some point of time  m  and it is reflected in the sequence after the observation  mx  
by the change in the survival function. The probability density function and 
survival function of the first m observations 1 2,  ,...,  mx x x  are given from model 
(1) as: 
 
 1 1( 1)

1 1 1( ; , ) ( ) ;  0,  0,  0,  1,2, ,i i if x x x i ... m       
        (2) 

 
and 

 1  1 
1  1( ) ( )  ;  t 0,  0,  0 .t t     

      
 
Similarly, the probability density function and survival function of 

remaining ( )n m  components 1 2 ,  ,m mx x  ..., nx  are  
 

 
2 2( 1)

2 2

2

( ; , ) ( ) ;
0,  0, 0, 1,m 2, ,

i i

i

f x x
x i m ... n

     

 

 
 

     
  (3) 

and 
 

2 2
2 2( ) ( ) ; t 0, 0, 0t t     

     . 
 
In life testing, the observations usually occur in ordered manner such that 

the weakest items fail first and then second one and so on. Suppose that  n  items 
are put to test under the considered model without replacement and only k ( ) n

items are fully measured, while the remaining ( )n k  items are censored. These 
( )n k  censored items will be ordered separately. This censoring scheme is 
known as the right item failure-censoring criteria. 

The change point criteria was introduced inside the right item-censoring 
scheme; assume a sequence of ordered independent random sample of size  n  
such as (1) (2) ( 1),  ,..., ,kx x x  ( ) ( 1) ( ),  ,...,k k nx x x  from the model (1), with the 
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parameters  1   and   .  All  n  items are tested without replacement and first  k  
ordered items are fully measured while remaining ( )n k  items are censored. 
From the first fully measured  k (1) (2) ( 1) ( )( ,  ,..., ,  )k kx x x x  items, it is found that 
there is a change in the system at some point of time m  and it is reflected in the 
sequence after ( ) ( )mx m k  by the change in the survival function.  

The probability density function of first  ( , )m m  k n   random samples

(1) (2) ( ), , , mx  x ... x  with parameters 1  and ,  are  
 

 
1 1( 1)

( ) 1 1 ( )

( ) 1

( ; , ) ( ) ;

,  ,  0,  1,2, , ( , )
i i

i

f x x
x i ... m m k k n .

     

 

 
 

   
  (4) 

 
The first remaining group of random samples ( 1) ( 2) ( ), , ,m m k x x ... x   with size

( )k m  using a considered Pareto model has a probability density function with 
parameters  2   and     
 

 
 2  2 ( 1)

( )  2  2 ( )

( )  2

( ; , )  ( ) ;

, ,  0,  1  m 2, ,  ( ,  )
i i

i

f x x
x i m , ... k k m k n .

     

 

 
 

     
 (5) 

 
The last remaining group of random samples ( 1) ( 2) ( ), , ,k k n x x ... x   of size 

( )n k  distributed again a Pareto model with parameters  1   and    – has the 
probability density function 

 

 
 1  1 ( 1)

( )  1  1 ( )

( )  1

( ; , )  ( ) ;

,  ,  0,  1,  k 2, ,  ( )
i i

i

f x x
x i k ... n k .

     

 

 
 

    
  (6) 

 
Under the above scenario the likelihood function for the random sample 

(1) (2) ( ) ( , , , )nx x x ... x  is defined as  
 

 

( )

1 2 ( ) 1 ( ) 2
1 1

( ) 1 ( )
1 0

 | , , ,  ( ; , ) ( ; ,  )

1  ( ; , ) 
i

m k

i i
i  i  m

xn

i i
i  k

L x m  f x   f x

f x  dx

      

 

  

 

   
    
   

 
  

 
 

 

   
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  1  2  1  1  2  2( )  ( )     
 1  2 0  1  2 ( | , , , )      ;n k m k m T Tm k mL x m T e e                  (7) 

 

where  1
 0 ( )

  1

( ) ,
k

i
i

T x  



     1 ( ) ( )
  1   1

 log  ( )  log  ( )
m n

i i
i i k

T x x 
  

      and

  2
  m 1

k

i
T

 

  ( )log  ( )ix  . 

Remark 
1. Substitute 1 2      in (7) 
 

 3   
0 ( | , )     ;Tk nL x T e     

   3 ( )
  1

 log  ( ) .
n

i
i

T x 


   

 
Here,  ( | , )L x    shows the likelihood function under the right item-
failure censoring criterion without consideration of change point.  

