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Data consisting of ranks within blocks are considered for balanced incomplete block 

designs. An F test statistic from ANOVA is better approximated by an F distribution than 
the Durbin statistic is approximated by a chi-squared distribution. Indicative powers 
demonstrate that the F test is generally superior to Durbin’s test. 
 
Keywords: Analysis of variance, balanced incomplete blocks, F tests, powers, ranks 
data, taste-tests, test sizes 

 

Introduction 

Sometimes the number of treatments to be compared is so large that a complete 

blocks experiment is impractical. This happens, for example, in some agronomic 

variety trials. A balanced incomplete block (BIB) design can be used in such a 

situation. In sensory evaluation trials loss of sensitivity can occur when the subjects 

are not be able to compare more than a few products with any certainty. Again BIB 

designs are useful. 

Consider a balanced incomplete block design with the data being ranks within 

blocks. A traditional test for treatment differences for such a scenario is the Durbin 

(1951) test, based on the statistic D, given by 
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in which there are t treatments, k of which are ranked in each of b blocks. If rij is 

the rank given to treatment i on block j then 
iR  is defined as the mean rank over 

blocks for the ith treatment. For untied data c = 12(t – 1)r/{t(k2 – 1)} where each 

treatment is ranked r times, with r< b. For tied data, if 

   
22

,
/ 1 / 4iji j

V r rt k    then c = (t – 1)r/(tV). 

It is well known that D has an asymptotic 2

1t 
 distribution. However for 

values of (t, b, k, r) met in practice this approximation to the distribution of D can 

be poor. See, for example, Fawcett and Salter (1987). This has led to the suggestion 

to use a permutation test to obtain p-values for D. See, for example, Bi (2009) and 

Higgins (2004) who does not consider BIBs but who generally advocates 

permutation tests. However, software to calculate a p-value for D via a permutation 

test may not always be readily available. A scientist without access to software for 

a permutation test based on D might find carrying out a permutation test a challenge. 

Conover (1999, p. 389) suggests carrying out an analysis of variance (ANOVA) on 

the ranks and using the F test for treatment differences. This F test is based on 

‘adjusted’ sums of squares from the general linear model readily available in 

statistical packages such as JMP (use ‘fit model’) and MINITAB (use ‘glm’). These 

packages also readily give appropriate multiple comparisons. 

Literature reviews did not reveal any previously published small sample 

studies examining the validity of this F test approach, although Conover (1999, p. 

390) suggested it improves on the Durbin test. As above we observe that we are 

considering situations where the raw data are ranks or ranks of ordered categorical 

data. Many studies have compared parametric and nonparametric tests when data 

are continuous measurements. See, for example, Kelley and Sawilowsky (1997) 

and the references therein. However, such studies are not the focus of our article. 

Sizes and powers 

Test sizes based on 100,000 samples for each (t, b, k, r) combination in Table 1 

were carried out to check the suitability of the 2

1t 
 and Ft–1,df distributions for 

obtaining p-values. Note that, as usual, df = bk – t – b + 1. Table 1 sizes are for data 

with untied ranks with 2

1t 
 and Ft–1,df critical values and were found using 

permutation tests. Sizes for D in this study agree with those of Fawcett and Salter 

(1987). The sizes for the F test statistic F improve on those for D based on the 2

1t 
 

approximation and indicate the F distribution can be used to obtain p-values for F. 

If carrying out a permutation test is not convenient the F probabilities are a 

considerable improvement over the χ2 probabilities for all bk. 
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Table 1. Actual test sizes for nominal 5% level test for various BIBs with no ties 

 
(t, b, k, r) D F bk 

(4, 6, 2, 3) 0.000 0.000 12 

(4, 4, 3, 3) 0.000 0.073 12 

(5, 10, 2, 4) 0.000 0.116 20 

(5, 5, 4, 4) 0.026 0.062 20 

(5, 10, 3, 6) 0.035 0.061 30 

(6, 15, 2, 5) 0.022 0.050 30 

(6, 10, 3, 5) 0.026 0.062 30 

(6, 15, 4, 10) 0.030 0.051 60 

(6, 20, 3, 10) 0.040 0.056 60 

(7, 7, 3, 3) 0.000 0.087 21 

(7, 7, 4, 4) 0.025 0.055 28 

(7, 21, 2, 6) 0.017 0.069 42 

 
 
Table 2. Actual test sizes for nominal 5% level test for various BIBs with ties 

 
(t, b, k, r) D F bk 

(4, 6, 2, 3) 0.000 0.006 12 

(4, 4, 3, 3) 0.005 0.051 12 

(5, 10, 2, 4) 0.001 0.045 20 

(5, 5, 4, 4) 0.018 0.044 20 

(5, 10, 3, 6) 0.031 0.052 30 

(6, 15, 2, 5) 0.012 0.053 30 

(6, 10, 3, 5) 0.024 0.050 30 

(6, 15, 4, 10) 0.042 0.050 60 

(6, 20, 3, 10) 0.040 0.050 60 

(7, 7, 3, 3) 0.001 0.054 21 

(7, 7, 4, 4) 0.020 0.050 28 

(7, 21, 2, 6) 0.020 0.054 42 

 
 

