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A general approach for conducting power analysis in two- and three-level hierarchical 
linear models (HLMs) is described. The method can be used to perform power analysis to 
detect fixed effects at any level of a HLM with dichotomous or continuous covariates. It 
can easily be extended to perform power analysis for functions of parameters. Important 
steps in the derivation of this approach are illustrated and numerical examples are 
provided. Sample code implementing this approach is provided using the free program R.  
 
Keywords: power analysis, hierarchical linear model, mixed model, R, power 
analysis for hierarchical linear model 
 
 
Hierarchical linear modeling (HLM) is widely used in various areas of social 
science (Singer, 1998; Raudenbush & Bryk, 2002). As with any quantitative 
method, it is frequently important to perform power analysis in order to determine 
the necessary sample size to achieve a given level of power, to describe the 
minimum detectable effect size, or to describe the level of precision in the 
estimation of effects that is achievable by a given study design and sample size.  

Power analysis in the general linear model context is straightforward. Many 
empirical researchers are trained in the methods of performing power analysis for 
linear models and several excellent pieces of software, such as GPower and SAS 

PROC GLMPOWER, are widely available (Thomas & Krebs, 1997; Lewis, 2006). 
The penetration of HLM into the mainstream of a variety of social science 
disciplines has created a need for convenient tools to perform power analysis for 
HLMs. Several software applications are currently available for HLM power 
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analysis. Optimal Design (Raudenbush, et al., 2004) is a widely used HLM power 
analysis software in social sciences, and allows researchers conduct power 
analysis on difference between treatment and control group in a number of cluster 
data analysis scenarios. However, it lacks the functionality of conducting power 
analysis for continuous predictors. Power Analysis in Two-Level Designs (PinT; 
Snijders & Bosker, 1993; Bosker, Snijders, & Guldemond, 1999) accommodates 
power analysis for continuous variables, but is limited to 2-level HLM’s. 
Simulation-based power analysis software, like MLPowSim (Browne, Golalizadeh 
& Parker, 2009) and ML-Des (Cools, Van den Noortgate & Onghena, 2008), offer 
more flexibility, but it takes a much longer time to conduct simulation-based 
power analysis, and they do not allow unbalanced design. 

This article provides insights about how to conduct power analysis in HLM 
studies and introduce ways to increase flexibility in power analysis previously 
mentioned pre-packaged software are lacking. Some reader familiarity with the 
basics of power analysis in a linear models framework is assumed; readers are 
referred to Cohen (Cohen, 1988, 1992) for a review of the fundamentals. A 
general strategy is put forth for performing power analysis in HLMs and the 
calculation of the covariance matrix of parameter estimators for models of various 
complexities, which is the critical component to calculate power, is illustrated. 
Also illustrated is how to use the equations derived to perform power calculations 
using R, although they could be performed in any software that performs matrix 
calculations. The goal is to provide a flexible and general approach that can be 
used for different scenarios, many of which may not be implemented in existing 
software. 

Review of Power Analysis 

Performing a power analysis involves calculating standard errors for estimators of 
parameters of interest. Once armed with an effect size and a standard error, a 
researcher can produce a test statistic that may then be compared against a chi-
square, T, or F distribution (Cohen, 1998) to estimate approximate power. This 
paper focuses on the process of appropriately obtaining the standard error of a 
parameter estimator in HLM, which is the square root of the variance estimate of 
the parameter estimator. The actual power calculation using an assumed effect 
size and standard error is shown in numeric examples. 
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Statistical Power in HLM 

The process of power analysis for multilevel models differs depending on whether 
one wishes to calculate power for a continuous variable or a dichotomous variable. 
This article will show that the dichotomous case is much simpler. In fact, an 
explicit analytical result is derived; however, the starting point is the more general 
continuous case. In the continuous case, the variance of the parameter estimator of 
interest depends on the sample data which researchers may not have when they 
conduct their power analysis. Therefore, additional information about unknown 
sample data must be assumed. In addition, the inclusion of covariates as well as 
whether the model contains random slopes will impact the power analysis. 
Although analytical solutions could be derived for some special cases, slightly 
different models could end up with very different analytical forms. Therefore a 
general numerical approach that may be used with a variety of models will be 
illustrated. 

