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Robust Regression Analysis for Non-Normal 
Situations under Symmetric Distributions 
Arising In Medical Research 
S. S. Ganguly 
Sultan Qaboos University 
Muscat, Oman
 
 
In medical research, while carrying out regression analysis, it is usually assumed that the 
independent (covariates) and dependent (response) variables follow a multivariate normal 
distribution. In some situations, the covariates may not have normal distribution and 
instead may have some symmetric distribution. In such a situation, the estimation of the 
regression parameters using Tiku’s Modified Maximum Likelihood (MML) method may 
be more appropriate. The method of estimating the parameters is discussed and the 
applications of the method are illustrated using real sets of data from the field of public 
health. 
 
Keywords: Maximum likelihood, modified maximum likelihood, student’s t- 
distribution, order statistics, delta method  
 

Introduction 

Often in medicine, a relationship is established between a response variable y, 
which depends on the r covariates x1, x2, …, xr,  which are independent of each 
other, so that, in total, there may be (r + 1) variables. In classical regression model, 
the response variable y is treated as a random variable whose mean depends upon 
fixed variables of the xi’s. The mean is assumed to be linear function of the 
regression coefficients α, β1, β2, … , βr. 

The linear regression model also arises in a different setting. Suppose all the 
variables y, x1, x2, …, xr are random and have a joint distribution 

 
1 2( , , ,..., )rf y x x x , 

 
which is not necessarily normal so that  
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    (1) 

 
It is assumed herein that the conditional distribution of y given , x1, x2, …, xr 

is normal and is given by 
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with mean 
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and variance 
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  .  (4) 

 
The marginal density corresponding to the covariate xi is assumed to be 

symmetric about mean of the form: 
 

 1 i i

i i

xf 

 

 
 
 

  (5) 

  
Here 2( ), ( ) ( 1,2,..., )i i i oiiE x V x and i r     is the correlation 

coefficient between y and xi. Relation (2) provides for the measurement of 
dependency of the response random variable on the random covariates xi 
(i=1,2,…,r). 

The linear relationship may also be written in the form of classical 
regression model as 

 
   1

r
i ii

E y x x 


    (6) 
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where 
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and 
 

 , 1,2,...,o
i oi

i

i r
 



 
  

 
  (8) 

 
are the regression coefficients. It may be noted that  E y x  is the best linear 

predictor of the response variable y where the population is 1( , )rN   . 
In medical epidemiology, one often encounters situations where some (if not 

all) covariates xi have non-normal symmetric distributions. This article is 
restricted to a situation where the covariates have non-normal symmetric 
distributions. The objective, therefore, is to estimate the parameters  ,

T
   from 

n sample values  , iiy x , 1 ≤ i ≤ n. For this, consider the family of student’s t- 
distributions. The method, which has been developed here, is, of course, general 
and can be used for other families of location-scale distributions of the type (5). 

Likelihood equations 

Suppose that the covariate xi (i=1,2,…,r) has the symmetric distribution with the 
density given by 
 

    
1 2

2 2
2

( )1 ,
ip

i i
i i ii

i i

xh x k x
k








   
    

  

  (9) 

 
where 2 3i ik p  , 2; ( )i i ip E x    and 2( )i iv x  . Assume that pi is known. 
For pi = 5, (9) is almost indistinguishable from logistic distribution, because the 
two distributions are both symmetric and have first four moments common 
(Pearson, 1963). If the two distributions are plotted, it will be seen that one sits 
almost on top of the other. It may be noted that 
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has Student’s t – distribution with (2pi1) degrees of freedom. For 1 2ip  , k is 
equal to 1 in which case   in (9) is simply a scale parameter. 

Given the data matrix (n > r+1) of the form 
 
 1( ; ,...., ,.... ) , 1,2,...,j j ji jky x x x j n   (10) 
 
where y is the response variable and the x terms as explanatory variables or 
covariates. Then the likelihood function L based on relation (1) can be written as 
usual and is given by 
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  (11) 

 
where ( ) , ( 1,2,..., ; 1,2,..., )i jx i r j n   are the order statistics of xi observations, 
and   ( 1,.., )jy j n  are the corresponding concomitant y observations. The 

maximum likelihood estimators are the solutions of the likelihood equations, i.e, 
of the derivatives of nL . These equations are, however, intractable. Solving 
them by iterative procedures may be problematic, for example, one may 
encounter multiple roots, slow convergence, or convergence to wrong values (see 
specifically Barnett, 1966; Lee et al., 1980; Tiku and Suresh, 1992; Vaughan, 
1992). Instead the Tikus method of modified likelihood (MML) estimation was 
employed, which gives explicit estimators and involves replacing intractable 
terms by linear approximations. Because this method is already well established 
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and is known to produce estimators which are fully efficient for large n (Tiku, 
1970; Bhattacharyya, 1985) and almost fully efficient for small n (Tiku et al, 
1986; Tiku and Suresh, 1992; Vaughan, 1992, 1994). 

