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Estimation of Reliability in Multicomponent 
Stress-Strength Based on Generalized 
Rayleigh Distribution 
Gadde Srinivasa Rao 
University of Dodoma 
Dodoma, Tanzania 
 
 
A multicomponent system of k components having strengths following k- independently 
and identically distributed random variables x1, x2,…, xk and each component 
experiencing a random stress Y is considered. The system is regarded as alive only if at 
least s out of k (s < k) strengths exceed the stress. The reliability of such a system is 
obtained when strength and stress variates are given by a generalized Rayleigh 
distribution with different shape parameters. Reliability is estimated using the maximum 
likelihood (ML) method of estimation in samples drawn from strength and stress 
distributions; the reliability estimators are compared asymptotically. Monte-Carlo 
simulation is used to compare reliability estimates for the small samples and real data sets 
illustrate the procedure. 
 
Keywords: Generalized Rayleigh distribution, reliability estimation, stress-strength, 
ML estimation, confidence intervals  
 

Introduction 

Surles and Padgett (1998, 2001) introduced the two-parameter Burr Type X 
distribution and named it the generalized Rayleigh distribution. Note that the two-
parameter generalized Rayleigh distribution is a particular member of the 
generalized Weibull distribution, originally proposed by Mudholkar and 
Srivastava (1993). The two-parameter Burr Type X distribution is referred to as 
the generalized Rayleigh distribution (GRD). For  > 0 and  > 0, the two-
parameter GRD has the density function;  
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and the distribution function is given by 
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Here   and   are the shape and scale parameters respectively. The GRD 

has been studied extensively by Kundu and Raqab (2005) and Raqab and Kundu 
(2005). The two-parameter GRD is denoted by GR( ,  ). Surles and Padgett 
(2001) showed that the two-parameter GR distribution can be used effectively in 
modeling strength as well as general lifetime data. 

This article studies reliability in a multicomponent stress-strength based on 
X, Y, two independent random variables, where X and Y fallow generalized 
Rayleigh distributions with shape parameters  and   respectively and with 
common scale parameter  . 

 Let the random samples 1 2, , ,... ky x x x  be independent, G(y) be the 
continuous distribution function of Y and F(x) be the common continuous 
distribution function of 1 2, ,... kx x x . The reliability in a multicomponent stress-
strength model developed by Bhattacharyya and Johnson (1974) is 
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where 1 2, ,... kx x x are independently and identically distributed (iid) with common 
distribution function F(x), this system is subjected to common random stress Y. 
The probability in (3) is called reliability in a multicomponent stress-strength 
model (Bhattacharyya & Johnson, 1974). The survival probability of single 
component stress-strength versions have been considered by several authors 
assuming various lifetime distributions for the stress-strength random variates 
(Enis & Geisser, 1971; Downtown, 1973; Awad & Gharraf, 1986; McCool, 1991; 
Nandi & Aich, 1994; Surles & Padgett, 1998; Raqab & Kundu, 2005; Kundu & 
Gupta, 2005, 2006; Raqab, et al., 2008; Kundu & Raqab, 2009). Reliability in a 
multicomponent stress-strength was developed by Bhattacharyya and Johnson 
(1974) and Pandey and Borhan Uddin (1985) and the references therein cover the 
study of estimating ( )P Y X  in many standard distributions assigned to one or 
both of stress, strength variates. Recently Srinivasa Rao and Kantam (2010) 
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studied estimation of reliability in multicomponent stress-strength for log-logistic 
distribution.  

Suppose a system, with k identical components, functions if (1 )s s k   or 
more of the components simultaneously operate. In its operating environment, the 
system is subjected to a stress Y which is a random variable with distribution 
function G(.). The strengths of the components, that is the minimum stresses to 
cause failure, are independent and identically distributed random variables with 
distribution function F(.). Then the system reliability, which is the probability that 
the system does not fail, is the function ,s kR  given in (3). The estimation of 
survival probability in a multicomponent stress-strength system when the stress, 
strength variates are following Rayleigh distribution is not paid much attention. 
Therefore, this article studies the estimation of reliability in multicomponent 
stress-strength model with reference to Rayleigh distribution.  