The goal is to calculate a test statistic, whose approximate distribution is 
known, that can be used to estimate the power of a statistical test of a parameter. 
Given certain assumptions regarding the model, parameter values, and sample 
data, the variance-covariance matrix of all the fixed effect parameters in the 
model can be approximated. This implies that the power to detect any fixed effect 
can be easily calculated. Furthermore, it will be demonstrated that the power to 
detect functions of parameters (e.g., contrasts) can also be calculated once the 
variance-covariance matrix is obtained. For maximum generality matrix notation 
is used to describe the model. 

Power Analysis for Two-Level Models with Continuous 
Variables 

According to the Gauss-Markov theorem, when errors are independently 
identically normally distributed with mean of zero and a constant variance in a 
simple linear regression model, the ordinary least squares estimator (OLSE) is the 
best linear unbiased estimator (BLUE; Hayashi, 2000). However, the assumption 
of independently identically distributed (i.i.d.) errors is not realistic for multilevel 
data. The variance-covariance matrix of random errors in response variables can 
be assumed to be 2    as opposed to 2  , where  is an identity matrix 
according to the conditions specified in the Gauss-Markov theorem. As a result, 
the OLSE can be generalized to obtain a generalized least squares estimator 
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(GLSE)  
11 1' 'X X X Y


    . Note that when I  , GLSE is OLSE. Under 

the assumption that 2   is specified correctly, the GLSE is also BLUE (Aitken, 
1935). Suppose a researcher conducts a study in which she enrolls J   groups of 
participants and each group consists of n  individuals. There are all together m   
level-one predictors. The level-one equation in matrix form is Y X e  , where  
Y  is a *1nJ  vector, X  is a *nJ mJ   diagonal block matrix,   is *1mJ  , and e   
is a *1nJ  vector. 

The level-one equation in matrix form is  
 

 
 

The elements of one column in each block in X  are all 1 if the level-one 
model has an intercept. The intercept can also be considered as a slope when x is 
always equal to 1; no further distinction will be given between intercepts and 
slopes in the remainder of this article. 

The level-two equation is 
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where 
ijkz   indicates the kth second level predictor that is for the jth group and has 

an effect on ith level-one variable.   
The size of the level-two predictor design matrix Z is *mJ mp . The size of 

the level-two parameter vector   is *1mp  , and the random slope U  is a *1mj  
vector. Note that the above equation assumes that all level two predictors have 
effects on all  ’s. In practice, the design matrix of level two predictors should be 
constructed according to the actual model of interest. Also, researchers may 
specify some level-one parameters to have random effects. A level-two HLM 
equation can also be written in the following fashion: 

 
  Y X Z U e     (1) 
 
By distributing X  : 

 
 Y XZ XU e     (2) 
 

Because   can be considered as a vector of fixed effects, only  XU e  is 
random in Y. 
 

 
   

2 2 2'k

V Var Y Var XU e

X X I  

  

   
  (3) 

 
As can be observed, the variance components are divided into multiple parts, 

and the number depends on how many level‐one predictors have random effects. 
Directly following generalized linear model theory, results in 

 

         
112ˆ 'Var XZ XZ 




    (4) 

 
(Snijders & Bosker, 1993). Using a conclusion from De Leeuw and Kreft (1986, p. 
25) that 
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  
 

      

12 2
12

11 1 12 2

' '

' ' ' '

I X X X X

X X X X X X X X

 


 

 




  

 
  
 
  
 

  (5) 

 
As a result, if the 2 2, , , ,  and X Z V  matrices are known, the variance-

covariance matrix of ̂ can be calculated. If this information and the assumed 
effect size of ̂ are determined before conducting power analysis, power can be 
estimated using the 2  distribution. However, one problem remains: Prospective 
power analysis takes place before the study begins, so some of the needed 
information may be unavailable. In order to proceed with the power calculation, it 
is necessary to make some assumptions about the values of level one and level 
two covariates. One obvious option is to gather information on the distribution of 
the covariates, draw random variates from the distributions, and use that 
information in the calculations. 

