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The effect of a number of factors, such as the choice of analytical method, the handling 
method for missing data, sample size, and proportion of missing data, were examined to 
evaluate the effect of missing data treatment on accuracy of estimation. A methodological 
approach involving simulated data was adopted. One outcome of the statistical analyses 

undertaken in this study is the formulation of easy-to-implement guidelines for educational 
researchers that allows one to choose one of the following factors when all others are given: 
sample size, proportion of missing data in the sample, method of analysis, and missing data 
handling method. 
 
Keywords: Missing data, imputation, simulation, listwise deletion, missing value 
analysis 

 

Introduction 

Missing data is an issue that most researchers in education encounter on a routine 

basis. In survey research there can be many reasons for missing data such as 

respondents ignoring a few or all questions, questions being irrelevant to the 

respondent's situation, or inability of survey administrators to locate the respondent. 

Missing data can also occur in non-survey data, such as experimental and 

administrative data (Acock, 2005; Brick & Kalton, 1996; Groves et al., 2004). In 

non-survey samples, missing data can arise due to carelessness in observation, 

errors made during data entry, data loss due to misplacement etc. Regardless of the 

reason why data is missing, once it is missing it becomes part of the dataset that is 

then used by researchers to perform analytical procedures. The quality of such 
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analytical procedures directly depends on the quality of underlying data which in 

turn can be affected by the nature of missing data (Allison, 2001; Schafer & Graham, 

2002).  

Unfortunately there are many different methods of handling missing data 

which can have profoundly different effects on estimation. For this reason it is 

important to select the correct missing data handling method that is suited to a 

researcher's particular circumstances. These circumstances can be expressed as 

factors, such as sample size, proportion of missing data, method of analysis etc., 

some of which may fall under the control of the researcher in a given scenario and 

thus can be manipulated, while others are more difficult to control. 

For example, a researcher working with secondary data will likely not find it 

possible to increase the sample size to offset the effect of missing data but may have 

flexibility regarding the choice of analytical method. On the other hand, a 

researcher who is gathering her own data and who is relying on a specific method 

of analysis to answer her research questions may find it easy to increase her sample 

size in order to lower the proportion of missing cases. As these illustrations suggest, 

the scenario under which a researcher handles missing data can vary considerably 

depending on that researcher's circumstances. 

There were many investigations and comparisons of the performance of 

missing data handling methods, both in general (Afifi & Elashoff, 1966; Graham, 

Hofer, MacKinnon, 1996; Haitovsky, 1968; Peng, Harwell, Liou, & Ehman, 2009; 

Peugh & Enders, 2004; Wayman, 2003; Young, Weckman, & Holland, 2011) and 

in context of specific factors such as proportion of missing data (Alosh, 2009; Knol 

et al., 2010; Rubin, 1987) and sample size (Alosh, 2009; Rubin, 1987). Because the 

current study is not a review of the literature, any comprehensive attempt to 

reproduce that discussion is beyond its immediate scope. For detailed technical 

aspects including mathematically-intensive proofs and theorems, and application 

of these methods in various fields including education, see Madow, Nisselson and 

Olkin (1983), Madow and Olkin (1983), Madow, Olkin, and Rubin (1983), Jones 

(1996), Groves, Dillman, Eltinge, and Little (2002), and Andridge & Little (2010). 

Although several researchers have investigated missing data handling 

methods, their results were based on various combinations of sample size, 

proportion of missing data, method of analysis, and missing data handling method. 

None of the past studies has dealt with all of these factors simultaneously using the 

same dataset in order to control for data-specific characteristics. For this reason, the 

findings of these earlier studies cannot be used to construct general guidelines for 

use with new datasets. This study controls for all of these factors simultaneously, 

and also expands the range of sample size and proportion of missing data in order 
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to improve the generalizability of its findings. Furthermore, in this study the 

missing data handling methods are compared for four analytical methods that are 

frequently employed in educational research: one sample t test, independent 

samples t test, two-way ANOVA, and linear multiple regression. Results of these 

comparisons can be used to correct biases in tests of hypotheses reported in past 

research that employed improper imputation methods, such as mean imputation, 

that are well-known to produce biased parameter estimates. 

Even though the drawbacks of many missing data handling methods are well-

known and have been regularly publicized in leading peer-reviewed journals, 

researchers in social sciences in general and education and psychology in particular 

have shown a remarkable resilience in sticking to some of the simpler and most 

error-prone methods such as listwise deletion, pairwise deletion, and mean 

imputation (Peng et al., 2006; Peugh & Enders, 2004; Roth, 1994; Schafer & 

Graham, 2002). There are various reasons for avoiding sophisticated missing data 

handling methods that range from a lack of expertise in quantitative methodology 

required for a basic understanding of these methods to the inability to practically 

implement those methods using specialized software programs due to a lack of 

programming know-how. A correction of this state of affairs requires a study that 

specifically targets this population of researchers and that can provide general 

guidelines for selection of the best missing data handling method under a variety of 

scenarios. Some prior studies such as Roth (1994) have pointed out the absence of 

an expansive measurement of bias due to missing data and the gain in efficiency 

that can be achieved by imputing that data in social science literature, especially 

psychology, a field from which educational research heavily borrows its 

quantitative methodology. The same study especially stressed development of 

guidelines that can be used to choose the best missing data handling technique in a 

variety of circumstances faced by researchers. 