Maximum Likelihood Estimator of ,s kR  

Let ~ ( , )X GR    and ~ ( , )Y GR    with unknown shape parameters ,   
and common scale parameter  , where X and Y are independently distributed. 
The reliability in multicomponent stress- strength for generalized Rayleigh 
distribution using (3) results in: 

 

 
12 2 2 2

2
,

0

( ) ( ) ( ) ( ) 1 1 1 2 1
i k i

k

s k ii s

y y y yR k e e ye e dy
  

   







           
            

           
 

  
1

1

0

 [1 ] [ ]
k

i k i

ii s
k t t t dt   



        where 
2( )1 yt e    

  
1

1

0

 [1 ] if ,
k

k i i

ii s
k z z dz z t  

 


  



      

   ( , 1).
k

ii s
k k i i  



     

 
After simplification this reduces to 
 

 
1

,
0

! ( )
( )!

ik

s k
i s j

kR k j
k i

 



 

 
   

  
    (4) 



ESTIMATION OF RELIABILITY IN STRESS-STRENGTH 

370 

because k and i are integers. The probability in (4) is called reliability in a 
multicomponent stress-strength model. If and   are not known, it is necessary 
to estimate and   to estimate ,s kR . In this article and   are estimated using 
the ML method. The estimates are substituted in   to obtain an estimate of ,s kR  
using equation (4).  

It is known that the method of Maximum Likelihood Estimation (MLE) has 
invariance property. In this direction, this article proposes the ML estimator for 
the reliability of a multicomponent stress-strength model by considering the 
estimators of the parameters of stress, strength distributions by ML method of 
estimation in a generalized Rayleigh distribution.  

 Let 1 2 1 2.... ;  ....n mx x x y y y       be two ordered random samples of 
size n, m respectively on strength, stress variates each following GRD with shape 
parameters and  , common scale parameter  . The log-likelihood function of 
the observed sample is  
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The MLEs of ˆ ˆˆ,  and ,  for example, ,  and       , respectively can be obtained 
as the iterative solution of  
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and then from (6), (7) and (8) 
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where ̂  can be obtained as the solution of  non-linear equation  
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Therefore, ̂  is simple iterative solution of non-linear equation ( ) 0g   . Once ̂  
is known, ˆˆ  and    can be obtained from (9) and (10) respectively. Therefore, the 
MLE of ,s kR  becomes  
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The asymptotic confidence interval for ,s kR , is calculated as: First, the asymptotic 
variance of the MLE is given by 
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The asymptotic variance (AV) of an estimate of ,s kR  which a function of two 
independent statistics, for example, ,   is given by Rao (1973). 
 

 
2 2

, ,
,

R Rˆˆ ˆAV(R )=V( ) V( )s k s k
s k  

 

    
   

    
  (14) 

 
From the asymptotic optimum properties of MLEs (Kendall & Stuart, 1979) 

and of linear unbiased estimators (David, 1981), it is known that MLEs are 
asymptotically equally efficient having the Cramer-Rao lower bound as their 
asymptotic variance as given in (13). Thus, from Equation (14), the asymptotic 
variance of ,

ˆ
s kR can be obtained. 

To avoid the difficulty of derivation of ,s kR , the derivatives of ,s kR  are 
obtained for (s,k)=(1,3) and (2,4) separately, they are given by  
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and the asymptotic 100(1 )%  confidence interval for ,s kR  is given by 
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The asymptotic 100(1 )%  confidence interval for 1,3R  is given by 
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The asymptotic 100(1 )%  confidence interval for 2,4R  is given by 
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where (1 /2)Z  is the th(1 / 2)  percentile of the standard normal distribution. 

