
Journal of Modern Applied Statistical
Methods

Volume 13 | Issue 1 Article 27

5-1-2014

Specifying Asymmetric STAR models with Linear
and Nonlinear GARCH Innovations: Monte Carlo
Approach
OlaOluwa S. Yaya
University of Ibadan, Nigeria, os.yaya@mail.ui.edu.ng

Olanrewaju I. Shittu
University of Ibadan, Nigeria, oi.shittu@ui.edu.ng

Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the
Statistical Theory Commons

Recommended Citation
Yaya, OlaOluwa S. and Shittu, Olanrewaju I. (2014) "Specifying Asymmetric STAR models with Linear and Nonlinear GARCH
Innovations: Monte Carlo Approach," Journal of Modern Applied Statistical Methods: Vol. 13 : Iss. 1 , Article 27.
DOI: 10.22237/jmasm/1398918360

http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol13%2Fiss1%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol13%2Fiss1%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol13?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol13%2Fiss1%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol13/iss1?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol13%2Fiss1%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol13/iss1/27?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol13%2Fiss1%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol13%2Fiss1%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol13%2Fiss1%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/214?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol13%2Fiss1%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages


Journal of Modern Applied Statistical Methods 
May 2014, Vol. 13, No. 1, 410-430. 

Copyright © 2014 JMASM, Inc. 
ISSN 1538 − 9472 

 

 
 
OlaOluwa S. Yaya is a Lecturer in the Department of Statistics.  Email at: 

os.yaya@mail.ui.edu.ng. Dr. Shittu is a Lecturer in the Department of Statistics. Email at 

oi.shittu@ui.edu.ng. 

 
 

410 

Specifying Asymmetric STAR models with 
Linear and Nonlinear GARCH Innovations: 
Monte Carlo Approach 
OlaOluwa S. Yaya 
University of Ibadan 
Ibadan, Nigeria 

Olanrewaju I. Shittu 
University of Ibadan 
Ibadan, Nigeria 

 
 
Economic and finance time series are typically asymmetric and are expected to be 
modeled using asymmetrical nonlinear time series models. Smooth Transition 
Autoregressive (STAR) models: Logistic (LSTAR) and Exponential (ESTAR) are known 
to be asymmetric and symmetric respectively. Under non-normal and heteroscedastic 
innovations, the residuals of these models are estimated using Generalized 
Autoregressive Conditionally Heteroscedastic (GARCH) models with variants which 
include linear and nonlinear forms.  The small sample properties of STAR-GARCH 
variants are yet to be established but these properties are investigated using Monte Carlo 
(MC) simulation. An MC investigation was conducted to investigate the performance of 
selections of STAR-GARCH models by classical nonlinear selection approaches. The 
ARCH(1) and GARCH(1,1) models were the linear GARCH specifications while the 
Logistic Smooth Transition-ARCH (LST-ARCH(1,1)), Logistic Smooth Transition-
GARCH (LST-GARCH(1,1)) and Asymmetric Nonlinear Smooth Transition-GARCH 
(ANST-GARCH(1,1)) models were the nonlinear GARCH specifications.  The 
nonlinearity parameter in the variance equations and Autoregressive (AR) parameters 
were varied along with different sample sizes. With the assumption of normality, the 
results showed that the selection of LSTAR models were actually affected by the 
structure of the innovations and this improved as sample size increased. Misspecification 
tests showed that these models cannot be misrepresented in the real sense. 
 
Keywords: Asymmetry, Monte Carlo simulations, nonlinear GARCH, Smooth 
transition autoregression, specification  
 

Introduction 

Smooth Transition Autoregressive (STAR) and Generalized Conditionally 
Heteroscedastic (GARCH) models are gaining their popularities in economics and 
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finance. STAR models of Granger and Teräsvirta (1993) classify market into two 
phases of contraction and expansion, whereas GARCH model of Bollerslev 
(1986) is often used to study the behavior of asset returns or innovations of the 
‘parent’ model. In that case, such a ‘parent’ model is the mean equation and the 
(GARCH) model is the variance equation. The innovations of the STAR model 
are expected follow normal distribution (homoscedasticity) but in case this is not 
true, the innovations are said to possess heteroscedasticity, which can be of 
various forms (Pavlidis, Paya and Peel, 2010). The mean and variance equations 
are then compounded as STAR-GARCH model. 