A general strategy to estimate power for the effects of covariates in two-
level HLM is now presented; the procedure is as follows: First, assume values for 
the following: the effect size for the parameter of interest, the level one residual 
variance 2 , the level-two random effects' variance-covariance matrix 2 , means 
and variance-covariance matrix of the level-one covariates, X , and the means of 
the level-two covariates, Z . Second, write down their specific models in matrix 
form and get detailed expressions for , ,  and X Z  . Third, perform the matrix 
calculation and describe and obtain an estimation of the variance-covariance 
matrix of all the fixed effects' parameter estimators. Finally, the assumed effect 
size and the variance of the parameter estimator of interest can be used to 
construct a 2  statistic to obtain the estimated power. 

Example Power Analysis for Two-Level Model Where 
Covariate Values are Known 

Consider an example of a growth model with ten time points, a random intercept 
and a random slope for time. The model may be written as: 
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   

0 1

0 00 01 0

1 10 11 1

00 01 10 11 0 1

2 20, , 0,

ij j j ij ij

j j j

j j j

ij j ij ij j j j ij ij

j ij

y x

z u

z u

y z x x z u u t

u N N

  

  

  

    

  

  

  

  

      

  (6) 

 
When considering the values of the covariates 

ijx  and jz , researchers may 
face two situations. One is that 

ijx  and 
jz are completely or partially unknown 

prior to data collection. In this case, to conduct power analysis, the researcher will 
have to assume the first and second moments of the covariates. The second 
situation is that 

ijx  and 
jz  are known. For example, if 

jz  represents different 
levels of treatment, the number of levels and the number of individuals assigned 
to each is known in advance of data collection. For this example, assume that 

ijx  
represents the coding of ten equally-spaced time points, 

jz represents five levels 
of treatment, and the model assumes linear effects of 

ijx  and
jz . 

Step one: Assume necessary values.  

Assume that the effect size,   , of 01  is 1.0, The level-one error variance, 2  , is 
10. The variance-covariance matrix of the level-two random components ju  is 

5.0 1.0
1.0 4.0
 
 
 

. The number of clusters, j , is 50. The number of repeated measures 

per cluster, n , is 10. The total sample size is 500; input these values into R by 
creating variables to hold them. 
 
pisq <- 10 
tausq <- array(c(5,1,1,4), dim=c(2,2)) 
delta <- 1 
n <- 10 
j <- 50 

Step two: Write out matrix forms of X  and Z   
The matrix format of the reduced form equation is: 
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 (7) 
 

In this case, X is a block diagonal matrix. Each block contains a vector of 
ones to define the intercept and a second vector coding the time points according 
to the model. Z is stack of block diagonal matrices. Within each submatrix, the 
first row describes how the level-one intercept is a function of the level-two 
parameters, 00, 01, 10, 11 and      . The second row describes how the slope for the 
time parameters is a function of the same parameters. These matrices are specified 
in R by creating two operation matrices, A and B, and then their Kronecker 
product is calculated to obtain X.  A is a  by j j  identity matrix and B is an n by 2  
matrix containing a column vector of ones and column vector containing the 
coding of time. 

 
A <- diag(j) 
B <- array(c(1,1,1,1,1,1,1,1,1,1,1,2,3,4,5,6,7,8,9,10), dim=c(10,2)) 
X <- kronecker(A,B) 
 

The Z matrix is created by the following code: 
 
Zmean1 <- 1 
Zmean2 <- 2 
Zmean3 <- 3 
Zmean4 <- 4 
Zmean5 <- 5 
B1 <- matrix(data=c(1,0,Zmean1,0,0,1,0,Zmean1), nrow=2, ncol=4) 
A1 <- array(1, dim=c(j/5,1)) 
Z1 <- kronecker(A1,B1) 
B2 <- matrix(data=c(1,0,Zmean2,0,0,1,0,Zmean2), nrow=2, ncol=4) 
A2 <- array(1, dim=c(j/5,1)) 
Z2 <- kronecker(A2,B2) 
B3 <- matrix(data=c(1,0,Zmean3,0,0,1,0,Zmean3), nrow=2, ncol=4) 
A3 <- array(1, dim=c(j/5,1)) 
Z3 <- kronecker(A3,B3) 



