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The statistical inference drawn from the difference between two independent Poisson 
parameters is often discussed in medical literature. Kawasaki and Miyaoka (2012) 
proposed an index θ = P(λ1,post < λ2,post), where λ1,post and λ2,post denote Poisson parameters 
following posterior density. A new calculation method is proposed using MCMC and an 
approximate expression and exact expression for θ are compared. 
 
Keywords: Poisson distribution, Bayesian inference, MCMC method, 
Hypergeometric series  
 

Introduction 

The statistical inference drawn from the difference between two independent 
Poisson parameters is often discussed in terms of the frequentist viewpoint rather 
than the Bayesian viewpoint. In this article, a Poisson parameter is assumed as the 
relapse rate of a wrong outcome and an adverse reaction rate. Therefore, a low 
value of the Poisson parameter is desirable. 

Classical statistical analysis of outcomes observed in a randomized 
controlled clinical trial is based on the frequentist approach. The frequentist 
approach to hypothesis testing is based on the p-value. The inconvenience of 
using the p-value is well-known and has been documented by Lindley (1957) and 
Hwang, et al. (1992) among others. 

A few different techniques for hypothesis testing have been developed under 
the Bayesian approach. Basu (1996) briefly showed the use of the Bayesian 
approach with respect to hypothesis testing. Let y be data from the probability 
density function; it is desired to test the null hypothesis against the alternative 

mailto:yk_sep10@yahoo.co.jp


COMPARISON OF THREE CALCULATION METHODS 

398 

hypothesis. One approach computes the posterior probability. Poisson parameters 
were applied to the posterior probability θ that shows the difference between the 
posterior densities of the two independent Poisson parameters, which are 
considered as random variables. This index can be used to determine the 
probability that the Poisson parameter of a study drug is superior to that of a 
control drug. 

Kawasaki and Miyaoka (2012) applied θ to a one-side hypothesis based on a 
two-sample situation. They derived an exact and an approximate expression to 
determine θ.  

There are some pending issues with the above-mentioned method. An 
approximate method and exact method of θ were adopted only while using a 
conjugate prior. The drawback of the approximate method is that it occasionally 
leads to a rough result in a small sample. The drawback of the exact method is 
that it is slightly complicated. In addition, the exact method requires extensive 
computing time with a large sample size. Hence, a Markov Chain Monte Carlo 
(MCMC) method for θ is proposed as a solution to these problems. 

Methodology 

If Xi is the number of events in a population of ni patients (or over ni units of time), 
and λi is the event rate, then the sampling distribution is 
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where i = 1, 2. The conjugate prior density of λi is the gamma distribution with 
parameters αi and βi : 
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where αi > 0 and βi > 0. The posterior density for λi is given as 
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where ai = αi + xi, bi = ni + βi and Γ(a) denotes the gamma function. Let λi,post 
denote the Poisson parameter in the posterior density. 

Approximate expression for θ 
θ can be calculated via an approximation using the standard normal table; assume 
that sample sizes, n1 and n2, are large. It is necessary to determine a Z-test statistic. 
The expected difference in the posterior density and the variance in this difference 
can be expressed as:  
 

 1, 2, 1, 2,( ) ,post post post postE         (4) 
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where μi,post = ai / bi denote the posterior mean of λi,. The Zg-test statistic is 
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The Zg-test statistic is approximately distributed according to the standard normal 
distribution. Therefore, the approximate probability of the index θ is given as 
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where ( )   is the cumulative distribution function of the standard normal 
distribution. From this the approximate probability can be easily calculated. 

Exact method for θ 
Kawasaki and Miyaoka (2012) derived the exact expression for θ using the 
posterior density. The exact expression for θ is 
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is the hypergeometric series, and  t

k  is the Pochhammer symbol. 

MCMC Method for θ  

A computational procedure for θ can be described using the MCMC method. The 
MCMC method is a means of sampling from a posterior density. A random-walk 
Metropolis-Hasting algorithm was used as the MCMC Method. Given that the 
samples come from two independent populations, the posterior joint distribution 
of λ1 and λ2 is a product of its marginal distributions. For this reason, samples can 
be obtained from the posterior distribution of λ1 - λ2 by simulating k values from 
the posterior distribution of λ1 and λ2 using MCMC procedure of SAS, e.g., 

1 2
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post post post    and 1 2
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post post post   , respectively. By computing
1 1 2 2
1, 1, 1, 2, 1, 2,, ,..., k k

post post post post post post        , it is possible to obtain the simulated 
values from the posterior distribution of λ1 - λ2. The posterior samples obtained by 
the MCMC method after the burn-in period are 1 2, ,..., k   . Let 1 2, ,..., k    be 
independent identically distributed random variables with distribution function F. 
The posterior sample is the observed value of 1 2, ,..., k   . Note that 

1, 2,( )post postP     equals 1, 2,( 0)post postP     , thus,   can be expressed 
as 
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is the empirical distribution function. 

Results 

Comparison of three methods 
To compare the probabilities of the three methods for θ , the difference between 
the sample rates (horizontal axis) where sample rate is calculated as Xi/ni, were 
plotted against the difference between the probabilities of the MCMC and exact 
methods (vertical axis), as shown in Figures 1, 3, and 5. Similarly, the difference 
between the sample rates (horizontal axis) were plotted against the difference 
between the probabilities of the approximate and exact methods (vertical axis), as 
shown in Figures 2, 4, and 6. Figures 1, and 2 show situations that considered 
small sample sizes, i.e., n1 = n2 = 10, 15, 20, and 25; Figures 3 and 4, show larger 
sample sizes, i.e., n1 = n2 = 60, 70, 90, and 100. Figures 5 and 6 consider groups 
of different sample sizes, that is, n1 = 5, n2 = 15; n1 = 5, n2 = 25; n1 = 15, n2 = 5 and 
n1 = 25, n2 = 5. 