Maximum Likelihood Estimation (MLE) of STAR-GARCH model was 
examined in Chan and McAleer (2002). The structural and statistical properties of 
the model were also established in the paper, even though the asymptotic 
normality and finite sample properties are still examined using Monte Carlo 
simulation approach. Chan and McAleer (2002) also considered the effects of 
misspecifying the transition functions (logistic or exponential) in the STAR model 
and the results obtained showed that greater bias will be induced in the GARCH 
estimates for the STAR-GARCH model whenever STAR mode is misspecified. 
Their results further showed that Logistic STAR model can easily be substituted 
for Exponential STAR model. 

In the study of financial returns, negative returns tend to be followed by 
periods of higher volatility than positive returns of the same magnitude, that is 
negative and positive shocks exert different values for the leverage of a firm 
which on the long run realize different volatilities (Black, 1976). This property 
has therefore led to the development of GARCH variants that are robust to 
asymmetry. These variants are nonlinear in their structures due to the fact that the 
conditional variance is no longer specified as a linear function of lagged squared 
error and lagged variance. These common asymmetric variants are the 
Exponential GARCH (EGARCH) (Nelson, 1991), Asymmetric Power ARCH 
(APARCH) (Ding, et al., 1993) and Glosten Jaganathan and Runkle (GJR-
GARCH) (Glosten, et al., 1993) models, but in this work we investigate GARCH 
variants which display regime switching dynamics.  

This study is motivated by the work of Chan and McAleer (2002). We 
applied the linear GARCH and Smooth Transition specification of 
ARCH/GARCH models in a Monte Carlo simulation approach. Nonlinearities 
were first introduced in the ARCH functional form in Engle and Bollerslev (1986). 
They proposed in their model the dynamics of conditional variance, 2

t  as it 
changes with the squared residuals and the transition between different 
conditional variance determined by normal cumulative distribution function. A 
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few years later, Higgins and Bera (1992) developed a Nonlinear ARCH 
(NARCH) model which accommodated different functional forms to predict the 
conditional variance. Apart from the classical ARCH and GARCH models of 
Engle (1982) and Bollerslev (1986), Smooth Transition ARCH (STARCH), 
Smooth Transition GARCH (ST-GARCH) and Asymmetric Nonlinear Smooth 
Transition GARCH (ANST-GARCH) models of Hagerud (1996; 1997), 
González-Rivera (1998) and Anderson et al. (1999) respectively are also 
considered. The ST-ARCH model was applied on the Nordic and Stockholm 
stock returns and found the model better than the linear GARCH model. 
González-Rivera (1998) used MC simulation experiment to study the model and 
applied the models on stock returns and exchange-rate data.  

The STAR-GARCH and STAR-STGARCH Models 

This article presents compounded regime switching and volatility models, with 
the regime switching model as the mean equation and volatility models as the 
variance equation. For a time series , 1,...,ty t N  with  2,ty N    in the 

structural model, 
 
  ˆ .t ty f     (1) 
 
where  .f  is the function of ty  and t  is the innovation process, expected to be 
independently and identically distributed with mean 0 and variance 1 that is 
homoscedasticity case. In the case where this assumption of normal distribution 
fails, the innovations are estimated with volatility models. 

The Mean Equation: STAR model 
The Smooth Transition Autoregressive (STAR) model is introduced in Granger 
and Teräsvirta (1993) and the specification, estimation and evaluation of the 
model are itemized following standard procedures in Teräsvirta (1994). Since 
then, the model has been applied to study nonlinearity in business cycle 
(Teräsvirta and Anderson, 1992); Skalin and Teräsvirta 1996; 1998) and real 
exchange rates (Baum et al., 1998; Liew et al., 2002). The connection between 
business cycle-regimes and nonlinearity in the UK labour market is studied in 
Acemoglu and Scotts (1994). Öcal (2000) applied STAR model on the 
nonlinearities in growth rates of some selected UK macroeconomic time series 
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and suggest either two-regime or three-regime model for UK economy. Mourelle, 
Cuestas and Gil-Alana (2011), Shittu and Yaya (2011) and Yaya (2013) 
considered STAR model for Nigerian inflation series.  

Apart from real life time series data that have been considered for the STAR 
model, Escribano and Jordá (2001) and Yaya and Shittu (2011) investigated the 
selection of STAR model by varying some of the parameters and conditions in the 
models and obtained results that serve as guide for nonlinear time series modelers; 
then, there is need to study, and if possible develop the structural and small 
sample properties of the STAR model. 