The main objective of this study is to provide educational researchers with 

general guidelines about which missing data handling method performs best under 

a variety of combinations of sample size, proportion of missing data, and method 

of analysis. More specifically, these guidelines will allow the researcher to choose 

one of the following factors when all others are given: sample size, proportion of 

missing data, method of analysis, and missing data imputation method. 
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Method 

The analytical procedures presented in this study use two sources of data, a 

simulated dataset and empirical samples. A description of these datasets and 

analytical procedures follows. 

Data Simulation 

The primary source of data used for statistical analyses performed in this study was 

a simulated dataset. The main reason for using simulated data was to ensure that 

distributional assumptions governing the methods of analysis applied in this study 

were not violated. The main concern was that violation of underlying model 

assumptions for each method of analysis under some conditions and not the others 

can significantly erode uniformity of the basis on which these methods are 

compared. A reliable way to avoid this problem was to simulate data that satisfied 

all underlying assumptions for analytical methods of interest and that at the same 

time had characteristics that made such data suitable for analysis of real-world 

problems. 

In order to mimic data routinely encountered by educational researchers a 

dataset with 10,000 cases was simulated which included four continuous and one 

categorical variable. Because groups of variables are usually investigated because 

they are related to each other, it is important that the simulated data also mimic such 

relationships. This was achieved by specifying a variance-covariance matrix that 

was not unlike what a typical educational researcher may encounter during her 

research. 

The four continuous variables, Y, X1, X2, and X3, were generated in such a way 

as to simulate weak correlation between Y and X1 (r = .3), moderate correlation 

between Y and X2 (r = .5), and strong correlation between Y and X3 (r = .7), with 

the three X's correlated weakly with each other (r = .2). This pattern was adopted 

to avoid the problem of multicollinearity in linear multiple regression models 

analyzed in this study. It should be noted that the strength of an association is a 

relative concept. While a coefficient of correlation of .7 may be considered weak 

in context of a physical experiment, the same might be considered very strong in 

context of a social study. Cohen (1992), for instance, suggests .1, .3, and .5 as rule 

of the thumb for small, medium, and strong correlation. Values of the four 

continuous variables X1, X2, X3, and Y were drawn from a multivariate normal 

distribution. For ease of interpretation all continuous variables were specified to 

have a mean of 0 and standard deviation of 1. Dichotomous predictor Z1 was 
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constructed using a uniform discrete distribution with values 0 (n = 4,945) and 1 

(n = 5,055). 

Because the assignment of these values to Z1 is random, this mirrors a 

situation where a significant mean difference in Y does not exist across levels of Z1.  

In order to construct the opposite scenario where mean differences do exist, Z2 was 

constructed to have three levels, with mean Y significantly different between these 

levels.  The three levels of Z2 were labeled 1 (n = 1,623), 2 (n = 6,823), and 3 

(n = 1,554) with mean Y being the largest for group 1 and smallest for group 3.  It 

should be noted that even though this means that the pattern of missing data in Y 

now depends on Z2, such dependency rules out only the missing completely at 

random (MCAR) assumption and not the relatively less stringent missing at random 

(MAR) assumption and as the missing values of Y are still independent of their own 

magnitude, the data cannot be considered as not missing at random (NMAR). 

Data Analysis Approach for Simulated Data 

The simulated dataset (n = 10,000) was used to select 10 sub-samples of size 10, 

20, 50, 100, 200, 500, 1000, 2000, 5000, and 10000. Each of these sub-samples was 

then reduced in size by 1%, 2%, 5%, 10%, and 20% in order to simulate datasets 

containing missing data. The cases were discarded randomly from each complete 

sample five times separately in order to make sure that there were no dependencies 

between samples. Each of the five missing data handling methods were applied to 

all samples containing missing data under four methods of analysis. These methods 

of analysis are one sample t test, independent samples t test, two-way ANOVA, and 

multiple regression. 

The main considerations behind the choice of these four methods of analysis 

is their widespread use among educational researchers and the desire not to restrict 

the findings of this study to a single method of analysis. These methods represent 

various modeling regimes encountered routinely by researchers in education. For 

the independent samples t test, the mean difference in Y over levels of Z1, the only 

categorical predictor with two levels, was analyzed. For two-way ANOVA, both 

categorical predictors, Z1 and Z2 were used as factors of Y. And for multiple 

regression, Y was specified as a function of the three X's and Z1. Five missing data 

handling methods were selected for missing data analysis. These methods are 

listwise deletion, mean imputation, regression imputation, maximum likelihood 

imputation (ML), and multiple imputation. These methods were chosen because of 

their ready availability and easy implementation in general statistics packages such 

as SPSS. Application of these five missing data handling methods under various 
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sample sizes with data missing in various proportions, and for different methods of 

analysis forms the core of simulated data analysis. 

For each of the four methods of analysis, model parameter estimates and 

associated tests of hypotheses were obtained generated for the 10 complete and 50 

partial samples using each of the five missing data handling methods. In other 

words, a total of 4 × (10 + 50) × 5 = 1,200 models were fitted. These 1,200 models 

can be categorized into two groups with the first group comprising of 200 models 

based on samples that contain no missing data and the second group comprising of 

1,000 models based on samples that contain missing data. The model significance 

for these two groups was then compared using the t statistic for models involving 

one sample t test and independent samples t tests, and the F statistic for two-way 

ANOVA and multiple regression models. 