Modified Maximum Likelihood 

Consider the ith covariate of a random sample of size n denoted by x1i, x2i,…,xni 

from any location-scale distribution with density given by 
 

1 , 1,2,...,ji i

i i

x
f i r



 

 
 

 
. 

 
For simplicity of notation, suppress the suffix i and consider f to be a student 

t density. Then the likelihood equations for estimating   and   corresponding to 
each covariate are   
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  (12) 

 
Equations (12) do not provide explicit solutions. Following Tiku-Suresh 

(1992); Vaughan and Tiku (2000), the first step is to express these equations in 
terms of order statistics (1) (2) ( )... nx x x  . Because complete sums are invariant to 
ordering  
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Under appropriate regularity considerations which are very general in nature, 

( )( )jg z  can be replaced by linear approximations given by the first two terms of 
Taylor series expansions (Tiku, 1967, 1968; Tiku and Suresh, 1992; Tiku and 
Kambo, 1992, Vaughan, 1992; Vaughan and Tiku, 2000), so that 
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Thus, the modified equations are obtained, i.e. 
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Equations (15) have explicit solutions, which are called modified maximum 
likelihood (MML) estimators. Note that the ML and MML estimators are 
asymptotically equivalent. 

For distribution ( 2, 2 3)p k p    
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This method gives the following MML estimators (see Tiku and Suresh, 1992; 
Tiku and Kambo, 1992; Vaughan, 1992; Vaughan and Tiku, 2000; Tiku et al, 
2008) 
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The coefficients andj j   are obtained from the equations 
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For p   (i.e. for normal distribution), 0j   and 1j  , because 

k=2p−3. Note that 1 1
1

, (1 ) 0
n

j n j j n j j
j

j n and       



      . Tables of 

the value of ( )jt  are available for p=2(.5) 10 and n ≤ 20 (Tiku and Kumra, 1985). 
For n > 20, ( )jt  are obtained from the equation 
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 ( ) ( ) (1 ).
1

jt jf z dz j n
n

  
   (21) 

 

In evaluating (21), it should be noted that  
1

2( / )k z  has student’s t- 
distribution with 2 1p    degrees of freedom. 

It may be of interest to note that in deriving the estimators   and   given 
by the equations (17)-(20), the method of MML estimation for p < 

automatically gives small weights to extreme order statistics close to the center. It 
is precisely due to this fact these estimators are robust to reasonable departures 
from the true value of p in (16). In most applications, therefore, it is not very 
important to pinpoint the true value of p and use it in all derivatives. Any 
reasonable value of p gives almost optimal results. 

A Q-Q plot can be employed to give a reasonable value closure (if not 
exactly) the true value of p corresponding to covariate x (Tiku et al, 1986, p.277). 
The order statistic ( )jx  is plotted against the values

( ) ( ) ( )( ), ( ) / , 1,2,...,j j j jt E z z x j n     , under the assumed model, i.e. for a 
particular value of p in (16). If the plot gives a straight line (or nearly so), the 
model is taken to be valid for the MML estimation. 

Following the above procedure, the parameters i  and ( 1,2,..., )i i r   are 
estimated. In order to estimate the remaining parameters viz., 

, , ( 1,2,..., )o o oi i r    , the likelihood function (11) is considered. Because 
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by replacing  ( )i jg z  with the linear approximations given by (14). The solutions 

of these equations are the following MML estimators: 
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Relation (22) provides for the measurement of dependency of the response 

random variable on the random covariates ( 1,2,..., ).ix i r  The linear relationship 
is also represented in the form of classical model (6). 

The asymptotic variances and covariances of the estimators 1, , ,o io   
   

 

and ( 1,2,..., )oi i r


 are obtained with the use of the second partial derivatives of 
the likelihood function (11). The matrix formed by the negative of the expected 
values of the second partial derivatives gives the information matrix, which may 
be expressed as the partitioned matrix 
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where the matrix is of the order (3r+2) × (3r+2) and 
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of order (r+1) × (r+1) and 
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of order (2r+1) × (2r+1) with 1 2 1 2 1( , ,..., )o r ok        . 