Simulation Study and Data Analysis 

Simulation Study 

Results based on Monte Carlo simulations to compare the performance of the ,s kR  
using different sample sizes are presented. 3,000 random sample of size 10(5)35 
each from stress population, strength population were generated for ( , )  = 
(3.0,1.0), (2.5,1.0), (2.0,1.0), (1.5,1.0), (1.0,1.0), (1.5,2.0),(1.5,2.5) and (1.5,3.0) 
on lines of Bhattacharyya and Johnson (1974). The ML estimators of and   
were then substituted in   to obtain the reliability in a multicomponent stress-
strength for (s, k) = (1, 3), (2, 4). The average bias and average mean square error 
(MSE) of the reliability estimates over the 3,000 replications are given in Tables 1 
and 2. Average confidence length and coverage probability of the simulated 95% 
confidence intervals of ,s kR  are given in Tables 3 and 4. The true value of 
reliability in multicomponent stress- strength with the given combinations of 
( , )   for (s, k) = (1, 3) are 0.563, 0.600, 0.643, 0.692, 0.750, 0.800, 0.833, 0.857, 
0.875 and for (s, k) = (2, 4) are 0.355, 0.400, 0.454, 0.519, 0.600, 0.674, 0.725, 
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0.762, 0.790. Thus the true value of reliability in multicomponent stress- strength 
increases as   increases for a fixed   whereas reliability in multicomponent 
stress- strength decreases as  increases for a fixed   in both the cases of (s, k). 
Therefore, the true value of reliability is increases as   decreases and vice-versa. 
The average bias and average MSE are decreases as sample size increases for 
both (s, k). It verifies the consistency property of the MLE of ,s kR . Also the bias is 
negative in both situations of (s, k). Whereas, among the parameters the absolute 
bias and MSE are increases as   increases for a fixed   in both the cases of (s, 
k) and the absolute bias and MSE are decreases as   increases for a fixed   in 
both the cases of (s, k). The average length of the confidence interval also 
decreases as the sample size increases. The coverage probability is close to the 
nominal value in all cases but slightly less than 0.95 in most of the combinations. 
Overall, the performance of the confidence interval is good for all combinations 
of parameters. Whereas, among the parameters observed, the same phenomenon 
for average length and average coverage probability were observed in the case of 
average bias and MSE.  
 
Table 1. Average bias of the simulated estimates of ,s kR  

 

   
( , )   

(s,k) (n,m)  (3.5,1.5) (3.0,1.5) (2.5,1.5) (2.0,1.5) (1.5,1.5) (1.5,2.0) (1.5,2.5) (1.5,3.0) (1.5,3.5) 

(1,3) 

(10,10) 
 

-0.02036 -0.01872 -0.01650 -0.01357 -0.00984 -0.00649 -0.00429 -0.00360 -0.00249 

(15,15) 
 

-0.01517 -0.01412 -0.01268 -0.01075 -0.00825 -0.00592 -0.00428 -0.00311 -0.00227 

(20,20) 
 

-0.00860 -0.00773 -0.00669 -0.00548 -0.00367 -0.00277 -0.00179 -0.00114 -0.00101 

(25,25) 
 

-0.00851 -0.00766 -0.00657 -0.00521 -0.00357 -0.00215 -0.00122 -0.00060 -0.00017 

(30,30) 
 

-0.00679 -0.00613 -0.00528 -0.00421 -0.00290 -0.00175 -0.00098 -0.00046 -0.00010 

(35,35) 
 

-0.00655 -0.00610 -0.00517 -0.00413 -0.00255 -0.00147 -0.00073 -0.00021 -0.00008 

(2,4) 

(10,10) 
 

-0.01113 -0.01143 -0.01124 -0.01027 -0.00819 -0.00657 -0.00539 -0.00472 -0.00348 

(15,15) 
 

-0.00908 -0.00945 -0.00950 -0.00903 -0.00776 -0.00601 -0.00447 -0.00324 -0.00229 

(20,20) 
 

-0.00601 -0.00599 -0.00571 -0.00508 -0.00400 -0.00176 -0.00120 -0.00089 -0.00138 

(25,25) 
 

-0.00512 -0.00505 -0.00473 -0.00405 -0.00293 -0.00168 -0.00073 -0.00054 -0.00045 

(30,30) 
 

-0.00420 -0.00416 -0.00391 -0.00338 -0.00247 -0.00144 -0.00063 -0.00043 -0.00040 

(35,35) 
 

-0.00386 -0.00390 -0.00377 -0.00237 -0.00160 -0.00125 -0.00058 -0.00019 -0.00035 
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Table 2. Average MSE of the simulated estimates of ,s kR  

 

   
( , )   

(s,k) (n,m)  (3.5,1.5) (3.0,1.5) (2.5,1.5) (2.0,1.5) (1.5,1.5) (1.5,2.0) (1.5,2.5) (1.5,3.0) (1.5,3.5) 

(1,3) 

(10,10) 
 

0.01529 0.01437 0.01300 0.01109 0.00854 0.00627 0.00477 0.00375 0.00303 

(15,15) 
 

0.01052 0.00988 0.00894 0.00764 0.00590 0.00436 0.00334 0.00264 0.00214 

(20,20) 
 

0.00713 0.00666 0.00599 0.00509 0.00392 0.00289 0.00221 0.00175 0.00143 

(25,25) 
 

0.00592 0.00551 0.00494 0.00418 0.00322 0.00236 0.00181 0.00144 0.00117 

(30,30) 
 