PAN & MCBEE 

471 

B4 <- matrix(data=c(1,0,Zmean4,0,0,1,0,Zmean4), nrow=2, ncol=4) 
A4 <- array(1, dim=c(j/5,1)) 
Z4 <- kronecker(A4,B4) 
B5 <- matrix(data=c(1,0,Zmean5,0,0,1,0,Zmean5), nrow=2, ncol=4) 
A5 <- array(1, dim=c(j/5,1)) 
Z5 <- kronecker(A5,B5) 
Z <- rbind(Z1,Z2,Z3,Z4,Z5) 
 

In this example, a balanced design is assumed because there are equal 
numbers of time points assigned to each individual and equal number of 
individuals assigned to each level of treatment. However, researchers can conduct 
power analysis for unbalanced designs using this method by assigning varying 
numbers of time points to individuals or varying numbers of individuals across 
levels of treatment. 

Step three: Obtain the approximate variance-covariance matrix 

In order to simplify the syntax for calculating  
12 *


  , as shown in Equation 5, 
pre-define the identity matrix I  and perform a calculation to obtain  , the block-
diagonal matrix with J  blocks of the 22 by 2   matrix of variance components: 
 
I <- diag(n*j) 
I1 <- diag(j) 
psi <- kronecker(I1,tausq) 
 

Now  
12 *


   can be obtained using the following code. The a, b, c, and 

d matrices correspond with the components of Equation 5. Use the solve 
command to perform matrix inversion. 
 
a <- (pisq^-1)*I 
b <- (pisq^-1)*(X %*%solve(t(X) %*% X)%*% t(X)) 
c <- (pisq)*(solve(t(X)%*%X))+ psi 
d <- X%*%(solve(t(X)%*%X))%*%(solve(c))%*%(solve(t(X)%*%X))%*%t(X) 
OmegaInv <- (a-b+d) 
 

With this information, obtain the variance-covariance matrix of the parameter 
estimates using Equation 4. 
 
e <- t(Z) %*% t(X) %*% OmegaInv %*% X %*% Z 
Var_gamma <- solve(e) 
 

After the covariance matrix has been obtained, the power estimate may be 
calculated by using the chi-square approximation. In the following code, compute 
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the non-centrality parameter 1Z   by dividing the squared effect size by the 
relevant element from the covariance matrix and then obtaining the probability 
from the chi-square distribution with 1 degree of freedom. Interest lies in the 
power to detect the effect of 01 , the parameter describing the effect of 

jz on the 
outcome, which is the second of the four fixed effects. Its variance is represented 
by the (2, 2) entry of the variance-covariance matrix. It turns out the power to 
detect 01  for an effect size of 1.0 under all the above assumptions is about 0.9. 
The following R code produces the power estimate: 

 
Z1 <- (delta^2)/Var_gamma[2,2] 
pchisq(3.841459, 1, Z1, lower.tail=FALSE) 

Example Power Analysis for Two-Level Model where 
Covariate Values are Unknown 

In the previous example, the values of the level-one and level-two covariates were 
known prior to data collection. The level-one covariate in the growth model 
represented ten time points while the level-two covariate  represented five levels 
of treatment. Because the values were known, the X and Z design matrices could 
be constructed with the known values. However, in many cases the values of 
covariates are unknown prior to data collection. In this situation researchers will 
need to assume values for the means, variances, and covariances of the covariates 
in X and Z . The design matrices may then be constructed with values obtained 
from taking random draws from the appropriate univariate or multivariate 
distributions. In this section, power analysis for the model considered in the first 
example will be performed, but this time X and Z  will contain continuous 
covariates with unknown values. 