For example, the F statistic evaluating model significance for two-way 

ANOVA under multiple imputation of missing data when the sample size is 100 

and proportion of missing data is 5% can be directly compared with the 

corresponding F statistic for the complete sample containing no missing data 

(n = 100). Such a comparison is fair because after imputation the numerator and 

denominator degrees of freedom are the same for both F values. Thus, since the 

two samples are identical in all other respects including power, any fluctuation in 

the observed value of F can be attributed to the deviation of imputed values from 

their true counterparts. Such an approach allows an objective evaluation of the 

effect of an imputation method on the statistic used to test for model significance. 

For instance if the observed F value increases after imputation of missing data, it 

means that the observed probability of making a Type I error, i.e. rejecting H0 when 

H0 should not be rejected, has decreased. 

In order to compare performance of the 1,000 models based on missing data 

with their complete-data counterparts, a unitless standardized measure of error, the 

normalized root mean squared error (RMSE) was utilized. RMSE is in essence the 

average distance of observed error from the true value and can be interpreted as the 

standard deviation of XObserved. This measure thus takes into consideration the 

absolute size of error. However, RMSE calculated in this way has the same unit of 

measurement as X. By dividing RMSE with the range of X, the unit of measurement 

can be removed from RMSE. The resulting statistic is called the normalized RMSE. 

The advantage of using normalized RMSE over RMSE is that it can be used to 

compare error across variables that are not based on the same unit of measurement. 
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Empirical Sample 1 

In order to test the real-world applicability of simulated results, a large scale dataset 

with variables having characteristics similar to those used in the simulated data was 

utilized. This empirical data was obtained from U.S. portion of the Program for 

International Student Assessment (PISA) (NCES, 2003) which is an assessment of 

literacy in mathematics, reading, and science of 15-year old students (n = ,456). 

The questionnaire for this survey was the basis for a large number of variables, 

some of which are comparable to those simulated in this study. The primary idea 

behind using an empirical sample was to test the effectiveness of guidelines 

constructed on the basis of simulated data. The variable selection was based on 

similarity of characteristics of these variables with their simulated counterparts. 

The dependent variable was math achievement which was distributed 

normally, measured on a continuous scale, and ranged between 200 and 800. Three 

continuous variables were chosen as predictors of math achievement on the basis 

of similarity between the variance-covariance matrix of these predictors and that of 

the simulated continuous variables. These predictors are reading achievement, math 

anxiety, and the index of home educational resources. Reading achievement was 

normally distributed and ranged between 200 and 800. Math anxiety is a measure 

of anxiety felt by a student when engaged in math-related tasks. This variable was 

measured on a continuum, was normally distributed, and standardized to have a 

mean of 0 and standard deviation of 1. 

Home educational resources measured educational resources owned by a 

student's household and can be roughly thought of as a component of the student's 

socioeconomic status. The variable was also standardized to have a mean of 0 and 

standard deviation of 1. A comparison between the variance-covariance matrices 

of simulated and empirical predictors showed slight differences in magnitude. 

However, what is more important to note is the similarity in the pattern of 

relationship among the four variables which showed that math achievement was 

correlated somewhat weakly with home educational resources (r = .3), moderately 

with math anxiety (r = −.4), and strongly with reading achievement (r = .8). This 

pattern was not very different from that simulated for Y and its three continuous 

predictors. Similarly, the inter-predictor correlations presented were also weak like 

their simulated counterparts ranging between −.3 and .3. 

The observed deviation between these two variance-covariance structures 

emphasizes the practical difficulty associated with obtaining empirical datasets 

which possess exact distributional characteristics that a researcher may require. In 

addition to continuous variables a categorical predictor, gender was selected from 

the PISA 2003 dataset. Gender has two categories: male, n = 2,740; and female, 
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n = 2,715. One case had a missing value for gender reducing the maximum number 

of observations available for analysis from 5,456 to 5,455. 

For the purposes of this study, the approach used for simulated dataset was 

replicated with PISA data. This allows us to compare estimation results with and 

without missing data imputation. For analysis, we predicted math achievement 

from its predictors using a linear multiple regression equation. 

The empirical variables were used to evaluate the effectiveness of missing 

data handling guidelines formed with simulated data. A portion of the empirical 

dataset was designated as missing and was then analyzed using the same missing 

data handling methods that were employed for simulated data analysis. This 

involved selecting an appropriate analytical method, estimating model parameters, 

and then comparing the estimation results for complete dataset with its incomplete 

and imputed counterparts in order to evaluate whether the differential effects of 

missing data handling methods.  

Empirical Sample 2 

A smaller empirical dataset was employed in order to evaluate the effectiveness of 

missing data handling methods for small datasets. This data comes from the 

Population and Housing portion of decennial U.S. Census published by the U.S. 

Census Bureau (2000). The data chosen for this example is for the states of Virginia 

and Wisconsin and includes the percentage of individuals in each county with at 

least a four year college degree for the year 2000. The dataset consists of 207 

counties (Virginia, n = 135; Wisconsin, n = 72).  