 
2. Substitute 1 2      and  k n  in (7) to obtain the likelihood 

function for complete sample case without consideration of change 
point. 

 
 3   *  

 0 ( | , )    ;Tn nL x T e     


 *  1
 0 ( )

  1

( ) .
n

i
i

T x  



 
 

Change Point Estimation (Scale Parameter Is Known) 
From a Bayesian viewpoint; there is clearly no way in which one can say that one 
prior is better than other. It is more frequently the case that, that a prior is selected 
to restrict attention to a given natural family of priors, and one is chosen from that 
family, which seems to match best with one’s personal beliefs. A natural family 
of conjugate prior for shape parameter  θ  is considered here as a Gamma 
distribution (when scale parameter is known) with probability density function 
 
 1( ; 0, 0, 0 a   g | ) e     a  .            (8) 
 
Based on change point criterion the prior density (8) is re-parameterized as  
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    1(  ; 0, 0, 0,  1,  2 j j ja
j j j j j jg  | ) e     a  j . 
    

 
       (9) 

 
A discrete uniform over the set (1,  2,..., 1), k   is considered as the prior 

distribution of change point  m  and defined as  
 

 3
1(  

1
g  m) .

k



  (10) 

 
The joint prior distribution when scale parameter is considered to be known, is 
defined as 

 
 1 1 2 1 1 2 2 3( , , ( | ( | (  h  m) g  ) g  ) g  m) .         

 
The joint posterior density function is now obtained as 

 

 

 1  2

1 2  1 1 2
 1 1 2

1 2  1 1 2 2 1

( | , , ,m ) ( , , )( , ,  )
 ( | , , ,m ) ( , , )  

m

L x h  m m| x
L x h  m d d

 

    
  

      




  
  

  
* *

1 2 1 1 2 2 1 1   
 1 1 2 1 2, , |   ;   m    k  m    T T m x   e  e                    (11) 

 

where
   1 2

11
1 2

* *1 1 2

( ) ( ), ,
 

k  

m  a k m  a
m  

m a   k m a   
T T






  


 
              

 

  *
 1  1 1 ( )T  T  n k m      

log  
 
and

 

 *
 2  2 2 ( ) log .T T k m      

 
Hence, the marginal posterior density for change point  m  is 

 
    

1 2

*
1 1 1 2 1| , , |   m x m x d d  .

 

            (12) 

 
The choice of the loss function may be crucial in Bayesian analysis. It has 

always been recognized that the most commonly used loss function, squared error 
loss function (SELF), is inappropriate in many situations. The Bayes estimator of 
a parameter under SELF is the posterior mean. If SELF is taken as a measure of 
inaccuracy then the resulting risk is often too sensitive to the assumptions about 
the behavior of the tail of the probability distribution. To overcome this difficulty, 
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a useful asymmetric loss function based on the squared error loss function 
(ISELF) is defined for any estimate ̂  corresponding to the parameter    as 

 

 
 21ˆ ˆ( , ) ; .L           

 
The Bayes estimator of the change point  m  under ISELF is obtained as  

 

 

1 2

1 1
1 2

1 1

ˆ ( ) ( )

ˆ ( ) ( )

I P P
k  k  

I
m  m  

m E m E m

m m   m   .

 

 
 

 



    
  (13) 

 
Here, the suffix P  indicates the expectation taken under the posterior density. 

When positive and negative errors have different consequences, the use of 
squared error loss function (SELF) in Bayesian estimation may not be appropriate. 
In addition, in some estimation problems overestimation is more serious than the 
underestimation, or vice-versa. To deal with such cases, a useful and flexible class 
of asymmetric loss function (LINEX loss function (LLF)) is given as 

 
( ) 1a L e a  .      

 
The shape parameter of LLF is denoted by ' 'a . Negative (positive) value of shape 
parameter ' ',a  gives more weight to overestimation (underestimation) and its 
magnitude reflect the degree of asymmetry. It is also observed that, for 1,a   the 
function is very asymmetric with overestimation being more costly than 
underestimation. For small values of ,| a |  the LLF is almost symmetric and is not 
far from the SELF. 