The inverse of 1V  and 2V  matrices provides the elements of the precision 
and covariance structure of the estimated coefficients. 

The estimated values of the parameters obtained above are used in relation 
(7) and (8) which give the estimated values of the regression coefficients α and 

( 1,2,..., )i i r   of the model (6). The asymptotic covariance structure of the 

estimated regression coefficients 


 and ( 1,2,.., )i i r


  are obtained using delta 
method (Serfling, 1980) as: 

Let  ,g    and  , ,    , then 
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of order (3r+2) × (r+1) and 
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of order (3r+2) × (3r+2). Note that when p   the distribution (16) reduces to 

the ideal normal distribution in which case x


  (sample mean) and 
2

2s


  
(sample variance), 2x and s  being optimal under the assumption of normality.     

Examples 

Example 1 
Consider the part of the data set pertaining to 20 male insulin-dependent diabetic 
patients as provided in Dobson (1990, p. 69), which is reproduced in Table 1. 
 
 
Table 1. Carbohydrate, age and weight for twenty insulin-dependent diabetics 
 

y = Carb. (gm) x1 = Age (yrs) x2 = Wgt (kg) 
 

y = Carb. (gm) x1 = Age (yrs) x2 = Wgt (kg) 

33 33 100 
 

50 31 108 
40 47 92 

 
51 61 85 

37 49 135 
 

30 63 130 
27 35 144 

 
36 40 127 

30 46 140 
 

41 50 109 
43 52 101 

 
42 64 107 

34 62 95 
 

46 56 117 
48 23 101 

 
24 61 100 

30 32 98 
 

35 48 118 
38 42 105   37 28 102 

 
 

In this sample, the goal is to establish the relationship between the response 
variable y (amount of carbohydrate) and the two covariates 1x  (age) and 2x (body 
weight, relative to “ideal” weight for height) using the linear regression model (6) 
which takes the form 

 
  1 2 1 1 2 2,E y x x x x       (31) 

 
Here, it is assumed that, in relation (1), the conditional distribution of the 

response random variable y is normal; however, the covariates follow 
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independently non-normal symmetric distribution. The model (31) is fitted using 
above described modified maximum likelihood method. 

First obtain the values of 1p  and 2p corresponding to the two covariates 1x  
and 2x  using Q-Q plots, where the order statistics 1( )jx  and 2( )jx  were plotted 
separately against 1( )jt and 2( )jt  respectively, j = 1,…,n for different values of p as 
given in Tiku and Kumra (1985). The values of 1 5p   and 2 7p   provided an 
approximate straight line patterns which determined the appropriate types of 
densities in (16). Once 1p  and 2p are known, then using the equations (17)-(20), 
the MML estimates of the parameters 1 1,   and 2 2,   are obtained. Using these 
values in equations (22)-(28) the rest of the parameters 1, ,o o o    and 2o are 
estimated. Solutions of the information matrix (29) provided the elements of the 
precision and covariance structure of the estimated parameters. The estimated 
values and their standard errors are presented in Table 2. 
 
 
Table 2. MML estimates of the 
parameters and their standard 
errors for the data set in Table 1 

 

Table 3. MML and ML estimates of the 
parameters and their standard errors  for 
the data set in Table 1 

 Param. Est. Std. Err.   Param. Est. Std. Err. W 
μo 37.732 1.848   Constant (α) 59.783 12.469  
μ1 46.437 3.008  MML Coefficient (β1) -0.035 0.124 -0.282 
μ2 109.936 3.776   Coefficient (β2) -0.186 0.099 -1.879 
σo 7.635 1.411       
σ1 13.989 1.789      

 σ2 17.265 2.351   Constant (α) 60.432 13.017 
ρo1 -0.064 0.228  ML Coefficient (β1) -0.046 0.131 -0.351 
ρo2 -0.420 0.243   Coefficient (β2) -0.187 0.101 -1.851 

 
 
Using the estimated values in Table 2 in relation (7) and (8), obtain MML 
estimates of the regression parameters 1,   and 2 . Use of delta method as 
described in (30) provided the asymptotic standard errors; also these parameters 
based on usual maximum likelihood method were estimated. The results, obtained 
under the two methods are summarized in Table 3. 