As with empirical sample 1, the objective of using this sample was to illustrate 

the effect of missing data handling methods on accuracy of estimation. This was 

accomplished by specifying a portion of the data as missing using a subset of the 

missing data percentages used for the simulated dataset. Next, missing data were 

imputed and the parameter estimates obtained with and without imputation were 

compared in order to evaluate the effect of various missing data handling methods. 

In contrast to empirical sample 1 for which a relatively advanced method of analysis 

viz. multiple regression was employed, for empirical sample 2 a simpler method 

viz. independent samples t test was used to ensure a broader coverage of analytical 

methods chosen for this study. 
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Results 

Simulated Data 

Results of analytical procedures described in the method section for the simulated 

dataset are presented in this section. In order to see the association between original 

and imputed data, Pearson coefficient of correlation was calculated between 

original data and imputed data separately for each imputation method. These 

correlations were significantly different from zero at 5% level of significance and 

showed a general decreasing trend in magnitude as the percentage of missing data 

increased. 

Furthermore, the correlations tended to be stronger for maximum likelihood 

(ML) imputation and multiple imputation methods as compared to mean imputation 

and regression imputation. When proportion of missing data was 5% or less, almost 

without exception, all imputation methods produced correlations between original 

and imputed data that were in excess of .95. Only for sample sizes that were less 

than 50 with percentage of missing data exceeding 5% did we observe somewhat 

weaker correlations, in one case falling as low as .74. Mean imputation seemed to 

work well as long as the percentage of missing data was 10% or less but the 

correlation between mean imputed and original data fell quickly regardless of 

sample size as this percentage exceeded 10%. The mean correlation (i.e. 

correlations averaged over sample size and percentage of missing data) between 

original and imputed data for mean imputation, regression imputation, maximum 

likelihood imputation, and multiple imputation were .95, .96, .98, and .98 

respectively, suggesting that such correlation was strongest for ML and multiple 

imputation methods and weakest for mean imputation. However, it should be noted 

that the difference in magnitude of these correlations is very small. 

An examination of normalized RMSE values (see Figure 1) showed that 

multiple imputation was the best missing data handling method because it produced 

the smallest normalized RMSE for all four methods of analysis, one sample t test, 

independent samples t test, two-way ANOVA, and multiple regression. For one 

sample t test, all imputation methods performed better than listwise deletion 

although the difference between listwise deletion and mean imputation was small. 

For independent samples t test, listwise deletion did not perform very well but mean 

imputation did. Furthermore, for independent samples t test, the performance of 

mean imputation and ML imputation was almost the same. For two-way ANOVA, 

listwise deletion was as good as ML imputation and better than regression 

imputation and mean imputation, the latter being the most error-prone method. For 
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multiple regression, regression imputation worked almost as well as multiple 

imputation which produced the smallest normalized RMSE, listwise deletion and 

ML imputation behaved similarly, and mean imputation was clearly inferior to all 

other missing data handling methods. 

 

 
 
Figure 1. The average effect of missing data handling method on accuracy of estimation 

for various methods of analysis 

 

 
 

The reason why regression imputation performed so well when the analytical 

method was multiple regression was that using regression-imputed data in a 

regression equation, when the variables used for imputation and model estimation 

are the same, is akin to fitting a regression equation twice to predict the same 

dependent variable. It is important to note here that the results presented in Figure 

1 were averaged over sample size and proportion of missing data and therefore 

cannot be used to evaluate the partial effect of these two factors. 

In fact, such averaging contributes to observance of some contradictory 

results. For example, we see in Figure 1 that mean imputation does not work very 

well in case of one sample t test but does work well for independent samples t test 

even though both methods involve a similar kind of dependence on the sample 

mean of Y and its standard error. For this reason, it is essential that we disaggregate 

the results in order to clarify the partial effects of sample size and proportion of 

missing data. 
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Disaggregated results showed that for one sample t test: with small samples 

(n ≤ 50), ML imputation worked best whether the proportion of missing data was 

low (m ≤ 5%) or high (m > 5%.); with medium samples (50 < n < 1,000), multiple 

imputation worked best regardless of proportion of missing data; and with large 

samples (n ≥ 1,000), ML imputation works best when proportion of missing data 

was low and multiple imputation worked best when proportion of missing data was 

high. It should be noted here that even though we have identified the best missing 

data method under various conditions, in practical terms the increase in efficiency 

gained due to applications of that best method may be too small to justify such 

application. 

Power comparisons for the four methods of analysis suggested that with 

listwise deletion and medium effect sizes as defined by Cohen (1992): one sample 

t test achieved a power of .8 at sample sizes between 20 and 50 for any proportion 

of missing data ranging between 1% and 20%; independent samples t test achieved 

a power of .8 at sample sizes between 100 and 200 for any proportion of missing 

data ranging between 1% and 20%; 2×3 ANOVA achieved a power of .8 at sample 

sizes between 200 and 500 for any proportion of missing data ranging between 1% 

and 20%; and multiple linear regression with one set of four predictors achieved a 

power of .8 at sample sizes between 50 and 100 for any proportion of missing data 

ranging between 1% and 10% and, at sample sizes between 100 and 200 when the 

proportion of missing data was 20%. It should be noted that for the four imputation 

methods, power values at all sample sizes were exactly identical to those of the 

complete data because after imputation sample sizes are at their maximum. 