The STAR model of order p is given as, 
 

  10 1 20 2
1 1

; ,
p p

t i t i i t i t d t

i i

y y y F y c       

 

 
     

 
    (2) 

 

where 10 20,   are the constants and  1 2, 1,...,i i i p    are the autoregressive 
parameters of order p. The transition function,  ; ,t dF y c

 causes the nonlinear 
dynamics in the model, and this are of logistic and exponential forms as given as, 
 

  
 

1; ,
1 expt d

t d

F y c
y c









    

  (3) 

 
and  
 
    

2; , 1 expt d t dF y c y c  
    
 

  (4) 

 
respectively, with 0   in both cases. The logistic type is known to be 
asymmetric whereas the exponential type is symmetric. Economic and finance 
series often exhibit forms of asymmetries, and therefore Logistic STAR (LSTAR) 
model is often applied to model nonlinear dynamics in the series. In the transition 
functions, the transition variable is t dy   with d assuming values 1,2, …, p. the 
value of d is varied in order to improve nonlinearity in the system when it is not 
known prior to model estimation. The slope,   and intercept, c are parts of the 
nonlinearity parameters in the transition function. As   assumes values from 1 to 
say 100, the nonlinearity becomes sharper, and the dynamics shift from lower 
linear region to upper linear region at faster rate, after being in the nonlinear state 
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for some period. At 1  , depending on the variance of ty  and size of c, 
discrimination between the nonlinear and linear series may not be significant. 
(Yaya and Shittu, 2011). The transition functions in (3) and (4) are bounded 
between 0 and 1, and this makes the STAR modelling of interesting application. 
When the transition function is at zero state, the entire system in (2) becomes 
linear, and at unity state, it is also linear. Most of the time, the transition function 
is such that  0 ; , 1t dF y c  , which is a nonlinear state. 

Specification between the asymmetric and symmetric transition function is 
often carried out using the approach outlined in Teräsvirta (1994). Though there is 
a newer specification approach proposed in Escribano and Jordá (2001), the 
approach of Teräsvirta (1994) is not dominated by that of Escribano and Jordá 
(2001). Further readings on the specification of STAR models are referred to the 
two articles as well as Luukkonen, Saikkonnen and Teräsvirta (1988). 

The Variance Equation: GARCH and ST-GARCH models 

Apart from the issue of nonlinearity of the time series ty , the innovations of the 
estimated model (mean equation) is often heteroscedastic for economic and 
finance series to be specific. Engle (1982) proposed the Autoregressive 
Conditionally Heteroscedastic (ARCH) model of order q for UK inflation. 
 

 2 2

1

q

t i t i

i

w   



    (5) 

 
where 2

t  is the conditional variance, w is the constant and  1,...,i i q   are the 

parameters in the ARCH model. The t i   are the residuals from the mean 
equation which are assumed to be heteroscedastic. 

Bollerslev (1986) proposed the generalized version of Engle’s model which 
is named the Generalized Autoregressive Conditionally Heteroscedastic 
(GARCH) model of order (p, q) given as, 

 

 2 2 2

1 1

q r

t i t i j t j

i j

w     

 

      (6) 

 
where  1,...,j j r   are the parameters in the GARCH term. In the ARCH(q) 
and GARCH(q, r) models in (5) and (6), 0w  , 0i   and 0j   and the 
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existence of covariance-stationarity is 
1

1
q

i

i




  for ARCH(q) and 

1 1
1

q r

i j

i j

 
 

    for GARCH(q, r) model. 

Hagerud (1996; 1997) and González-Rivera (1998) considered introducing 
regime switching functional forms in the ARCH/GARCH systems. Their 
propositions are further developed in Lundbergh and Teräsvirta (1999). Hagerud 
(1996) proposed Smooth Transition-ARCH (q) (STARCH) model, 
 

    2 2 2

1 1
1

q q

t i t i t i i t i t i

i i

w F F         

 

         (7) 

 
where w and i  are as defined in ARCH model. The additional parameter, 
 1,..,i i q   defines the model in two-regimes. The transition function, with the 

transition variable t i   is of logistic and exponential as well. These are given as, 
 

  
 
1

1 expt i

t i

F 







 

  (8) 

 
and  
 
    21 expt i t iF        (9) 

 
for the two forms respectively with 0   in both cases. The two transition 
functions in (8) and (9) will generate different data dynamics for the conditional 
variance. The logistic form in (8) will produce a return process where the 
dynamics of the conditional variance differ depending on the signs of the 
innovations (Hagerud, 1997). As t j   , the logistic function equals to 1 2  
and as t j   , the function equals to 1 2 . The exponential function in (9) is 
symmetric with respect to the sign of the error term, hence it generates data for 
which the dynamics of the conditional variance depends only on the magnitude of 
the innovations. As t j   , the impact of 2

1t   on 2
t  changes smoothly from 

i  to i  in both logistic ST-ARCH(q) and ST-GARCH(q, r) when the function 
equals 1, and as 0t j   , the logistic function equals 0. Also, as the parameter   
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becomes larger, both the logistic ST-ARCH and ST-GARCH functions approach 
step functions which equal 0 for negative 1t   and 1 for positive 1t  , therefore, 
for logistic function,  1 2 . 1 2F    and for exponential function,  0 . 1F  .  

