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One of the bases for assessment of wind energy potential for a specified region is the 
probability distribution of wind speed. Thus, appropriate and adequate specification of 
the probability distribution of wind speed becomes increasingly important. Several 
distributions have been proposed for describing wind distribution. Among the most 
popular distributions is the Weibull whose choice is due to its flexibility. An 
exponentiated Weibull distribution is proposed as an alternative to model wind speed data 
with a view to comparing it with the existing Weibull distribution. Results indicate that 
the proposed distribution outperforms the existing Weibull distribution for modeling 
wind speed data in terms of minimum Akaike information criterion (AIC) and likelihood 
function. Thus, the exponentiated Weibull can be used as an alternative distribution that 
adequately describe the wind speed and thereby provide better representation of the 
potentials of wind energy. 
 
Keywords: Wind power, Weibull, exponentiated Weibull, model selection criteria, 
maximum likelihood estimation 
 

Introduction 

Energy demand increases proportionally as world population grows rapidly. 
Governments and societies become interested to renewable energies. Wind energy 
is considered the most attractive as it ensures high output power compared to 
other renewable energies. Nevertheless, the assessment of the wind energy 
potential is complicated since the wind speed availability is probabilistic. Several 
statistical distributions have been used for the description of the wind speed 
distribution. The two-parameter Weibull distribution function has been commonly 
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used in many fields including wind energy assessment (Rehman et al., 1994; 
Bivona et al., 2003). 

Silva and Cordeiro (2012) were among the first among researchers to use 
compound distributions to model wind speed. They showed that Burr type XII 
distribution outperformed the commonly used Weibull distribution. Therefore, 
this article received its motivation from this and attempts to model wind speed 
using exponentiated Weibull distribution, which is a generalization of the Weibull 
distribution for increased and improved modeling potential.  

Weibull Distribution 

The Weibull distribution is characterized by two parameters K and S, the shape 
and scale respectively. A random variable V (wind speed) is distributed as 
Weibull if it satisfies the following probability density function. 
 

  

1

exp
K K

V
K V Vf
C C C

     
     

     

.  (1) 

 
The corresponding distribution function is 
 

   1 exp
K

V
VF
C

  
    

   

.  (2) 

 
If V denotes the wind speed, then the average wind speed is expressed as 
 

     
1

0 0
exp

K K

V
K V VE Vf V dv V dv
C C C


      

      
     

    (3) 

 
giving rise to 
 

  

11VE V C
K

 
    

 
.  (4) 

 
The variance of V is 

      
2

0
Var V V V f v dv



    (5) 
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which on simplification gives 
 

  2 2 22 11 1Var V C
K K


    

         
    

  (6) 

 
from which 
 

 

1
2

22 11 1C
K K


    

        
    

.  (7) 

 

Method of Estimating the Weibull Parameters 

Commonly used methods known as graphical and maximum likelihood methods 
are now considered. 

Graphical Method 
From (2) 
 

 
 

1 exp
1

K

V

V
F C

  
   

    

  (8) 

 
Introducing In to both sides results in 
 

 
 

1
1

K

V

VIn
F C

   
   

    

  (9) 

 
and further introduction of In results in   
 

 
 

1
1 V

In In K nV K nC
F

 
  

  

  (10) 

 
Equation (10) can be expressed as Y a X b   where  
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  ,

1 , and
1 V

Y In In X Inv a K b K InC
F

 
    

  

  

 

Maximum Likelihood Method 
Harter and Moore (1965) were the earliest statisticians to use the maximum 
likelihood procedure because of its desirable characteristics. Given a random 
sample of size n wind speed drawn from a probability density function in (1), then 
the likelihood function will be 
 

  ,

1

1 2
1

, , .... , , exp
k Kn

i i
n

i

V VKL V V V K C
C C C





     
      

      
   (11) 

 
The logarithm of (11) becomes 
 

  
1 1

log 1 log
Kn n

i

i i

VK Vl n K
C C C 

  
      

   
    (12) 

 
by differentiating (12) with respect to K and C in turn and equating to zero, the 
following are obtained 
 

 
1

0
Kn

i

i

Vl nK K
C C C C


 

  
   

 
   (13) 

 

 
1

log log 0
Kn

i i

i

V Vl n
K K C C



 

   
      

   
   (14) 

 
Equations (13) and (14) are termed normal equations and can be solved 
numerically to obtain the maximum likelihood estimates of K and C. 

Exponentiated Weibull Distributions 

According to Mudhokar, et al., (1995), the exponentiated Weibull density 
function is defined as 
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  

1 1

1 exp exp
K K KK V V Vg V

C C C C






      
         

       

  (15) 

 
where , 0 0iK C and d V  . 

This distribution is proposed to model wind speed for the first time. For 
adequate determination of wind speed, the parameters in equation (15) need to be 
estimated. For this, we adopt the use of maximum likelihood method. 

As before if 1 2, ,...; nV V V  is a random sample of size n wind speed drawn 
from the density function in (15), then the likelihood function is  
 

  

1 1

1 2
1 1

, ,..., , , , 1 exp exp
K KKn n n n

i i
n n

i i

V VK VL V V V K C
C C C C









 

      
         

       
  .  (16) 

 
The corresponding log-likelihood function is obtained by finding the logarithm of 
(16) is   
 

 
   

1 1 1

log log log

1 log 1 exp 1 log log .
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
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  
  (17) 

 
Taking the derivative of (17) with respect to K, C and ,  results in 
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  (18) 
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   

1 1

exp1 1
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C


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 
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1

log 1 exp
Kn

i

i

Vl n
d d C



 

  
        

 .  (20) 

 
Equations (18), (19) and (20) are solved iteratively to obtain the maximum 
likelihood estimates of the parameters K, C and d. 