The analysis in Table 3 reveals that the MML estimates of the regression 
parameters for the data set in Table 1 are very close to the values obtained using 
maximum likelihood method, as expected. Moreover, the two methods gave 
approximately the same results for the Wald statistics W, which permits to test the 
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null hypothesis 1 2: 0 0oH and   . For large n, the null distribution of W is 
referred to a standard normal distribution. 

Example 2 
Consider another data set from Murray (1937), reproduced in El-Saidi (1995, p. 
214) as shown in Table 4. The data provides 11 observations on the number of 
male flies died after twenty minutes exposure to pyrethrum at various 
concentrations. 

The main objective is to describe the probability of success jp  as a function 
of dose jx . In literature, such type of analysis are carried out usually considering 
either probit or logit models (Cox, 1970). However, the logit model is preferred to 
a probit model due to two primary reasons (Hosmer and Lameshow, 1989): from 
mathematical point of view, it is an easily used function, and it leads to itself to a 
biological meaningful interpretation. 
 
Table 4. Mortality of male flies after twenty minutes exposure to pyrethrum 
 

Concentration 
(log10) 

Number of flies Proportions 
Died Exposed Died 

1.6020 462 109 0.2359 
1.7782 500 199 0.3980 
1.9031 467 298 0.6381 
2.0000 515 370 0.7185 
2.0792 561 459 0.8182 
2.1461 469 400 0.8529 
2.2041 550 495 0.9000 
2.2553 542 499 0.9207 
2.3010 479 450 0.9395 
2.3979 497 476 0.9577 
2.4771 453 442 0.9757 

 
 

The logit model is a family of Generalized Linear Models (GLMs) with link 

function ( )jg p  as 
1

j

j

p
n

p
 
   

(Nelder and Wedderburn, 1972; McCullagh and 

Nelder, 1989). The link function ( )jg p is continuous and maps the  0,1  range of 

probabilities onto  ,   and is represented by 
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  (32) 

 
so that 

 

 
exp( )

, 1,2,...,
1 exp( )

j
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  (33) 

 
The relation (33) is known as binary logistic model with probability of 

success pj, this belongs to the standardized logistic distribution which is 
symmetric in nature (Rao and Toutenburg, 1995, p. 263). 

In order to estimate the unknown parameters α and β in (32), usually ML 
method is used. The technique involves the solution of the likelihood equations, 
which have no explicit solutions and have to be solved by interactive procedures. 
Solving these equations is, therefore, tedious and time consuming. Therefore, 
these parameters are estimated using MML method. 

For this, consider the link function i.e. log odds as a response variable and 
jx  as a covariate. First estimate 1 1and   for p=5 in distribution (16). Using these 

values in equations (22)-(28), the rest of the parameters 1,o o oand    involved 
in the likelihood function (11) were obtained. The estimated values of the 
variances and co-variances were obtained using these values in second partial 
derivatives of the likelihood function (11) and solving for the inverse of the 
information matrix (29). The estimated values of the parameters and their 
standard errors involved in the likelihood function (11) with p =5 for the data set 
in Table 4 are shown in Table 5. 

Using these estimated values of the parameters in relation (7) and (8), obtain 
the MML estimates of the parameters ̂  and ̂  of the logistic model (33). The 
use of delta method (30) gave the asymptotic variances of ̂  and ̂ . The ML 
estimates of these parameters and their variances under the logit model (32) were 
also obtained using iterative procedures viz; Newton-Raphson method (Cox, 1970, 
Chapter 2). The results obtained under the two procedures are summarized in 
Table 6.  

These analyses also reveal that the MML estimates of the regression 
parameters α and β for the data set in Table 4 are very close to the values obtained 
using maximum likelihood method, as expected.  
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Table 5. MML estimates of the 
parameters and their standard 
errors for the data set in Table 4 

 

Table 6. MML and ML estimates of the 
parameters and their standard errors for logit 
model (32) 

Param. Est. Std. Err.   Param. Est. Std. Err. 
μo 1.642 0.459  MML Constant (α) -10.219 0.186 
μ1 2.115 0.082  Coefficient (β) 5.608 0.087 
σo 1.593 0.198      
σ1 0.284 0.035  ML 

Constant (α) -10.329 0.343 
ρo1 0.999 0.003  Coefficient (β) 5.661 0.172 

 
 

This study used Tiku’s modified maximum likelihood method for carrying 
out regression analysis when the underlying distributions of the data set have non-
normal symmetric distributions. The method yields estimators which are explicit 
functions of sample observations and are numerically very close to the maximum 
likelihood estimators and equally efficient. 
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