For positive conditional variance in the logistic ST-ARCH model, the 

condition 1
2i i   and for stationarity of the innovations t , 

 
1

1 max ,0 1
2

q

i i i

i

  


 
   

 
 . For the positive conditional mean in the 

exponential ST-ARCH, 0i i    and for stationarity of the innovations t , 

 
1

max ,0 1
q

i i

i

 


     (Hagerud, 1997).  

 The generalized form of the model called Smooth Transition-GARCH (q, r) 
(ST-GARCH) is proposed in Hagerud (1997) and González-Rivera (1998) as, 
 

    2 2 2 2

1 1 1
1

q q r

t i t i t i i t i t i j t j

i i j

w F F            

  

           (10) 

 
with the transition functions in (8) and (9) for the logistic and exponential cases 
respectively. The ST-GARCH model only included the GARCH term, 2

t j 
.  

For positive conditional variance in the logistic ST-GARCH model, all the 
covariance stationarity condition of GARCH(p, q) model hold here in ST-

GARCH, and apart from these,  1
2i i   for the logistic case and for the 

stationarity of the innovations t ,  
1 1

1 max ,0 1
2

q r

i i i j

i i

   
 

 
    

 
  . For the 

positive conditional mean in the exponential ST-GARCH, 0i i    and for 

stationarity of the innovations t ,  
1

max ,0 1
q

i i

i

 


     (Hagerud, 1997).  

A similar ST-GARCH (p, q) is proposed in Anderson, et al. (1999) and 
applied recently in Nam, et al. (2002). This is given as, 
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 

 

2 2 2
10 1 1

1 1

2 2
20 2 2

1 1

1
q r

t i t i j t j t i

i j

q r

i t i j t j t i

i j

w F

w F

     

    

  

 

  

 

 
       

 

 
   
 

 

 

  (11) 

 
This is a variant of GARCH model in regime switching functional form. The 

parameters and the conditions of existence of GARCH as defined for the GARCH 
specification in (6) holds for the ST-GARCH model. The model in (11) is defined 
only for the asymmetric function (8), and therefore, the ST-GARCH model is 
otherwise known as Asymmetric nonlinear Smooth Transition-GARCH (ANST-
GARCH) model (Nam, et al., 2002). Franses and van Dijk (2003) showed that 
there is similarity between the ST-GARCH (q, r) model of Hagerud (1997), even 
in the conditions of existence of conditional volatility and stationarity. Our 
selection of asymmetric variants of GARCH in this paper is based on similarity 
with STAR model and their abilities to realize smooth changing dynamics.  

Structure of the Data Generating Process and Nonlinearity 
Tests 

The structure of the Data Generating Process (DGP) model used in the simulation 
is first explained analytically using a particular STAR model used in Granger and 
Teräsvirta (1993), Teräsvirta, Lin and Granger (1993), Teräsvirta (1994), 
Escribano, Franses and van Dijk (1998), Escribano and Jordá (2001) and Lopes 
and Salazar (2006). The DGP is examined by varying the nonlinearity parameters 
in the models. From the results, nonlinearity tests are described. The DGP is, 
 
    1 2 20 1 21.8 1.06 0.9 0.795 ; ,t t t t t t d ty y y y y F y c              (12) 
 

where  0,0.1t tN   and  ; ,t dF y c
 is either the logistic or exponential 

transition function as given in (3) and (4) respectively. The 20  is the intercept in 
the nonlinear part of the Autoregressive model.  

Following Teräsvirta (1994), the LSTAR transition function in (3) is 
approximated by the third order Taylor’s series expansion as, 
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 

2 3
3 3

3 2 3 3

1 1 1; ,
4 48 4 16

1 1 .
16 48

t d t d

t d t d

c
F y c c c y

c y y R


   

 

 

 

  
      

   

  

  (13) 

 
where R  is the remainder series. 