To allow for ties, sizes were calculated as in Brockhoff et al. (2004, section 4 

and also see the discussion in section 6). For each block and treatment one of the 

scores 1, 2, …, k was randomly assigned, each with probability 1/k. These values 

were ranked by block with ties given mid-rank values. This was repeated 100,000 

times for each of the (t, b, k, r) combinations in Table 2. Very infrequently the value 

V or the error sum of squares was zero. Such data sets were discarded and new ones 

inserted. Sizes for D are still poor but those for F are better for the ties case than 

for the no ties case. If, for tied ranks, permutation tests rather than the Monte Carlo 

tests suggested herein had been used to get sizes for Table 2, results would have 

been conditional on a ties structure and so not of as general applicability as those 

given. 
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A power comparison between the tests is now provided based on D and F. In 

practice it is expected that most scientists will use the χ2 and F distributions and so 

powers based on these are provided. However Tables 1 and 2 show that the test 

based on D hardly ever has size near 0.05; thus, the D powers based on χ2 critical 

points will be disadvantaged in comparison to the F powers based on the F 

distribution. If test sizes for tied data are examined, it is observed that D sizes for 

(t, b, k, r) = (6, 15, 4, 10) and (6, 20, 3, 10) are at least not too far from 0.05 and so 

the D test should not be too disadvantaged. Subsequent powers are calculated 

following the size method but with all treatments in a given treatment group having 

probabilities (p1, p2, p3, p4) of getting a score (1, 2, 3, 4) respectively in any given 

block instead of (0.25, 0.25, 0.25, 0.25). Thus for (t, b, k, r) = (6, 15, 4, 10) with 

probabilities (0.25, 0.25, 0.25, 0.25) for treatments 1, 2 and 3, and probabilities 

(0.08, 0.08, 0.42, 0.42) for treatments 4, 5 and 6 for a nominal 5% level of 

significance, it was found that the D and F test powers are 0.31 and 0.34 

respectively. Recall that under the null hypothesis all treatment probabilities are 

(0.25, 0.25, 0.25, 0.25). The powers here are close, and the difference could be 

explained by the discrepancy in the actual sizes. It is expected that - if there was no 

difference in the sizes - the sizes would be, as here, very close, and there would be 

no reason, based on power, to use D rather than F. For (t, b, k, r) = (6, 20, 3, 10) 

and treatment group probabilities as above, then the D and F powers are 

respectively 0.26 and 0.29. Again, these are very similar and any difference may 

well be due to the size advantage enjoyed by the F test. It must be stressed that the 

powers just given are for a BIB design where the actual size was near the nominal 

size. For the many BIB designs where this is not so, powers of the test based on D 

would be very poor compared to those of the test based on F. 

To further compare the powers of the tests based on D and F and to check 

whether or not it is the slight size difference that is causing the differences in power, 

Table 3 gives powers for (t, b, k, r) = (6, 15, 4, 10) for a number of alternative 

treatment probabilities, using an estimated critical value of 10.64 for the test based 

on D. Also given are powers using the 2

5  critical value of 11.07, which gives a test 

size of 0.042, whereas 10.64 gives a test size of 0.05. 

In all cases the F test power is found to be slightly superior to the Durbin test 

power; using the estimated critical value of 10.64 it is superior by so little as to be 

inconsequential. Using the 2

5  critical value the difference is small but not 

inconsequential. Therefore, use of the F test is recommended based on its test sizes 

being closer to nominal than the Durbin test sizes. Moreover the F test power is 

generally not inferior, and when the Durbin test has a low size, it is generally 
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inferior. The F test is easy to use and has ready availability of multiple comparisons 

in general linear model platforms. 
 
 
Table 3. Powers for a 5% significance level, (t, b, k, r) = (6, 15, 4, 10), with ties allowed 

and alternative probabilities as shown 
 

Treatment 
groups 

Alternative probabilities D (11.07) D (10.64) F 

(1, 2, 3) (0.25, 0.25, 0.25, 0.25) 
0.112 0.129 0.133 

(4, 5, 6) (0.15, 0.15, 0.35, 0.35) 

(1, 2, 3) (0.25, 0.25, 0.25, 0.25) 
0.229 0.258 0.262 

(4, 5, 6) (0.1, 0.1, 0.4, 0.4) 

(1, 2, 3) (0.25, 0.25, 0.25, 0.25) 
0.437 0.473 0.478 

(4, 5, 6) (0.05, 0.05, 0.45, 0.45) 