Moments of the Exponentiated Weibull Distribution 

Following the density function in (15), its rth moment can be obtained as: 
 

  
1 1

'

0
1 exp exp

dK K K
r r i i i

r
V V VKdE X V dy

C C C C





        
               

   

 

If 
1

1

K KCi K
K

V Cy V y and dv dy
C KV 

 
    
 

,  

 
which reduces to 
 

         
1 1' exp 1 exp

r dCr K
r E X y y y dy



     .  (21) 

 
Note from binomial series expansion that 
 

   
0

1 1 , thenjb j

j

b
m m

j





 
    

 
        

1

0

1
1 exp 1 exp

d j
j

j

d
y y

j






 
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 
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thus, equation (21) becomes 
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     '

0
0

1
1 exp 1
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r

j

d
C d y y j dy

j


 



 
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If  1 ,
1 1

P dPP y j y and dy
j j

    
 

 then  

 

  
 

 
 '

010

1
1

exp
1

j

rr r K
r r

Kj

d
j

E X C d P P dy
j


 



 
  

   


  ,  (23) 

 
therefore, the rth moment of the exponentiated Weibull distribution is 
 

  
 

  10

1
1

1
1

j

r r
r

Kj

d
j rE X C d

Kj





 
  
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For simplicity let 
 

  1

1
1

1

j

j r
K

d
j

w
j 

 
  

 


  

 

  
0

1r r
j

j

rE X C d w
K





 
   

 
   (25) 

 
If 1 1 1,jr and d w    then this reduces to the mean of the Weibull 
distribution and the moments, such as the Mean, Variance, Skewness and Kurtosis, 
can be obtained from (24). 

The mean and variance are respectively 
 

  
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 
1 10

1
1

1 1
1

j

i
j K

d
j
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
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    

Application 

The fitting of monthly wind data collected across regions in the south western part 
of Nigeria was considered using data from the period between 1992 and 2012. 
Using the R-Package, the following results were obtained. 

Estimates and Goodness-of-Fit for the Wind Speed Data 

January 

 MLE   
Distributions K C   –2log l AIC 

Weibull 0.2276 0.0002 1 19.3754 23.3754 

Exponentiated 
Weibull 

0.6678 1 10.2721 0.9916 4.9916 

 

February 

 MLE   
Distributions K C   –2log l AIC 

Weibull 0.2168 0.0001 1 21.32016 25.32016 

Exponentiated 
Weibull 

0.6598 1 13.5975 3.15927 7.15927 

March 

 MLE   
Distributions K C   –2log l AIC 

Weibull 0.20399 0.00006 1 23.75956 27.75956 

Exponentiated 
Weibull 

0.641638 1 15.335852 6.31854 10.31854 
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April 

 MLE   
Distributions K C   –2log l AIC 

Weibull 0.19996 0.00005 1 24.55724 28.55724 

Exponentiated 
Weibull 

0.6896499 1 41.4258026 15.38302 19.38302 

May 

 MLE   
Distributions K C   –2log l AIC 

Weibull 0.209261 0.000072 1 22.73786 26.73786 

Exponentiated 
Weibull 

0.6710878 1 20.7852047 8.297559 12.297589 

June 

 MLE   
Distributions K C   –2log l AIC 

Weibull 0.2096060 0.000073 1 22.67258 26.67258 

Exponentiated 
Weibull 

0.6915926 1 25.247869 10.20779 14.20779 

July 

 MLE   
Distributions K C   –2log l AIC 

Weibull 0.21815 0.000106 1 21.0735 25.0735 

Exponentiated 
Weibull 

0.677590 1 15.3195704 5.094789 9.094789 

August 

 MLE   
Distributions K C   –2log l AIC 

Weibull 0.211048 0.0000782 1 22.39852 26.39852 

Exponentiated 
Weibull 

0.692516 1 23.699390 9.502349 13.502349 
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September 

 MLE   
Distributions K C   –2log l AIC 

Weibull 0.2077786 0.00067 1 23.0227 27.0227 

Exponentiated 
Weibull 

0.6699132 1 21.8338828 8.774993 12.774993 

October 

 MLE   
Distributions K C   –2log l AIC 

Weibull 0.222508 0.000127 1 20.28256 24.28256 

Exponentiated 
Weibull 

0.6600494 1 11.9804517 2.943342 6.943342 

November 

 MLE   
Distributions K C   –2log l AIC 

Weibull 0.2262799 0.0001477 1 19.61016 23.61016 

Exponentiated 
Weibull 

0.5949411 1 4.3888947 21.41094 25.41094 

December 

 MLE   
Distributions K C   –2log l AIC 

Weibull 0.2426764 0.0002682 1 16.81126 20.81126 

Exponentiated 
Weibull 

0.6716818 1 7.055548 5.285842 9.285842 

Summary Statistics 
 

Min 1st Quarter Median Mean 3rd Quarter Mae 
1.54 2.94 4.06 4.578 5.88 9.81 

 

Note: Kurtosis = 2.502187, Skewness = 0.6333066 

Conclusion 

The performance of Exponentiated Weibull and Weibull distribution functions to 
model wind energy was systematically compared. It was observed that the log 
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likelihood values and the Akaike information criterion (AIC) for the 
Exponentiated Weibull was always smaller for the Weibull distribution for each 
month except the month of November. This indicates that the proposed 
Exponentiated Weibull distribution outperformed the existing Weibull 
distribution for wind speed data in terms of minimum AIC and likelihood function 
over the months of the years under review. Thus, the exponentiated Weibull can 
be used as an alternative distribution that adequately describes wind speed, and 
may provide better representation of the potentials of wind energy. 
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