Substituting 100   and c = 0.2, then (13) becomes   
 
   2 3; , 20838.33 2525 12500 20833.33t d t d t d t dF y c y y y          (14) 
 
this is then substituted in (12) to obtain 
 

 

 

 

 

 

20 1 2

20 1 2

2
20 1 2

3 *
20 1 2

20838.3 18751.8 16567.5

2525 2272.5 2007.4

12500 11250 9937.5

20833.3 18750 16562.5

t t t

t t t d

t t t d

t t t d

y y y

y y y

y y y

y y y R









 

  

  

  

   

  

   

   

  (15) 

 
The expansion in (15) can be generalized as, 
 
        2 2 2 2' ' 2 ' 3

1 2 3t t t t d t t d t t d ty y y y y y y y      
       (16) 

 
where t  is some noise process and  2

ty  is the AR process of order 2 and 1 , 2  
and 3  are the parameters of the nonlinear regression model. From (16), the 
LSTAR model is specified if the parameter 2  is not significant at   level or if 
it is the least significant among the three betas. Otherwise, ESTAR is specified. 

Similar nonlinearity test to the above is developed in Escribano and Jordá 
(2001). Here there is suggestion to apply second order Taylor’s series expansion 
of the ESTAR function in (4) to approximate the transition function. The 
approximation is given as, 
 

 
   

 

2 2 4 3 2

2 2 2 2 3 2 4

1; , 2 2
2

13 2 .
2

t d t d

t d t d t d

F y c c c c c y

c y c y y R

    

   

 

  

 
    
 

    

  (17) 
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Substituting 100   and c = 0.2, then (17) becomes   
 
   2 3 4; , 12 120 1100 4000 5000t d t d t d t d t dF y c y y y y            (18) 
 
this is then substituted in (12) to obtain 
 

 

 

 

 

 

 

20 1 2

20 1 2

2
20 1 2

3
20 1 2

4 *
20 1 2

12 12.4 11.6

120 108 95.4

1100 990 874.5

4000 3600 3180

5000 4500 3975

t t t

t t t d

t t t d

t t t d

t t t d

y y y

y y y

y y y

y y y

y y y R











 

  

  

  

  

   

  

   

  

   

  (19) 

 
The expansion in (19) can be generalized as, 

 
          2 2 2 2 2' ' 2 ' 3 ' 4

1 2 3 4t t t t d t t d t t d t t d ty y y y y y y y y y        
        (20) 

 
Here, the parameters are of order 2 and LSTAR is specified once the odd 

parameters 1  and 3  are most significant. Otherwise, ESTAR is specified if the 
parameters  2  and 4  are most significant. 

Monte Carlo Simulation Experiment  

The Data Generating Process (DGP) defined as, 
 
    1 2 20 1 21.8 1.06 0.9 0.795 ; ,t t t t t t d ty y y y y F y c              (21) 
 

with the nonlinear transition functions   
 1

1; ,
1 exp 100 0.2t d

t

F y c
y






    

 

and    
2

1; , 1 exp 100 0.2t d tF y c y 
    
 

 for Logistic STAR and Exponential 

STAR respectively. In the DGP, the autoregressive parameter 20  is varied as 
 20 0,0.2,0.5   and the innovations are assumed to have non-constant variance, 

that is  0,0.1t tN  . The values of 20  are chosen such that the DGP will 
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realized stationary series. At  ; , 0tF s c  , the resulting linear model has 
complex roots that are less than unity in absolute term, hence the process becomes 
nonstationary and there is possibility of explosion. At  ; , 1tF s c  , the behavior 
of the process is influenced by the values of 20 . For example, when 20 {0,0.2}  , 
the resulting characteristic equation has complex roots that are less than unity in 
absolute terms, hence the system reverts back to stationary region. At 20 0.5  , 
the roots of the characteristic equations are real and the system realize 
nonstationary series.   

The variance equations used in the simulations are the ARCH (1), GARCH 
(1,1), STARCH (1), ST-GARCH (1,1) and ANST-GARCH (1,1) are: 

 
2 2

10.02 0.3t t      (22) 
 

2 2 2
1 10.02 0.3 0.6t t t        (23) 

 
 2 2 2

1 1 10.02 0.3 1 0.5t t t tF     
        (24) 

 
   2 2 2

1 1 1 10.02 0.3 1 0.5 0.6t t t t tF F       
         (25) 

 
 

 

2 2 2
1 1 1

2 2
1 1 1

0.05 0.5 0.3 1

(0.02 0.3 0.6 )
t t t t

t t t

F

F

   

  

  

  

     

  
  (26) 

 
The logistic and exponential functions for the innovations t  are 

 
 1

1

1
1 expt

t

F 







 

 and     2
1 11 expt tF       respectively. In each 

case, the nonlinear parameter in the variance equations in (14) to (18) is varied as 
 1,5,10  . The experiment is carried out over 1,000 replications with sample 

sizes  50,100,200,500,1000N  . Initialization problem is catered for by 
discarding the first 100 observations in each replication.  