Statistical results for efficiency gains are summarized as a decision tree in 

Table 1. Out of the 24 possible situations listed in Table 1 based on various 

combinations of method of analysis (one sample t test, independent samples t test, 

two-way ANOVA, multiple regression), sample size (small, medium, large), and 

proportion of missing data (low, high), relative to listwise deletion, in 15 cases 

(62.5%) the best method was multiple imputation, in seven cases (29.1%) the best 

method was maximum likelihood imputation, in only one case (4.2%) the best 

method was regression imputation, and in only one case (4.2%) the best method 

was mean imputation. However, the increase in efficiency gained in each of these 

24 cases was not the same. For example when multiple regression is the method of 

analysis, sample size is small, and proportion of missing data is high, the gain in 

accuracy, defined as the reduction in normalized root mean squared error between 

the most efficient missing data handling method (multiple imputation in this 

scenario) and listwise deletion is only about 1%. Thus, in terms of the time and 

effort required for application of multiple imputation of missing data a researcher 
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may not find it worthwhile to implement missing data imputation at all rather 

relying on listwise deletion and be content with the corresponding 1% loss in 

accuracy that could have been gained otherwise. 
 
 
Table 1. Summary of gain in estimation accuracy from application of missing data 

handling methods for various methods of analysis 
 

 One Sample t Test  Independent Samples t Test 

Sample sizea Small  Medium  Large  Small  Medium  Large 

Incidence of missing datab Low High  Low High  Low High  Low High  Low High  Low High 

Most efficient data 

handling methodc 
ML ML  MI MI  ML MI  ML MI  R MI  MI MI 

Gain in accuracyd 0.07 0.01  0.05 0.11  0.01 0.07  0.06 0.01  0.07 0.04  0.15 0.24 

 

 Two-Way ANOVA  Multiple Regression 

Sample size Small  Medium  Large  Small  Medium  Large 

Incidence of missing data Low High  Low High  Low High  Low High  Low High  Low High 

Most efficient handling 
method 

MI MI  MI MI  MI MI  ML MI  ML MI  ML MI 

Gain in accuracy from 
imputation 

0.04 0.03  0.03 0.09  0.02 0.10  0.04 0.01  0.03 0.12  0.02 0.10 

 

Note. EM = Expectation maximization imputation. M = mean imputation. MI = multiple imputation. 
R = Regression imputation; aSmall, n ≤ 50; Medium, 50 < n < 1,000; Large, n ≥ 1,000; bLow, missing m ≤ 5%; 
High, missing m > 5%; cMost efficient data handling method is the one that produces smallest normalized root 

mean squared error; dGain in accuracy is measured as the reduction in normalized root mean squared error 

between the most efficient missing data handling method and listwise deletion. When multiplied by 100 this gain 
can be interpreted as a percentage. 

 

Empirical Sample 1 

In order to allow comparison with simulated data results, a multiple regression 

equation was used to predict math achievement from reading achievement, math 

anxiety, home educational resources, and gender. Results for the full dataset and 

the datasets based on various missing data handling methods are presented in 

Tables 2 and 3 under low, m = 5% (n = 5,182) and high, m = 10%  (n = 4,910) 

missing data conditions respectively. 
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Table 2. Predicting math achievement: multiple regression results with 5% missing data 

under various missing data handling methods using PISA 2003 data 
 
 Partial Slope Coefficient Estimates 

 Full Listwise Mean Regression EM Multiple 

Predictors Data Deletion Imputation Imputation Imputation Imputation 

Intercept 47.20*** 48.12*** 72.40*** 48.39*** 48.12*** 48.29*** 

Gendera 30.57*** 30.26*** 28.31*** 30.10*** 30.23*** 30.18*** 

Home educational 
resources 

0.68 0.79 0.48 0.76 0.79 0.79 

Math anxiety -11.48*** -11.38*** -11.16*** -11.47*** -11.38*** -11.43*** 

Reading 

achievement 
0.85*** 0.85*** 0.80*** 0.84*** 0.85*** 0.84*** 

Model summary       

   F 7676.57*** 7229.55*** 5494.187*** 7640.99*** 8056.30*** 7669.93*** 

   R2 .849*** .848*** .801*** .849*** .855*** .849*** 

   Power 1.000 1.000 1.000 1.000 1.000 1.000 
 

Note. n = 5,455. F = Observed F from regression ANOVA. R2 = proportion of explained variance; aReference 
category is female; * p < .05; ** p < .01; *** p < .001 

 
 
Table 3. Predicting math achievement: multiple regression results with 10% missing data 

under various missing data handling methods using PISA 2003 data 
 
 Partial Slope Coefficient Estimates 

 Full Listwise Mean Regression EM Multiple 

Predictors Data Deletion Imputation Imputation Imputation Imputation 

Intercept 47.20*** 48.36*** 88.21*** 47.24*** 48.36*** 48.84*** 

Gendera 30.57*** 30.35*** 27.53*** 30.65*** 30.35*** 30.22*** 

Home educational 
resources 

0.68 0.82 0.58 0.89* 0.82 0.86 

Math anxiety -11.48*** -11.72*** -11.04*** -11.73*** -11.72*** -11.83*** 

Reading 
achievement 

0.85*** 0.84*** 0.77*** 0.85*** 0.84*** 0.84*** 

Model summary       

   F 7676.57*** 6927.02*** 4633.834*** 7667.110*** 8462.10*** 7638.26*** 

   R2 .849*** .850*** .773*** .849*** .861*** .849*** 

   Power 1.000 1.000 1.000 1.000 1.000 1.000 
 

Note. n = 5,455. F = Observed F from regression ANOVA. R2 = proportion of explained variance; aReference 
category is female; * p < .05; ** p < .01; *** p < .001 