(1, 2, 3) (0.25, 0.25, 0.25, 0.25) 
0.598 0.634 0.639 

(4, 5, 6) (0.02, 0.02, 0.48, 0.48) 

(1, 2) (0.25, 0.25, 0.25, 0.25) 
0.102 0.119 0.122 

(3, 4, 5, 6) (0.15, 0.15, 0.35, 0.35) 

(1, 2) (0.25, 0.25, 0.25, 0.25) 
0.207 0.233 0.236 

(3, 4, 5, 6) (0.1, 0.1, 0.4, 0.4) 

(1, 2) (0.25, 0.25, 0.25, 0.25) 
0.400 0.433 0.437 

(3, 4, 5, 6) (0.05, 0.05, 0.45, 0.45) 

(1, 2) (0.25, 0.25, 0.25, 0.25) 
0.546 0.578 0.584 

(3, 4, 5, 6) (0.02, 0.02, 0.48, 0.48) 

(1, 2) (0.25, 0.25, 0.25, 0.25) 

0.551 0.584 0.588 (3, 4) (0.1, 0.1, 0.4, 0.4) 

(5, 6) (0.02, 0.02, 0.48, 0.48) 

(1, 2) (0.25, 0.25, 0.25, 0.25) 

0.175 0.197 0.201 (3, 4) (0.1, 0.1, 0.4, 0.4) 

(5, 6) (0.15, 0.15, 0.35, 0.35) 

 

Examples 

Ice cream data 

Suppose, as in Conover (1999, p. 390) that seven varieties of ice cream are to be 

compared. Also suppose it is known that tasting more than three ice creams at a 

time will result in poor responses due to sensory fatigue. The seven ice cream 

judges are each asked to rank three of the seven varieties. The results are in  

Table 4. 

Table 4 shows that t = b = 7, r = k = 3 and each variety is compared with every 

other variety once. This is a balanced incomplete block layout; no ties are observed 
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and D = 12. Using the 2

6  approximation the p-value is 0.06 and so with a 5% level 

of significance it may be concluded that no difference exists in the preference for 

the seven varieties. However Conover calculates an exact p-value of 0.018. This 

study calculated F = 8 and, using the F6,8 distribution, the p-value is 0.005: this is 

much closer to the exact Conover p-value for D, is easier to calculate and is 

significant at the 5% level. Knowing that the χ2 approximation to D is poor, it is 

necessary to reverse the initial judgement and conclude that varieties are not equally 

preferred. As here the χ2 p-values are often too conservative. 
 
 
Table 4. Rankings of seven ice cream varieties 

 

Judge 
Variety 

1 2 3 4 5 6 7 

1 2 3 - 1 - - - 

2 - 3 1 - 2 - - 

3 - - 2 1 - 3 - 

4 - - - 1 2 - 3 

5 3 - - - 1 2 - 

6 - 3 - - - 1 2 

7 3 - 1 - - - 2 

Sum 8 9 4 3 5 6 7 

 
 
Table 5. Rankings for breakfast cereals 

 

Judge 
Cereal 

A B C D E 

1 1.5 1.5 3 - - 

2 1 2.5 - 2.5 - 

3 1.5 3 - - 1.5 

4 1 - 2 3 - 

5 1.5 - 3 - 1.5 

6 1 - - 3 2 

7 - 2 3 1 - 

8 - 2.5 2.5 - 1 

9 - 3 - 2 1 

10 - - 3 2 1 

Sum 7.5 14.5 16.5 13.5 8 
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Breakfast cereal (tied) data 

Kutner et al. (2005, section 28.1) consider a taste-test in which five breakfast 

cereals (t = 5) were scored on a ten point hedonic scale by ten judges (b = 10) three 

at a time (k = 3). Each cereal was tasted six times (r = 6). The ranked data are shown 

in Table 5 (note that there are tied ranks). 

It was found that D = 14.92 with a 2

4  p-value of 0.005 and F = 11.56 with 

an F4,16 p-value of 0.0001. Using a 5% significance level a decision would be made 

that there was a difference in the preference ranking of the cereals. 

Conclusion 

The test based on the ANOVA F statistic F provides an easily applied alternative 

to Durbin’s rank test. The test based on the F statistic has better test sizes than the 

test based on D, has better power if chi-squared critical values are used for D, and 

can be calculated using the general linear model software available in many 

statistical packages, which also readily provide multiple comparisons. Based on the 

results in this study, it is suggested that, for bk ≥ 50, the F statistic p-value based 

on the F distribution can be used rather than p-values from permutation or Monte 

Carlo tests. For smaller bk the F probabilities are a considerable improvement over 

the χ2 probabilities and should be used when carrying out a permutation test is not 

convenient. 
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