 
The experiment was carried out in two scenarios: 
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1. When the LSTAR DGP was used to realize LSTAR series with the 
specifications of the variance equations (Tables 1-3).When ESTAR 
model was misspecified for LSTAR model (Tables 4-6). 

2. The relative frequencies of selecting an asymmetric STAR model 
with a particular variance equation are computed on every 1,000 
replications at 5% nominal significant level. 

 
The relative frequencies of selecting an asymmetric STAR model with a 
particular variance equation are computed on every 1,000 replications at 5% 
nominal significant level. 
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When the LSTAR DGP is used to realise LSTAR series. 

Table 1. Selection Frequencies of models at different 20  with fixed 1   

 

20 0, 1    

N 
LSTAR-
ARCH 

LSTAR-
GARCH 

LSTAR-
LSTARCH 

LSTAR-
LSTGARCH 

LSTAR-
ANLSTGARCH 

 TP EJP TP EJP TP EJP TP EJP TP EJP 

50 0.522 0.934 0.692 0.879 0.551 0.918 0.683 0.875 0.697 0.875 

100 0.627 0.988 0.772 0.961 0.643 0.980 0.777 0.963 0.803 0.956 

200 0.707 0.999 0.903 0.996 0.741 0.998 0.902 0.996 0.917 0.994 

500 0.869 1.000 0.990 1.000 0.872 1.000 0.992 1.000 0.994 1.000 

1000 0.949 1.000 1.000 1.000 0.966 1.000 1.000 1.000 1.000 1.000 

 

20 0.2, 1    

N 
LSTAR-
ARCH 

LSTAR-
GARCH 

LSTAR-
LSTARCH 

LSTAR-
LSTGARCH 

LSTAR-
ANLSTGARCH 

 TP EJP TP EJP TP EJP TP EJP TP EJP 

50 - - - - - - - - - - 

100 - - - - - - - - - - 

200 - - - - - - - - - - 

500 - - 0.598 0.500 - - 0.623 0.500 0.590 0.494 

1000 - - 0.672 0.554 - - 0.630 0.507 0.670 0.557 

 

20 0.5, 1    

N 
LSTAR-
ARCH 

LSTAR-
GARCH 

LSTAR-
LSTARCH 

LSTAR-
LSTGARCH 

LSTAR-
ANLSTGARCH 

 TP EJP TP EJP TP EJP TP EJP TP EJP 

50 - - - - - - - - - - 

100 - - - - - - - - - - 

200 - - - - - - - - - - 

500 - - - - - - - - - - 

1000 - - - - - - - - - - 

 
Note: Table 1 presents the results of the selections of LSTAR models with forms of heteroscedastic innovation 

processes. EJP performed better than TP in selecting the LSTAR models at zero intercept, 20 0   of the 

DGP. Both LSTAR-GARCH and LSTAR-ANLSTGARCH models were detected at frequencies higher than that 

of other model variants. As 20  increased beyond 0, there was failure in model specifications as a result of 

matrix inversion problems encountered by the simulator. The results were worse when computed at the 

nonstationary region   20 0.2, 0.5   of the DGP.  
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Table 2. Selection Frequencies of models at different 20  with fixed 5   

 

20 0, 5    

N 
LSTAR-
ARCH 

LSTAR-
GARCH 

LSTAR-
LSTARCH 

LSTAR-
LSTGARCH 

LSTAR-
ANLSTGARCH 

 TP EJP TP EJP TP EJP TP EJP TP EJP 

50 0.522 0.934 0.692 0.879 0.549 0.921 0.682 0.868 0.697 0.878 

100 0.627 0.988 0.772 0.961 0.647 0.979 0.789 0.963 0.811 0.954 

200 0.707 0.999 0.903 0.996 0.751 0.997 0.907 0.997 0.918 0.995 

500 0.869 1.000 0.990 1.000 0.878 1.000 0.993 1.000 0.992 1.000 

1000 0.949 1.000 1.000 1.000 0.962 1.000 1.000 1.000 1.000 1.000 

 

20 0.2, 5    

N 
LSTAR-
ARCH 

LSTAR-
GARCH 

LSTAR-
LSTARCH 

LSTAR-
LSTGARCH 

LSTAR-
ANLSTGARCH 

 TP EJP TP EJP TP EJP TP EJP TP EJP 

50 - - - - - - - - - - 

100 - - - - - - - - - - 

200 - - - - - - - - - - 

500 - - 0.598 0.500 - - 0.620 0.496 0.605 0.488 

1000 - - 0.672 0.554 - - 0.631 0.483 0.687 0.556 

 