Step one: Assume necessary values. The assumed values for all model 
parameters will be the same as the previous example, except  0,1x N  and

 0,1z N . The effect size of 01  is 1.0, the level-one error variance, 2  , is 10. 
The variance-covariance matrix of the level-two random components  is 

5.0 1.0
1.0 4.0
 
 
 

 as before. The number of clusters, j , is 50. The number of repeated 

measures per cluster, n , is 10. The total sample size is 500. The R code is 
identical to that provided for the first example, with the exception of the creation 
of the X and Z  matrices. New variables, however, will be added to hold the 
means and standard deviations of the covariates. If the model included more than 
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one covariate in X or Z , additional variables would be needed to contain their 
pairwise covariances. 

 
meanx <- 0 
sdx <- 1 
meanz <- 0 
sdz <- 1 

Step two: Write out matrix forms of X and Z  
Readers are referred to Equations 6 and 7 for scalar and matrix representations of 
the model. The status of covariates as known or unknown does not affect the 
representation of the model. The issue is the creation of X and Z   with randomly 
drawn values. The following code will perform this task: 
 
library(Matrix) 
B <- list() 
set.seed(1234) 
for (i in 1:j) { 
Bx1 <- rep(1, times=n) 
Bx2 <- rnorm(n, mean=meanx, sd=sdx) 
B[[i]] <- cbind(Bx1, Bx2) 
} 

This code loads the Matrix library and defines the object B as a list. A loop 
creates a design matrix for each j  by creating a vector of ones to code the 
intercept and then making n  draws from the normal distribution to determine 
plausible values in X . These blocks are stored in objects named B[[1]] to B[[j]]. 
Now these must be assembled into the overall design matrix X  which has a 
block-diagonal structure as shown in Equation 7. The random number seed 
ensures that repeated runs of the code will produce identical pseudo-random 
draws for x . 

 
C <- list() 
for (i in 1:j) { 
if (i == 1) {C[[i]] <- B[[1]]} 
else {C[[i]] <- bdiag(C[[i-1]], B[[i]])} 
} 
X <- C[[j]] 
 

This code assembles the X  matrix by adding one block at a time using the 
bdiag command from the Matrix package. A similar procedure will be used to 
create the Z  matrix. 

 
D <- list() 
set.seed(4321) 
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for (i in 1:j) { 
zj <- rnorm(1, mean=meanz, sd=sdz) 
Dz1 <- c(1, zj, 0, 0) 
Dz2 <- c(0, 0, 1, zj) 
D[[i]] <- rbind(Dz1, Dz2) 
} 
E <- list() 
for (i in 1:j) { 
if (i == 1) {E[[i]] <- D[[1]]} 
else {E[[i]] <- rbind(E[[i-1]], D[[i]])} 
} 
Z <- E[[j]] 
 

The first loop creates j design matrices, stored in objects D[[1] to D[[j]]. 
Because the both the level-one intercept and slope are regressed on the same the 
same variable, a single draw for z is used in both rows of the “D” matrix. The 
second loop binds all j matrices together into the complete Z. A different random 
number seed should be specified here so the random draws that provide values for 
z  are not identical to the first j draws of x . 

Step three: Obtain the approximate variance-covariance matrix 
After X and Z  are specified the variance-covariance matrix of fixed effects 
parameter estimates may be obtained using the same code used in the previous 
example. The (2, 2) entry of this matrix provides the approximate variance of the 
fixed effect 01  . The following code performs this calculation: 
 
I <- diag(n*j) 
I1 <- diag(j) 
psi <- kronecker(I1,tausq) 
a <- (pisq^-1)*I 
b <- (pisq^-1)*(X %*%solve(t(X) %*% X)%*% t(X)) 
c <- (pisq)*(solve(t(X)%*%X))+ psi 
d <- X%*%(solve(t(X)%*%X))%*%(solve(c))%*%(solve(t(X)%*%X))%*%t(X) 
OmegaInv <- (a-b+d) 
e <- t(Z) %*% t(X) %*% OmegaInv %*% X %*% Z 
Var_gamma <- solve(e) 
 

If the assumed effect size is 1.0, then the power estimate is obtained by the 
following code: 

 
Z1 <- (delta^2)/Var_gamma[2,2] 
pchisq(3.841459, 1, Z1, lower.tail=FALSE) 

 
The power estimate is about 0.60. It is important to note that when this 

approach is used there may be considerable sampling variation across runs in the 
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draws of x  and z  . The amount of sampling variability in x is much smaller than 
in z because there are  nj x 's but only  j z 's. This may lead to some between-run 
variability in the power estimate. It is recommended that researchers run the 
program several times with different random number seeds and average the power 
estimates across runs. 