0.00460 0.00428 0.00383 0.00323 0.00248 0.00182 0.00139 0.00110 0.00090 

(35,35) 
 

0.00402 0.00374 0.00337 0.00286 0.00220 0.00162 0.00125 0.00099 0.00081 

(2,4) 

(10,10) 
 

0.01801 0.01877 0.01900 0.01831 0.01611 0.01320 0.01077 0.00889 0.00744 

(15,15) 
 

0.01285 0.01337 0.01351 0.01298 0.01140 0.00932 0.00762 0.00630 0.00529 

(20,20) 
 

0.00906 0.00936 0.00938 0.00895 0.00781 0.00635 0.00518 0.00429 0.00361 

(25,25) 
 

0.00754 0.00778 0.00778 0.00740 0.00643 0.00522 0.00426 0.00352 0.00296 

(30,30) 
 

0.00594 0.00612 0.00610 0.00578 0.00500 0.00404 0.00328 0.00271 0.00228 

(35,35) 
 

0.00522 0.00538 0.00538 0.00512 0.00445 0.00361 0.00295 0.00244 0.00205 

 
 

Table 3. Average confidence length of the simulated 95% confidence intervals of ,s kR  

 

   
( , )   

(s,k) (n,m)  (3.5,1.5) (3.0,1.5) (2.5,1.5) (2.0,1.5) (1.5,1.5) (1.5,2.0) (1.5,2.5) (1.5,3.0) (1.5,3.5) 

(1,3) 

(10,10) 
 

0.4091 0.4021 0.3880 0.3632 0.3224 0.2763 0.2400 0.2113 0.1884 

(15,15) 
 

0.3399 0.3334 0.3210 0.2999 0.2658 0.2279 0.1981 0.1747 0.1559 

(20,20) 
 

0.2975 0.2911 0.2794 0.2601 0.2296 0.1961 0.1701 0.1497 0.1335 

(25,25) 
 

0.2675 0.2617 0.2512 0.2338 0.2063 0.1762 0.1529 0.1346 0.1201 

(30,30) 
 

0.2453 0.2398 0.2300 0.2140 0.1887 0.1612 0.1398 0.1232 0.1099 

(35,35) 
 

0.2277 0.2226 0.2135 0.1986 0.1753 0.1498 0.1301 0.1146 0.1023 

(2,4) 

(10,10) 
 

0.4569 0.4719 0.4802 0.4760 0.4498 0.4055 0.3637 0.3274 0.2966 

(15,15) 
 

0.3834 0.3953 0.4012 0.3968 0.3739 0.3366 0.3019 0.2719 0.2466 

(20,20) 
 

0.3396 0.3492 0.3533 0.3479 0.3260 0.2920 0.2610 0.2346 0.2123 

(25,25) 
 

0.3056 0.3143 0.3180 0.3131 0.2934 0.2628 0.2350 0.2112 0.1912 

(30,30) 
 

0.2813 0.2891 0.2923 0.2875 0.2691 0.2409 0.2153 0.1935 0.1752 

(35,35) 
 

0.2611 0.2684 0.2714 0.2670 0.2500 0.2240 0.2003 0.1801 0.1631 
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Table 4. Average coverage probability of the simulated 95% confidence intervals of ,s kR  

 

   
( , )   

(s,k) (n,m)  (3.5,1.5) (3.0,1.5) (2.5,1.5) (2.0,1.5) (1.5,1.5) (1.5,2.0) (1.5,2.5) (1.5,3.0) (1.5,3.5) 

(1,3) 

(10,10) 
 

0.9090 0.9140 0.9193 0.9280 0.9317 0.9303 0.9267 0.9260 0.9267 

(15,15) 
 

0.9120 0.9150 0.9187 0.9213 0.9250 0.9273 0.9290 0.9287 0.9253 

(20,20) 
 

0.9303 0.9347 0.9370 0.9390 0.9390 0.9377 0.9380 0.9347 0.9303 

(25,25) 
 

0.9227 0.9267 0.9317 0.9360 0.9383 0.9373 0.9357 0.9333 0.9277 

(30,30) 
 

0.9353 0.9403 0.9423 0.9463 0.9490 0.9463 0.9433 0.9400 0.9390 

(35,35) 
 

0.9317 0.9330 0.9353 0.9387 0.9387 0.9400 0.9363 0.9337 0.9297 

(2,4) 

(10,10) 
 

0.9113 0.9153 0.9203 0.9243 0.9273 0.9277 0.9257 0.9250 0.9243 

(15,15) 
 