Relationship between the difference in the probabilities and the 
difference in the sample rates. 
In Figures 1(d) and 3(d), the probability of the MCMC method is approximately 
equal to that of the exact method when the difference between the sample rates is 
1.0. Conversely, the difference between the probabilities of the MCMC and exact 
methods is around 0.01 when the difference between the sample rates is zero. 
Overall, when the difference between the sample rates is large, the probabilities of 
the MCMC and exact methods are roughly equal. By contrast, when the 
difference between the sample rates is small, the probability of the MCMC 
method is different from that of the exact method. This general pattern is similar 
for the difference in the probabilities of the approximation and exact methods. 
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Relationship between the sample size and the difference in the 
probabilities 
In Figure 2(a), the difference between the probabilities of the approximate and 
exact methods is around 0.15 when the difference between the sample rates is 
0.01. For a slightly larger sample size (see Figure 2(d)), the difference between 
the probabilities of the approximate and exact methods is around 0.05 for the 
same difference between the sample rates. In addition, there is virtually no 
difference between the probabilities of the approximate and exact methods when 
the sample size is further increased, as shown in Figure 4(d). Thus, the sample 
size influences the accuracy of the probability of the approximate method. Also 
shown is the difference in the probabilities of the MCMC and exact methods. In 
Figure 1(a), the difference between the probabilities of the MCMC and exact 
methods is around 0.01 when the difference between the sample rates is zero. For 
a slightly larger sample size (see Figure 3(d)), the difference between the 
probabilities of the MCMC and exact method is around 0.01 for the same 
difference between the sample rates. Thus, the accuracy of the probability of the 
MCMC method always remains high even when the sample sizes are small. 

Finally, the difference between the probabilities when groups of different 
sample sizes are considered was investigated. In Figure 2(a), the difference 
between the probabilities of the approximate and exact methods is around -0.01 
when the difference between the sample rates is 0.5. Conversely, in Figure 6(a), 
the difference between the probabilities of the approximate and exact methods is 
around -0.05 for the same difference between the sample rates. In both the cases, 
the total sample size (n1 + n2) is the same. However, the difference between the 
probabilities of the approximate and exact methods is slightly greater in the case 
of groups with different sample sizes; the case of the MCMC method is also 
shown. In Figure 1(d), the difference between the probabilities of the MCMC and 
exact methods is around 0.01 when the difference between the sample rates is 
zero. Conversely, in Figure 5(d), the difference between the probability of the 
MCMC and exact methods is around 0.01 for the same difference between the 
sample rates. Therefore, the difference between the probabilities of the MCMC 
and exact methods is the same regardless of whether the sample sizes are equal or 
different. 
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Figure 1. Comparison of the Exact and MCMC Method when sample sizes are small. 

(vertical axis：Differences of θ in Exact and MCMC method. Prior distribution is 

Gamma(0.01,0.01). horizontal axis : Differences of two sample rates. 
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Figure 2. Comparison of the Exact and Approximate method when sample sizes are 

small. (vertical axis：Differences of θ in Exact and Approximation method. horizontal 

axis : Differences of two sample rates. 
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Figure 3. Comparison of the Exact and MCMC Method when sample sizes are large. 

(vertical axis：Differences of θ in Exact and MCMC method. Prior distribution is 

Gamma(0.01,0.01). horizontal axis : Differences of two sample rates. 
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Figure 4. Comparison of the Exact and Approximate method when sample sizes are 

large. (vertical axis：Differences of θ in Exact and Approximation method. horizontal 

axis : Differences of two sample rates. 
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Figure 5: Comparison of the Exact and MCMC Method when sample sizes are 

unbalanced. (vertical axis：Differences of θ in Exact and MCMC method. Prior 

distribution is Gamma(0.01,0.01). horizontal axis : Differences of two sample rates. 
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Figure 6: Comparison of the Exact and Approximate method when sample sizes are 

unbalanced. (vertical axis：Differences of θ in Exact and Approximation method. 

horizontal axis : Differences of two sample rates. 
 

 

Conclusion 

Three calculation methods were presented for the index 1, 2,P( )post post    . A 
new procedure was described based on the MCMC method. The probabilities of 
these three methods were compared in order to test the relative effectiveness of 
each. 

The expression for the exact method was presented, which includes a 
hypergeometric series, and it was speculated that this series causes the decrease in 
calculation efficiency when the sample size is very large. In addition, 
hypergeometric series are not built into SAS, which is a statistical software 
program frequently used in pharmaceutical development. Therefore, if SAS is 
used, a calculation program for hypergeometric series must be developed. 

It is easy to calculate the probability for using the approximation method. 
This is an advantage when the approximate probability is used. Conversely, when 
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the difference in the sample rates is small and the sample sizes are unbalanced, 
the accuracy the approximation method is poor. That is, the accuracy of the 
probability of the approximation method depends on the sample size.  

This study showed that the accuracy of the MCMC method was greater than 
that of the approximation method. Moreover, the probability of the MCMC 
method can be easily calculated using SAS. In addition, it is possible to use the 
non-conjugate prior for the prior distribution in the MCMC method. This is 
considered to be one of the advantages of the MCMC method. 
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