Power Analysis for Three-Level Models with Continuous 
Variables 

Next is an outline of how to perform power analysis for a three-level model 
using the same method. First a general matrix formulation of a three-level HLM is 
provided. 

 
  Y X Z W V U e        (8) 
 

 Y XZW XZV XU e      (9) 
 
Only  XZV XU e    is random in Y . 
 

 
   

2 2 2 2' ' '

Var Y Var XZV XU e

XZv Z X X X I  

  

    
  (10) 

 
In Equation 10, 2v  is the variance-covariance matrix of level-three random 

components; the remaining terms are defined as previously. The variance-
covariance matrix of ̂ can be calculated using: 
 

         
112ˆ 'Var XZW XZW 




    (11) 

 
Through simple derivation: 
 
 

 

  
 

     

12 2
12

11 1 12 2 2

' '

' ' ' ' '

I X X X X

X X X X X Zv Z X X X

 


 

 




  

 
  
     

  

  (12) 
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As the following example will illustrate, the remainder of the procedure for 

the power analysis in a three-level HLM follows the same logic as that in a two-
level HLM. 

Example Power Analysis for Three-Level Model  

An example is provided to perform power analysis for a simple three-level model. 
 

 

     

0

0 00 0

00 000 001 1 00

000 001 1 0 00

2 2 2
00 00 0 000, , 0, , 0,

ij jk ij

jk jk

k k k

ijk k jk k ijk

k jk ij

y

u

v

y u v

v N v u N N

 

 

   

   

  

 

 

  

    

  (13) 

 
The model could represent students clustered within classrooms and 

classrooms clustered within schools. The model contains two fixed effects, a 
grand-mean intercept and a single level-three covariate, presumed to be 
continuous, 1kw . Like the previous example, assume that the levels of 1kw  are 
known prior to data collection. Sample code is provided only where there are 
marked differences from the previous example. 

Step one: Assume necessary values 
Assume that the effect size of 001 is .20. The outcome is standardized with a total 
variance, 2  , of 1.0. The within-cluster variance, 2  is .80. The level-two 
variance, 2

00  is .10. The level-three variance, 2
00v , is also .10. The number of 

level-two units per level-three unit, J  , is 5. The number of level-three units, K , 
is 30. The number of individuals per level-two unit, n , is 10, yielding a total 
sample size of 1,500. 
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Step two: X, Z, and W 
The structures of X, Z, and W, based on the model equations, follow similar logic 
to the previous example. They are structured as follows: 
 

(14) 

Step three: Obtain the approximate variance-covariance matrix 

In order to calculate  
12 *


  , as shown in Equation 12, use the code: 

 
I <- diag(n*j*k) 
a <- (pisq^-1)*I 
b <- (pisq^-1)*(X %*%solve(t(X) %*% X)%*% t(X)) 
c <- (pisq)*(solve(t(X)%*%X))+(Z%*%Tausqv%*%t(Z)+Tausqu) 
d <- X%*%(solve(t(X)%*%X))%*%(solve(c))%*%(solve(t(X)%*%X))%*%t(X) 
OmegaInv <- (sigmasq*(a-b+d)) 
 

The variance-covariance matrix of the parameter estimates is obtained using 
Equation 11. 
 
e <- t(W) %*% t(Z) %*% t(X) %*% OmegaInv %*% X %*% Z %*% W 
VarW <- solve(e) * sigmasq 