Bayes estimator of  m  under the LLF is obtained as 
 

 
 

 
1

1

1ˆ log

1 log  

 a m 
L P

k  
 a m 

m  

m    E   e
a

      e .
a










 

 
   

 


  (14) 

 
A close form of both the estimators does not exist. A numerical method is applied 
for obtaining the values of their estimates. 
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Change Point Estimation (Both Parameter Unknown) 
In the case of when both the parameters   and   are unknown for the considered 
Pareto model, there does not exists any joint conjugate prior. Assume that the 
prior beliefs about the parameters   and   are independent. The natural family 
of conjugate priors for parameters   and non-informative prior for parameter   
are considered independently here. The non-informative prior of the parameter  
is the limiting form of the appropriate natural conjugate prior. The joint prior 
distribution when both parameters are unknown is defined as 

 

  
1, ( | ) ( ) ; ( ) , 0g g  h   h   .      


      (15) 

 
The prior distribution ( | )g    is given in equation (8). The likelihood 

function in present case is redefined as  
 

 

( )

1 2 ( ) 1
1

( ) 2 ( ) 1 ( )
1 1 0

 | , , ,  ( ; , )

( ; ,  ) 1  ( ; , ) 
i

m

i
i  

xk n

i i i
i  m i  k

L x m  f x  

 f x f x  dx

    

   



   

 
  
 

  
         



    

 
  1  2  1  1  2  2( ) log ( ) log     

 1  2 0  1  2 ( | , , , )    e e    .n k m k m T Tm k mL x m T e e                (16) 
 
The joint prior density for the parameters 1 2, ,         and  m  is written as  

 
 2 1 2 1 1 2 2 3( , , , ( | ( |  ( ) (  .h  m) g  ) g  ) h g  m)            

 
Hence, the joint posterior density is obtained as 

 

1 2

1 2 2 1 2
2 1 2

1 2 2 1 2 2 1

( | , , ,  ) ( , , , )( , , , | )
( | , , , ) ( , , , )   

m

L x m h mm x
L x m h m d d d

  

     
   

        




  
 

 
* *

1 2 1 1 2 2 1 1    0
2 1 2 1 2, , , |    ;   m  a   k  m  a   T TT m x  e  e         



      
    (17) 

 



GYAN PRAKASH 

347 

where 
 11

1
   

k  

m  
  






 
  

 
 and  0   .T d  







    

 
Hence, the marginal posterior density for the change point  m  is 

 
    

1 2

**
2 1 1 2 1|     , , , |     , m x  m x d  d d   

  

               (18) 

 
and, the Bayes estimator under ISELF and LLF for the change point  m  are 
obtained as  
 

    
1 1

2

1 1

ˆ̂
k  k  

 I
m  m  

m  m  m  
 

 

      (19) 

 
and 
 

  
1

1

1ˆ̂ log
k  

 a m 
 L

m  
m     e .

a







 
   

 
   (20) 

Numerical Analysis 

One Parameter Known Case 
To assess and study the properties of the Bayes estimator for the change point , m  
a simulation study was performed. The random samples were generated as: 

Generate  ; 1,  2;i i   through prior density   ; 1,  2;i ig i   for the given 

values of prior parameters  , ; 1,  2 ;i i i   as  , (0.25, 0.50),  (4, 2),i i    

(9,3); 1,  2i  . The selections of prior parametric values meet the criterion that the 
prior variance should be unity. 

Using generated values of  ; 1,  2;i i   and  0.50, 1.00, 1.50, 3.00;   
generate 10,000 random samples of size 15n   by using the model (2) and (3). 

The values of the Bayes estimate ˆ I m  under the ISELF have been obtained 
and presented them in the Table 1, for selected set of censored sample size

= 04, 06, 08, 10.k  
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Table 1. Bayes Estimate of m under ISELF (Scale Parameter Known) 
 

 

n=15  k   


 ( , )     4 6 8 10 15 

0.50 0.25, 0.50  3.7066 3.7177 3.7251 3.7326 3.7400 

0.50 04, 02  3.6908 3.7019 3.7092 3.7166 3.7239 

0.50 09, 03  3.3381 3.3481 3.3549 3.3615 3.3681 

  

1.00 0.25, 0.50  3.7336 3.7447 3.7522 3.7597 3.7672 

1.00 04, 02  3.7052 3.7163 3.7236 3.7311 3.7385 

1.00 09, 03  3.6519 3.6627 3.6700 3.6773 3.6846 

  

1.50 0.25, 0.50  3.7371 3.7483 3.7558 3.7633 3.7707 

1.50 04, 02  3.7177 3.7289 3.7363 3.7436 3.7510 

1.50 09, 03  3.6906 3.7016 3.7091 3.7164 3.7238 

  