 
 

These results show that with the exception of mean imputation, all missing 

data handling methods produce regression parameter estimates and model statistics 

such as R2 and overall F for regression ANOVA that are very similar to their full 

data counterparts. Almost without exception, the results of tests of hypothesis from 

each of the models presented in Tables 2 and 3 are identical. The only exception is 

when regression imputation is used under the 10% missing data condition and 
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where home educational resources turns out to be a significant predictor of math 

achievement (B = 0.87, p = .048). This observation of an exception underscores the 

importance of relying on more than one missing data handling method when 

percentage of missing data is large (exceeds 5%) as also suggested by Raymond 

and Roberts (1997). 

Although the R2 values presented in Tables 2 and 3 suggest that regression 

imputation and multiple imputation methods provide effect size estimates that 

closely match their full data counterparts, it should be noted that the resulting gains 

in efficiency are very small compared to listwise deletion (< 1%). In other words, 

for the large sample (n = 5,455) used in this example, listwise deletion is almost as 

good a choice as the best missing data imputation method. The next step is to see if 

this result also holds when the sample size is relatively much smaller. 

Empirical Sample 2 

For the small sample illustration U.S. Census Bureau (2000) data were used. This 

dataset was used to test for mean difference in percentage of individuals, twenty-

five years or older, with college degrees at county level between the states of 

Virginia and Wisconsin. The sample size was 207 (Virginia, n = 135; Wisconsin, 

n = 72). The independent samples t test results based on various missing data 

handling methods are presented in Tables 4 and 5 under low, m = 5% (n = 197) and 

high, m = 10% (n = 186) missing data conditions respectively. 

These results show that, in terms of effect size, best results are obtained with 

listwise deletion (d = .26) and ML imputation (d = .26) when the proportion of 

missing data is small, and with mean imputation (d = .25) when the proportion of 

missing data is large. Power statistics suggest a small increases in power, from .915 

to .926 (gain = 1.2%) when proportion of missing data is small and from .894 

to .926 (gain = 3.8%) when proportion of missing data is large. In terms of the effect 

on test statistic, results were not consistent for all missing data handling methods. 

For instance, with 5% missing data the null hypothesis of no significant mean 

difference in percentage of individuals, twenty-five years or older, with college 

degrees at county level between the states of Virginia and Wisconsin was rejected 

under listwise deletion (t = 2.08, p = .039), mean imputation (t = 2.19, p = .030), 

ML imputation (t = 2.09, p = .038), and multiple imputation (t = 1.87, p = .038), 

but not under regression imputation (t = 1.84, p = .067). With 10% missing data, 

this same null hypothesis was rejected under mean imputation (t = 2.02, p = .044) 

and regression imputation (t = 2.18, p = .031) but not under listwise deletion 

(t = 1.82,  p = .071), ML imputation 
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Table 4. Independent samples t test results for education attainment with 5% missing 

data under various missing data handling methods using the 2000 census data 
 
 Summary statistics 

 Virginia  Wisconsin 

 n M SD  n M SD 

Full data 135 19.70 11.47  72 17.22 6.16 

Listwise deletion 128 19.87 11.38  69 17.26 6.28 

Mean imputation 135 19.87 11.08  72 17.26 6.14 

Regression imputation 135 19.67 11.17  72 17.42 6.36 

EM imputation 135 19.83 11.08  72 17.33 6.15 

Multiple imputation 135 19.76 11.35  72 17.17 6.44 

        

 t test statistics 

 t df p ΔM SE(ΔM) d Power 

Full data 2.02* 204.98 0.045 2.47 1.23 0.25 0.926 

Listwise deletion 2.08* 194.88 0.039 2.62 1.26 0.26 0.915 

Mean imputation 2.19* 204.66 0.030 2.62 1.20 0.27 0.926 

Regression imputation 1.84 204.08 0.067 2.25 1.22 0.23 0.926 

EM imputation 2.09* 204.64 0.038 2.50 1.20 0.26 0.926 

Multiple imputation 1.87* 204.08 0.038 2.59 1.24 0.21 0.926 
 

Note. n = 207. df = degrees of freedom. The t and df values are reported after adjustment for unequal sample 

sizes and unequal group variances. ΔM = mean difference. d = Cohen's d; * p < .05; ** p < .01; *** p < .001 

 
 