 
Now that the covariance matrix is obtained, the power estimate may be 

calculated by using the chi-square approximation. Interest lies in the power to 
detect the effect of 001 . The final power estimate result is 0.68; the power 
estimate is obtained using: 
 
Z1 <- (delta^2)/VarW[2,2] 
pchisq(3.841459, 1, Z1, lower.tail=FALSE) 
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Power Analysis for Models with Dichotomous Predictors 

Raudenbush & Liu (2000) described a simplified method of calculating the power 
to detect the effect of a dichotomous predictor. For example, this method would 
conveniently apply to intervention studies with two levels of treatment. Consider 
the following simple multilevel model with only one dichotomous fixed level-two 
variable and a random intercept to illustrate some of the issues involved in power 
calculation. Suppose a researcher is interested in whether an intervention helps 
participants improve their outcome scores (

ijy ). J  groups are randomly enrolled 
to have the intervention as the experimental group and J groups are randomly 
chosen to be the control group ( 0 1jz   if thj  group receive the intervention, 
otherwise the value is 0). There are n students from each group enrolled in the 
study. The researcher is interested in estimating the main effect of intervention 
( 01  ) on participants' outcome scores. The model is: 
 

 

   

0

0 00 01 0 0

00 01 0 0

2 2
0 00

*

*

0, , 0,

ij ij

j j

ij j j ij

j ij

y

z u

y z u

u N N

 

  

  

  

 

  

   
  (15) 

 
Because 0 jz  is dichotomous ( 0 0jz   for all participants in the control group 

and 0 jz =1 for the treatment group), all observations in treatment and control 
groups can be summed respectively to 

 

 
0   

1 1 1
 00 01

*

* *

J J n

j treat ij treat

j j i

ij treat

n u

y
J n J n



 
  

   

 
  (16) 

 
0   

1 1 1
 00

*

* *

J J n

j control ij control

j j i

ij control

n u

y
J n J n




  

  

 
  (17) 

 
Subtracting Equation 17 from Equation 16, it is possible to cancel out 00   

and get 
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       

1 1 1
  00

*

*

J J n

ij treat ij control ij treat ij control

j j i

ij treat ij control

n u u u u

y y
J J n


  

 

   

 
  (18) 

  
If the expectation of   ij treat ij controly y is taken, all random intercepts and 

residuals drop out because their expectations are all 0 according to the assumption. 
Finally this results in 

 
      01 01ij treat ij controlE y y E       (19) 

 
The fact that 01z  is either 0 or 1, and ordinary assumptions about random 

slopes and residuals allow a simple unbiased estimator of 01 to be derived. 
Because observations from treatment and control group are independent of each 
other, the property: 

 

 
   

   
01   

  

ˆ
ij treat ij control

ij treat ij control

Var Var y y

Var y Var y

  

 
  (20) 

 
is observed. Therefore, using Equations 18 and 20, results in 
 

  
   0  0    

1 1 1
01

*
ˆ

*

J J n

j treat j control ij treat ij control

j j i

n u u

Var
J J n

 


  

 
  

  
 
 
 

 
  (21) 

 
According to the assumptions,   2

0 00jVar u   for all 0 ju 's, and 

 2
ijVar    for all ij 's, Equation 21 can be expressed as: 
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 

   2 2 2 2
0  0    

1 1 1
01 2 2 2

2
2
00

*
ˆ

*

2*

J J n

j treat j control ij treat ij control

j j i

n

Var
J n J

n

J

   






  

 

 

 
 

 

 

  (22) 

 
Given the derivation in Equation 22, the non-centrality chi-square 

distribution parameter of random quantity  

 

2
01 0

01

ˆ
ˆvar

 




  can be estimated, where 

0  is the parameter under the null hypothesis. For A two-level HLM with only a 

random intercept, the intra-class correlation p   is defined as
2
00

2 2
00



 
 . As a result, 

  

 

 

 

2
01 0

2 2 2 2
01 0 00

2
201
00

2 2
00

ˆ
ˆ *

ˆ 1var 2*2*

*

J

p
p

nn

J

 

    


 


 



 
  

   
   

  



  (23) 

 

Where
 

 
2

01 02
2 2
00

̂ 


 





, which is the standardized effect size. The same 

result is provided in Raudenbush, et al. (2004). Because researchers will need to 
use results from similar previous studies to obtain an assumed effect size and 
measurements in various studies may be measured on different scales, it makes 
sense to consider a standardized response variable. After standardization, the 
variance of the response variable is 1, which means 

2 2
00 1   .  