0.9103 0.9160 0.9190 0.9193 0.9233 0.9263 0.9297 0.9260 0.9223 

(20,20) 
 

0.9310 0.9340 0.9370 0.9380 0.9367 0.9367 0.9360 0.9323 0.9287 

(25,25) 
 

0.9237 0.9287 0.9313 0.9353 0.9370 0.9350 0.9323 0.9307 0.9257 

(30,30) 
 

0.9357 0.9397 0.9437 0.9437 0.9477 0.9457 0.9420 0.9403 0.9397 

(35,35) 
 

0.9297 0.9317 0.9367 0.9360 0.9407 0.9393 0.9367 0.9327 0.9300 

Data Analysis 
Strength data, which was originally reported by Badar and Priest (1982), 
represents the strength measured in GPA for single carbon fibers and impregnated 
1,000-carbon fiber tows. Single fibers were tested under tension at gauge lengths 
of 20 mm (Data Set I) and 10 mm (Data Set II), with sample sizes n = 69 and m = 
63 respectively (see Data sets I and II). 
 
Data Set I (gauge lengths of 20 mm). 
 

1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958, 1.966, 1.997, 2.006, 
2.021, 2.027, 2.055, 2.063, 2.098, 2.140, 2.179, 2.224, 2.240, 2.253, 2.270, 2.272, 2.274, 
2.301, 2.301, 2.359, 2.382, 2.382, 2.426, 2.434, 2.435, 2.478, 2.490, 2.511, 2.514, 2.535, 
2.554, 2.566, 2.570, 2.586, 2.629, 2.633, 2.642, 2.648, 2.684, 2.697, 2.726, 2.770, 2.773, 
2.800, 2.809, 2.818, 2.821, 2.848, 2.880, 2.809, 2.818, 2.821, 2.848, 2.880, 2.954, 3.012, 
3.067, 3.084, 3.090, 3.096, 3.128, 3.233, 3.433, 3.585, 3.585. 

 
Data Set II (gauge lengths of 10 mm). 
 

1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 2.445, 2.454, 2.474, 2.518, 
2.522, 2.525, 2.532, 2.575, 2.614, 2.616, 2.618, 2.624, 2.659, 2.675, 2.738, 2.740, 2.856, 
2.917, 2.928, 2.937, 2.937, 2.977, 2.996, 3.030, 3.125, 3.139, 3.145, 3.220, 3.223, 3.235, 
3.243, 3.264, 3.272, 3.294, 3.332, 3.346, 3.377, 3.408, 3.435, 3.493, 3.501, 3.537, 3.554, 
3.562, 3.628, 3.852, 3.871, 3.886, 3.971, 4.024, 4.027, 4.225, 4.395, 5.020. 
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Surles and Padgett (1998, 2001) observed that generalized Rayleigh works well 
for strength data. Raqab and Kundu (2005) analyzed the data by subtracting 1.0 
and 1.8 from the first and second data set respectively. The transformed data sets 
correspond to 20 mm and 10 mm gauge lengths are assumed to follow ( , )GR    
and ( , )GR    respectively. The obtained final estimates for these two data sets 
are ̂  = 2.4421, ̂ = 1.4216, and ̂ = 0.8598. Also they checked the validity of 
the models using the Kolmogorov-Smirnov (K-S) tests for each data set. It was 
observed that for Data Sets I and II, the K-S distances are 0.09 and 0.12 with the 
corresponding p values of 0.6069 and 0.2845 respectively. It indicates that the GR 
model provides reasonable fit to the transformed data sets.  

Based on estimates of and   the MLE of ,s kR  become 1,3R̂ = 0.63588 and 

2,4R̂ = 0.44484. The 95% confidence intervals for 1,3R  become (0.55680, 0.71496) 
and for 2,4R  become (0.34387, 0.54581). 

Conclusions 

This article used real data sets to investigate multicomponent stress-strength 
reliability for a generalized Rayleigh distribution when both stress, strength 
variates follow the same population. Asymptotic confidence intervals for 
multicomponent stress-strength reliability were estimated using the ML method. 
Simulation results indicate that the average bias and average MSE decreases as 
sample size increases in both cases of (s, k). Among the parameters the absolute 
bias and MSE are increases (decreases) as   increases (   increases) in both the 
cases of (s, k). The length of the confidence interval also decreases as the sample 
size increases and coverage probability is close to the nominal value in all sets of 
parameters considered. 
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