20 0.5, 5    

N 
LSTAR-
ARCH 

LSTAR-
GARCH 

LSTAR-
LSTARCH 

LSTAR-
LSTGARCH 

LSTAR-
ANLSTGARCH 

 TP EJP TP EJP TP EJP TP EJP TP EJP 

50 - - - - - - - - - - 

100 - - - - - - - - - - 

200 - - - - - - - - - - 

500 - - - - - - - - - - 

1000 - - - - - - - - - - 

 

Note: Increasing   as 2 in Table 2, similar results to that of Table 2 were obtained. This implies that little 

increase in the nonlinearity of the residuals may not have significant effect on the specification of STAR models 

with Smooth Transition GARCH. The results were also worse at 5   
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Table 3. Selection Frequencies of models at different 20  with fixed 10 

 
20 0, 10    

N 
LSTAR-
ARCH 

LSTAR-
GARCH 

LSTAR-
LSTARCH 

LSTAR-
LSTGARCH 

LSTAR-
ANLSTGARCH 

 TP EJP TP EJP TP EJP TP EJP TP EJP 

50 0.522 0.934 0.692 0.879 0.551 0.917 0.694 0.871 0.712 0.881 

100 0.627 0.988 0.772 0.961 0.641 0.780 0.790 0.962 0.823 0.958 

200 0.707 0.999 0.903 0.996 0.753 0.998 0.912 0.996 0.923 0.999 

500 0.869 1.000 0.990 1.000 0.888 1.000 0.991 1.000 0.988 1.000 

1000 0.949 1.000 1.000 1.000 0.961 1.000 0.999 1.000 1.000 1.000 

 

20 0.2, 10    

N 
LSTAR-
ARCH 

LSTAR-
GARCH 

LSTAR-
LSTARCH 

LSTAR-
LSTGARCH 

LSTAR-
ANLSTGARCH 

 TP EJP TP EJP TP EJP TP EJP TP EJP 

50 - - - - - - - - - - 

100 - - - - - - - - - - 

200 - - - - - - - - - - 

500 - - 0.598 0.500 - - 0.616 0.496 0.605 0.477 

1000 - - 0.672 0.554 - - 0.644 0.450 0.690 0.530 

 

20 0.5, 10    

N 
LSTAR-
ARCH 

LSTAR-
GARCH 

LSTAR-
LSTARCH 

LSTAR-
LSTGARCH 

LSTAR-
ANLSTGARCH 

 TP EJP TP EJP TP EJP TP EJP TP EJP 

50 - - - - - - - - - - 

100 - - - - - - - - - - 

200 - - - - - - - - - - 

500 - - - - - - - - - - 

1000 - - - - - - - - - - 

 
Note: Table 3 gives similar results to Tables 1 and 2. As we see in the previous results that correct model 

specifications were carried out at intercept 20 0   and at this point, the process realized stationary time 

series. 
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When ESTAR model is misspecified for LSTAR model 

Table 4. Selection Frequencies of models at different 20  with fixed 1   

 

20 0, 1    

N 
LSTAR-
ARCH 

LSTAR-
GARCH 

LSTAR-
LSTARCH 

LSTAR-
LSTGARCH 

LSTAR-ANLSTGARCH 

 TP EJP TP EJP TP EJP TP EJP TP EJP 

50 - - - - - - - - - - 

100 - - - - - - - - - - 

200 - - - - - - - - - - 

500 - - 0.750 0.569 - - 0.752 0.570 0.767 0.607 

1000 - - 0.784 0.638 - - 0.785 0.630 0.790 0.631 

 

20 0.2, 1    

N 
LSTAR-
ARCH 

LSTAR-
GARCH 

LSTAR-
LSTARCH 

LSTAR-
LSTGARCH 

LSTAR-ANLSTGARCH 

 TP EJP TP EJP TP EJP TP EJP TP EJP 

50 - - - - - - - - - - 

100 - - - - - - - - - - 

200 - - - - - - - - - - 

500 - - 0.614 0.470 - - 0.614 0.470 0.656 0.522 

1000 - - 0.673 0.554 - - 0.667 0.543 0.718 0.563 

 

20 0.5, 1    

N 
LSTAR-
ARCH 

LSTAR-
GARCH 

LSTAR-
LSTARCH 

LSTAR-
LSTGARCH 

LSTAR-ANLSTGARCH 

 TP EJP TP EJP TP EJP TP EJP TP EJP 

50 - - - - - - - - - - 

100 - - - - - - - - - - 

200 - - - - - - - - - - 

500 - - - - - - - - - - 

1000 - - - - - - - - - - 

 