Table 5. Independent samples t test results for education attainment with 10% missing 

data under various missing data handling methods using the 2000 census data 
 
 Summary statistics 

 Virginia  Wisconsin 

 n M SD  n M SD 

Full data 135 19.70 11.47  72 17.22 6.16 

Listwise deletion 128 19.87 11.38  63 17.28 6.23 

Mean imputation 135 19.87 11.08  72 17.28 5.82 

Regression imputation 135 19.67 11.17  72 16.83 6.10 

EM imputation 135 19.83 11.08  72 17.48 5.84 

Multiple imputation 135 19.76 11.35  72 17.37 6.64 

        

 t test statistics 

 t df p ΔM SE(ΔM) d Power 

Full data 2.02* 204.98 0.045 2.47 1.23 0.25 0.926 

Listwise deletion 1.82 183.57 0.071 2.37 1.31 0.23 0.894 

Mean imputation 2.02* 204.98 0.044 2.37 1.17 0.25 0.926 

Regression imputation 2.18* 204.96 0.031 2.63 1.21 0.27 0.926 

EM imputation 1.79 204.99 0.075 2.11 1.18 0.22 0.926 

Multiple imputation 1.87 202.46 0.071 2.37 1.27 0.21 0.926 
 

Note. n = 207. df = degrees of freedom. The t and df values are reported after adjustment for unequal sample 

sizes and unequal group variances. ΔM = mean difference. d = Cohen's d; * p < .05; ** p < .01; *** p < .001 
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(t = 1.79, p = .075), and multiple imputation (t = 1.87, p = .071). These 

contradictory results stand in sharp contrast to results of tests of hypothesis obtained 

earlier in example 1 and underscore the risks inherent in using any missing data 

handling method when a large proportion of data is missing in a small sample. 

Discussion 

The primary objective of this study was to formulate general guidelines that can 

assist educational researchers in the selection of appropriate missing data handling 

methods under various combinations of sample size, proportion of missing data, 

and analytical method. By keeping all of these factors constant, any observed 

differences in performance of missing data handling methods can more or less be 

attributed to the relative efficiency of those methods. The statistical analyses 

conducted in this study can be thought of as a response to recommendations made 

in earlier studies such as Roth (1994) and Young et al. (2011) who identified a need 

for guidelines that can help researchers choose missing data handling methods 

under a variety of scenarios.  

Although previous research exists that has looked at the effect of factors such 

as sample size, proportion of missing data, and method of analysis on the 

effectiveness of missing data handling methods, there are no clear cut guidelines 

which can inform a researcher as to which missing data handling method is best 

under which circumstances. Prior studies used different samples with varying 

proportions of missing data under different analytical methods which makes it very 

difficult to isolate the effect of any single factor. The present study is an attempt to 

rectify this state of affairs. It is hoped that insights provided by the findings of this 

study will further publicize the issues involved and encourage further research in 

this direction. 

In some respects the present study has been able to confirm and support earlier 

findings. For example, our statistical results imply that listwise deletion is one of 

the simplest, easily justified, and least computation-intensive methods under large 

sample and low missing data conditions when the objective is to obtain consistent 

and unbiased estimates of population parameters (Haitovsky, 1968; Wayman, 

2003; Young et al., 2011). On the other hand, the use of this method comes at the 

price of sacrificing additional statistical power that can be gained by imputing 

missing data. One can make a case that if sample size is large enough such that 

achievement of adequate power is not a concern, then listwise deletion provides 

one of the least risky (since it avoids adding another layer of measurement error to 

the data) and most quickly deployable missing data handling methods. Even in 



JEHANZEB R. CHEEMA 

69 

cases where listwise deletion is not the best missing data handling method, for 

instance in terms of efficiency, it still remains an attractive choice because the 

efficiency gains offered by competing methods are often trivial making it difficult 

to justify the increased computational complexity in statistical analyses due to their 

employment. 

We further confirmed the general finding of past studies that if missing data 

imputation is unavoidable, then the two best methods for such imputation are 

maximum likelihood imputation (e.g. Expectation-maximization imputation) and 

multiple imputation (Graham et al., 1996; Wayman, 2003; Peugh and Enders, 2004; 

Peng et al., 2006; Young et al., 2011; Knol et al., 2010). This can be clearly seen 

from the figures presented in Table 1 which show that ML and multiple imputation 

methods performed best in 22 out of 24 (91.6%) scenarios depicted therein. In order 

to get a more complete ranking of the five missing data handling methods used in 

this study, we used a simple scoring method where the least-performing to best-

performing methods received a score from 1 to 5 for each of the 120 possibilities 

based on sample size (small, medium, large), proportion of missing data (low, high), 

the five missing data handling methods, and the four methods of analysis. The sum 

of scores across missing data handling methods revealed the following ranking and 

total scores: multiple imputation, 104; expectation maximization, 83; listwise 

deletion, 65; regression imputation, 63; and mean imputation, 45. 

Although listwise deletion is in the third place in this ranking we reiterate our 

earlier contention that it is often preferable over other methods when the gain in 

estimation accuracy offered by those methods is trivial. This ranking of missing 

data handling methods also makes intuitive sense as it ranks these methods in the 

order of their mathematical sophistication, ranging from the most sophisticated, 

multiple imputation which offers most realistic modeling of random variation, to 

the least sophisticated, mean imputation method that offers no accommodation for 

random variability. 