3.00 0.25, 0.50  3.4849 3.4953 3.5024 3.5094 3.5165 

3.00 04, 02  3.4701 3.4806 3.4875 3.4944 3.5012 

3.00 09, 03  3.4088 3.4189 3.4257 3.4325 3.4393 

 
 

Table 1 shows that when censored sample size  k  increases, the magnitude 
of the estimate increases, but increment in magnitude is nominal (robust). A 
similar trend also noted when scale parameter    increases, however for large 
value of   ( 1.5)  the magnitude of the estimate decreases. The opposite trend 
has been seen when set of prior parameter increases.  

Using above considered set of parametric values with 
 0.25, 0.50, 1.00, 2.00;a   (shape parameter of LLF) the magnitude of the Bayes 

estimate under LLF have been obtained and present in the Table 2, only for
  0.25, 1.00. a   
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Table 2. Bayes Estimate of m  under LLF (Scale Parameter Known)  

 
15, 0.25n a 

 k   


 ( , )    4 6 8 10 15 

0.50 0.25, 0.50 3.3060 3.3159 3.3226 3.3292 3.3358 

0.50 04, 02 3.2778 3.2877 3.2942 3.3007 3.3073 

0.50 09, 03 2.9531 2.9620 2.9678 2.9737 2.9797 

 

1.00 0.25, 0.50 3.2839 3.2937 3.3002 3.3069 3.3135 

1.00 04, 02 3.2699 3.2798 3.2863 3.2927 3.2992 

1.00 09, 03 3.2698 3.2795 3.2860 3.2926 3.2991 

 

1.50 0.25, 0.50 3.2331 3.2426 3.2491 3.2556 3.2621 

1.50 04, 02 3.2192 3.2289 3.2353 3.2417 3.2480 

1.50 09, 03 3.1623 3.1717 3.1780 3.1842 3.1906 

 

3.00 0.25, 0.50 2.9560 2.9648 2.9708 2.9768 2.9827 

3.00 04, 02 2.9433 2.9522 2.9581 2.9639 2.9699 

3.00 09, 03 2.8913 2.8999 2.9057 2.9115 2.9173 

  

15, 1.00n a 
 k   


 ( , )    4 6 8 10 15 

0.50 0.25, 0.50 4.0109 4.0228 4.0309 4.0390 4.0470 

0.50 04, 02 3.9937 4.0058 4.0137 4.0216 4.0295 

0.50 09, 03 3.9231 3.9348 3.9425 3.9504 3.9583 

 

1.00 0.25, 0.50 3.7329 3.7440 3.7515 3.7590 3.7665 

1.00 04, 02 3.7010 3.7121 3.7194 3.7269 3.7343 

1.00 09, 03 3.3344 3.3444 3.3510 3.3577 3.3644 

 

1.50 0.25, 0.50 3.7030 3.7140 3.7214 3.7289 3.7363 

1.50 04, 02 3.6871 3.6982 3.7056 3.7129 3.7202 

1.50 09, 03 3.6869 3.6980 3.7054 3.7127 3.7201 

 

3.00 0.25, 0.50 2.7579 2.7661 2.7716 2.7772 2.7828 

3.00 04, 02 2.7460 2.7544 2.7598 2.7652 2.7707 

3.00 09, 03 2.6975 2.7055 2.7109 2.7163 2.7217 
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Table 2 shows that when shape parameter    increases, the magnitude of 
the estimator decreases (except for large prior parametric value). An increasing 
trend in the magnitude of the estimate also is also noted when ' ' a  increases but 
the increment in magnitude is robust. Others properties are similar to ISELF. 

When Both Parameters Unknown 
When both parameters are considered as a random variable, a simulation study 
was carried out to study the properties of Bayes estimators of change point. 

Similarly, a 10,000 random sample of size 15 n   was generated. The Bayes 
estimate of m  under the ISELF and LLF were obtained and are presented in 
Tables 3-4 respectively for different selected set of values. 
 