Note: Tables 4-6 give the results of specifying ESTAR for LSTAR in the DGP in (12). At 20 0  , the simulator 

could not specify LSTAR and it reported matrix inversion problems. Also, TP performed better than EJP in 
selecting LSTAR from ESTAR DGP 
  



SPECIFYING ASYMMETRIC STAR MODELS 

426 

 

Table 5. Selection Frequencies of models at different 20  with fixed 5   

 

20 0, 5    

N 
LSTAR-
ARCH 

LSTAR-
GARCH 

LSTAR-
LSTARCH 

LSTAR-
LSTGARCH 

LSTAR-ANLSTGARCH 

 TP EJP TP EJP TP EJP TP EJP TP EJP 

50 - - - - - - - - - - 

100 - - - - - - - - - - 

200 - - - - - - - - - - 

500 - - 0.750 0.569 - - 0.755 0.579 0.769 0.604 

1000 - - 0.784 0.638 - - 0.786 0.641 0.790 0.629 

 

20 0.2, 5    

N 
LSTAR-
ARCH 

LSTAR-
GARCH 

LSTAR-
LSTARCH 

LSTAR-
LSTGARCH 

LSTAR-ANLSTGARCH 

 TP EJP TP EJP TP EJP TP EJP TP EJP 

50 - - - - - - - - - - 

100 - - - - - - - - - - 

200 - - - - - - - - - - 

500 - - 0.614 0.470 - - 0.612 0.482 0.659 0.527 

1000 - - 0.673 0.554 - - 0.657 0.546 0.718 0.563 

 

20 0.5, 5    

N 
LSTAR-
ARCH 

LSTAR-
GARCH 

LSTAR-
LSTARCH 

LSTAR-
LSTGARCH 

LSTAR-ANLSTGARCH 

 TP EJP TP EJP TP EJP TP EJP TP EJP 

50 - - - - - - - - - - 

100 - - - - - - - - - - 

200 - - - - - - - - - - 

500 - - - - - - - - - - 

1000 - - - - - - - - - - 

 
Note: The results obtained here are similar to that of Table 4. 
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Table 6. Selection Frequencies of models at different 20  with fixed 10   

 

20 0, 10    

N 
LSTAR-
ARCH 

LSTAR-
GARCH 

LSTAR-
LSTARCH 

LSTAR-
LSTGARCH 

LSTAR-ANLSTGARCH 

 TP EJP TP EJP TP EJP TP EJP TP EJP 

50 - - - - - - - - - - 

100 - - - - - - - - - - 

200 - - - - - - - - - - 

500 - - 0.750 0.569 - - 0.760 0.578 0.768 0.609 

1000 - - 0.784 0.638 - - 0.789 0.644 0.788 0.625 

 

20 0.2, 10    

N 
LSTAR-
ARCH 

LSTAR-
GARCH 

LSTAR-
LSTARCH 

LSTAR-
LSTGARCH 

LSTAR-ANLSTGARCH 

 TP EJP TP EJP TP EJP TP EJP TP EJP 

50 - - - - - - - - - - 

100 - - - - - - - - - - 

200 - - - - - - - - - - 

500 - - 0.614 0.470 - - 0.612 0.482 0.656 0.527 

1000 - - 0.673 0.554 - - 0.655 0527 0.714 0.552 

 

20 0.5, 10    

N 
LSTAR-
ARCH 

LSTAR-
GARCH 

LSTAR-
LSTARCH 

LSTAR-
LSTGARCH 

LSTAR-ANLSTGARCH 

 TP EJP TP EJP TP EJP TP EJP TP EJP 

50 - - - - - - - - - - 

100 - - - - - - - - - - 

200 - - - - - - - - - - 

500 - - - - - - - - - - 

1000 - - - - - - - - - - 

 
Note: The results obtained here seem to improve insignificantly over that of Table 5. 

Conclusion 

This study considered the specification of asymmetric Smooth Transition 
Autoregressive (STAR) models with linear and nonlinear GARCH innovations. 
The GARCH error specifications are those proposed already in the literature. 
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Specifications of the Logistic STAR-GARCH (LSTAR-GARCH) variants were 
carried out using the usual STAR specification procedures. The empirical results 
showed strong support for modelling STAR models with different GARCH error 
specifications. The results further showed that STAR model in STAR-GARCH 
model cannot be misrepresented in the real sense.  
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