The important thing to note here is that the positive effect of gain in accuracy 

of parameter estimates due to missing data imputation does not always dominate 

the negative effect of measurement error introduced by such imputation. For 

instance, our results showed that in many instances listwise deletion, that is the no 

imputation method, worked better than some imputation methods but not others 

even after controlling for method of analysis, sample size, and proportion of 

missing data. For example, in our simulation two-way ANOVA for a medium 

sample with high proportion of missing data, listwise deletion performed better than 

mean imputation but worse than multiple imputation. For mean imputation in this 

scenario the positive effect of missing data imputation was dominated by the 
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negative effect of larger measurement error due to that imputation. On the other 

hand, the reverse was true for multiple imputation where the positive effect of 

missing data imputation dominated the negative effect of larger measurement error 

due to such imputation. The message here is that missing data imputation is not 

always an improvement over non-imputation and that some missing data 

imputation methods can actually cause more harm than benefit. 

An important implication of our statistical results is that missing data 

imputation can be beneficial in raising the statistical power of tests of hypothesis. 

In our simulated data relative power gain ranged between 0% and 28.8% while 

absolute power gain ranged between 0 and .12, depending on sample size, 

proportion of missing data, and method of analysis used. The gains in statistical 

power were pronounced for small samples, n ≤ 50, in general (min gain = .003 or 

0.4%; max gain = .11 or 28.8%; mean gain = .03 or 10.4%) and for small samples 

with high proportions of missing data (m > 5%) in particular (min gain = .003 or 

2.87%; max gain = .11 or 28.8%; mean gain = .04 or 14.9%). For sample sizes 

exceeding 200, statistical power was not an issue for any of the four methods of 

analysis adopted in this study (min power = .98; max gain = .01 or 1.2%). Similarly 

the gains in power were modest when proportion of missing data was 5% or less 

(max gain = .03 or 6.7%). The bottom line here is that statistical power by itself can 

be an important consideration for choosing missing data imputation even in cases 

where the non-missing pre-imputation data represents the target population well 

and listwise deletion is a viable option. This is especially true for small samples 

with large proportions of missing data. 

The importance of statistical power issues highlighted in the preceding 

paragraphs should not be taken to mean that population representation is a minor 

consideration. Even when sample size is large and statistical power is not an issue, 

the occurrence of missing data can transform the sample in such a way that it is no 

longer representative of its target population. In such cases it is important to impute 

missing data or alternately, if possible, to use adjusted sampling weights in order to 

make the sample representative again. One may argue that the use of sampling 

weights is preferable over missing data imputation because the former method does 

not introduce additional measurement error. 
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Recommendations Based on Sample Size 

Regarding choice of missing data handling method our general recommendation is 

that if (1) sample size is large enough for adequate power, and (2) sample is 

representative of the target population, then use listwise deletion. In cases where 

either of these conditions is not met the best methods are multiple imputation and 

maximum likelihood imputation. It is important to note here that these 

recommendations are for missing data that are either missing at random (MAR) or 

missing completely at random (MCAR), and not for data that are not missing at 

random (NMAR). 

When sample size is large, n ≥ 1,000, lack of statistical power is generally not 

an issue as clearly demonstrated by our simulated results and empirical data 

examples. The decision to impute missing data thus depends on whether or not the 

non-missing data are still representative of the target population. For small samples, 

in terms of gain in accuracy of estimation, the best available methods of missing 

data imputation are maximum likelihood imputation and multiple imputation. 

Although strictly speaking multiple imputation on average performs better than ML 

imputation in small samples we recommend using more than one imputation 

method in general when the sample size is small and in particular when sample size 

is small and proportion of missing data is high in order to lower the risk of getting 

into the unfortunate situation where the negative effect of an increase in 

measurement error due to imputation exceeds the positive effect of a gain in 

estimation accuracy due to that imputation. 

Our recommendations for choice of missing data handling method are 

summarized in Figure 2. If the missing data are MCAR and the resulting sample 

after listwise deletion provides adequate power for tests of hypotheses, then listwise 

deletion should be used. If the missing data are MAR, then listwise deletion should 

only be used if the resulting sample after listwise deletion is still representative of 

the population and there is adequate power for tests of hypotheses. Finally, if 

missing data is NMAR, then the missing data mechanism must be modeled as part 

of the estimation process. Because the term NMAR is an umbrella term for all sorts 

of non-random missing data mechanisms, the exact modeling process depends on 

the type of non-randomness present in the missing data. For example, if the 

missingness is due to selection bias, Heckman correction can be used (Heckman, 

1979). We recommend multiple imputation and maximum likelihood imputation as 

the methods of choice. 
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Figure 2. The decision process governing choice of missing data handling method 

 

 

Scope for Future Research 

There are several directions for future research. First, more work needs to be done 

on the effect of missing data handling methods on method of analysis. All four 

methods of analysis adopted for statistical analyses presented in this study, one 

sample t test, independent samples t test, two-way ANOVA, and multiple 

regression, are special cases of the general linear model. It would be interesting to 

see whether the guidelines developed here are also applicable to nonlinear models, 

for example models of count data such as logistic regression. There is also further 

scope for testing these guidelines in context of longitudinal, repeated measures, and 

multi-level models. 

The second potential line of research is to focus on application. Future studies 

can take an applied approach and use real-life datasets from various subfields of 
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education in order to evaluate the effectiveness of guidelines presented in this study. 

The importance of simulation work notwithstanding, it is the presence or lack of 

empirical evidence which is most important in determining whether or not such 

guidelines may see widespread acceptance in educational research. 
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