Therefore, 01 0ˆ    . Equation 23 can be used to generate the proposed 
test statistic for power calculation. 

Power Analysis for Functions of Parameters in HLM 

 Sometimes researchers are interested in the power to detect functions of 
parameters. For example, if a study considers three levels of treatment, detecting 
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differences between each pair of treatments may be the primary research question. 
Because the entire variance-covariance matrix will result for the parameter 
estimators, the power of detecting linear combinations of parameters can be easily 
calculated. For example, to calculate power of detecting the effect of 1 2a b    
for constant scalars a   and b  . It is easy calculate the standard error of the linear 
combination. 
 

        2 2
1 2 1 2 1 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ. . 2 ,S E a b a Var b Var abCov           (24) 

 
Then the assumed effect size of the two parameters and the calculated 

standard error of the linear combination of interested parameter estimators can be 
used to estimate power. Unfortunately this procedure does not apply to the 
simplified analytical method for dichotomous predictors because the whole 
variance-covariance matrix is not obtained. Referring back to the first example of 
the two-level growth model, if it is desirable to conduct power analysis for  when 

00 01 jz   when 3jz   with additional assumption that the estimated effect size 
of 00  is 0.50, then by substituting each term in Equation 24 by its corresponding 
numeric value and results in the power to detect the effect of the linear 
combination is almost 1. The following code illustrates this calculation: 

 
Z2 <- (3.5*3.5)/(1.063333+9*.09666667-6*.29) 
pchisq(3.841459, 1, Z2, lower.tail=FALSE) 

 

In the cases where interest lies in power of detecting a nonlinear function of 
parameters, the Taylor expansion can be used to obtain an approximation of the 
variance of the nonlinear function of parameter estimators. 

Discussion 

This article outlined a method for approximating power for a wide variety of 
HLMs. A theoretical foundation for performing power analysis in two- and three-
level models was presented. Examples including R code were provided, though 
any software that can carry out matrix computations and generate random variates 
may be used. This approach is very flexible and can easily be carried out for 
models whose power cannot be estimated (or is inconvenient to estimate) using 
currently available software. The method outlined can perform power analysis for 
three-level models with many different types of covariates. 
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One limitation of the usability of this approach for applied researchers is the 
requirement of writing out their models in matrix form. This may be unfamiliar to 
many researchers and could prevent widespread adoption of this method. In the 
future, it is hoped that software will be created to automate this process to 
simplify the implementation of this method and to broaden its appeal. 

A second limitation of the approach is the sensitivity to sampling variation 
when covariate values are unknown. This approach may be thought of as a hybrid 
of numerical approximation and simulation. The sensitivity increases as the 
projected sample sizes decrease, which becomes more severe at higher levels of 
the model. To obtain power estimates robust to sampling variability, it will 
perhaps be necessary to perform many repetitions of the procedure and obtain a 
power estimate averaged across repetitions. In most software it is easy to 
automate multiple repetitions of the procedure to produce the desired stability in 
the power estimate. 

A final limitation is that this method calculates power assuming values for 
all relevant parameters, such as sample sizes and effect sizes. However, when 
planning studies, researchers are often interested in determining either the sample 
size required to reach a given level of power or in the minimum detectable effect 
size given required power and a fixed sample size. In this case it would be set 
power equal to some value and solve for the parameter of interest (i.e., sample 
size or minimum detectable effect size). This article did not directly address these 
scenarios, as focus was placed on the calculation of power given all other 
parameter values. However, it is easy to repeat the procedure described in this 
paper multiple times, specifying a range of values for the parameter of interest in 
order to find the value of the parameter leading to the desired power. 
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