Table 3. Bayes Estimate of m  under ISELF (Both Parameter Unknown) 

 
15n 

 
k   


 ( , )    4 6 8 10 15 

0.50 0.25, 0.50 3.3640 3.3741 3.3808 3.3877 3.3944 

0.50 04, 02 3.3497 3.3599 3.3664 3.3731 3.3798 

0.50 09, 03 3.2223 3.2320 3.2384 3.2448 3.2513 

 

1.00 0.25, 0.50 3.6074 3.6183 3.6254 3.6327 3.6399 

1.00 04, 02 3.5766 3.5873 3.5945 3.6017 3.6088 

1.00 09, 03 3.2905 3.3003 3.3068 3.3134 3.3200 

 

1.50 0.25, 0.50 3.6150 3.6258 3.6331 3.6403 3.6477 

1.50 04, 02 3.5996 3.6105 3.6176 3.6248 3.6319 

1.50 09, 03 3.5982 3.6090 3.6161 3.6233 3.6304 

 

3.00 0.25, 0.50 3.6787 3.6896 3.6971 3.7045 3.7118 

3.00 04, 02 3.6630 3.6740 3.6813 3.6886 3.6959 

3.00 09, 03 3.5995 3.6103 3.6174 3.6246 3.6318 
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Table 4. Bayes Estimate of m  under LLF (Both Parameter Known)  

 
15, 0.25n a 

 k   


 ( , )    4 6 8 10 15 

0.50 0.25, 0.50 3.4309 3.4411 3.4480 3.4550 3.4617 

0.50 04, 02 3.4162 3.4265 3.4333 3.4401 3.4469 

0.50 09, 03 3.3558 3.3658 3.3725 3.3792 3.3859 

 

1.00 0.25, 0.50 3.2678 3.2775 3.2841 3.2907 3.2972 

1.00 04, 02 3.2398 3.2496 3.2560 3.2624 3.2689 

1.00 09, 03 3.1907 3.2002 3.2066 3.2130 3.2194 

 

1.50 0.25, 0.50 3.2046 3.2141 3.2205 3.2269 3.2334 

1.50 04, 02 3.1907 3.2002 3.2066 3.2130 3.2194 

1.50 09, 03 2.9189 2.9277 2.9335 2.9392 2.9452 

 

3.00 0.25, 0.50 2.4142 2.4214 2.4262 2.4312 2.4361 

3.00 04, 02 2.4039 2.4112 2.4159 2.4207 2.4255 

3.00 09, 03 2.3614 2.3684 2.3732 2.3779 2.3826 

  

15, 1.00n a 
 k   


 ( , )    4 6 8 10 15 

0.50 0.25, 0.50 3.7918 3.8031 3.8108 3.8183 3.8260 

0.50 04, 02 3.7756 3.7871 3.7946 3.8020 3.8095 

0.50 09, 03 3.7088 3.7199 3.7272 3.7347 3.7421 

 

1.00 0.25, 0.50 3.5352 3.5458 3.5528 3.5599 3.5671 

1.00 04, 02 3.5201 3.5308 3.5378 3.5448 3.5517 

1.00 09, 03 3.5199 3.5305 3.5375 3.5446 3.5516 

 

1.50 0.25, 0.50 3.2398 3.2496 3.2560 3.2624 3.2689 

1.50 04, 02 3.1908 3.2005 3.2068 3.2131 3.2195 

1.50 09, 03 3.0107 3.0194 3.0207 3.0328 3.0475 

 

3.00 0.25, 0.50 2.6585 2.6665 2.6717 2.6772 2.6826 

3.00 04, 02 2.6472 2.6552 2.6603 2.6657 2.6710 

3.00 09, 03 2.6003 2.6080 2.6133 2.6185 2.6237 
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The behavior of ˆ̂
Im  was shown to be similar as compare to ˆ Im  under ISELF. 

It is also noted that the magnitude of the estimator ˆ̂
Im  increases as    increases 

for all selected parametric set of values. Further, the magnitude of the estimate of 
ˆ̂

Im  is closer than the estimate of ˆ Im  except for large value of   .  

All properties of estimator ˆ̂
Lm  were similar as compared to ˆ Lm

 
under LLF. 

For small values of ' ', a  the magnitude of estimate of ˆ Lm  is wider than ˆ̂
Lm  for all 

considered values of   (except for 0.50  ). For large values of ' ', a  the 

magnitude of estimate of ˆ̂
Lm  becomes narrower than ˆ Lm  for all considered values 

of   (except for 1.00  ). Other properties are the same, as in the case of a 
known shape parameter. 

Remark 
In the case when the censored sample size 15, r   the censoring criterion reduces 
to the complete sample size criterion and, hence, all results are valid for the 
complete sample case. 
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