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A Comparison of Methods for Group 
Prediction with High Dimensional Data 

Holmes Finch 
Ball State University 

Muncie, IN

 

 
High dimensional data is the situation in which the number of variables included in an 
analysis approaches or exceeds the sample size. In the context of group classification, 
researchers are typically interested in finding a model that can be used to correctly place 
an individual into their appropriate group; e.g. correctly diagnose individuals with 

depression. However, when the size of the training sample is small and the number of 
predictors used to differentiate the groups is larger, standard approaches such as 
discriminant analysis may not work well. In order to address this issue, statisticians have 
developed a number of tools designed for supervised classification with high dimensional 
data. The goal of this simulation study was to compare several such approaches for 
supervised classification with high dimensional data in terms of their ability to correctly 
classify individuals into groups, and to identify the number of variables associated with 

group separation. Results of the study showed that the Random Forest ensemble recursive 
partitioning algorithm was optimal for group prediction, while the Nearest Shrunken 
Centroid and Regularized Discriminant Analysis methods were optimal for identifying the 
number of salient predictor variables. The standard linear discriminant analysis approach 
was generally the worst performer across all high dimensional simulated conditions. 
Implications of these results to practice and directions for future research are discussed. 
 

Keywords: Group prediction, Discriminant Analysis, High dimensional data, 
Regularlization methods 

 

Introduction 

High dimensional data refers to the case where the number of variables to be 

included in an analysis is equal to or exceeds the sample size (Bühlmann & van de 

Geer, 2011), and is written symbolically as p>>n. High dimensional data can create 

a variety of problems for many standard data analytic techniques, including those 

used in prediction and classification. In particular, when the number of predictors 

exceeds the sample size it is frequently not possible to obtain model parameter 
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estimates because covariance matrices are often singular. In addition, in the high 

dimensional case there may be more unknown parameters than known data, leading 

to indeterminate estimation problems. Finally, in the high dimensional data case the 

correlations among variables is often very high, making parameter estimation very 

difficult. The result of all of these problems is that parameters and their 

corresponding standard errors are frequently not estimable in the high dimensional 

case. Furthermore, any estimates that are obtained are likely to be ill-conditioned 

and therefore unreliable (Kriegel, Kröger, & Zimek, 2009).  

Given these difficulties, researchers have developed a set of statistical 

methods for the problem of high dimensional data. These methods are useful in a 

variety of contexts, including fitting of linear models, clustering observations based 

on a number of variables (often referred to as features in high dimensional 

literature), and classificaiton of individuals into one of several groups, using many 

predictors. The focus of the current research is on this latter application to group 

classification. Often in standard data problems where n>p, such classification is 

done using discriminant analysis. However, as we will see below, this approach is 

ill suited for use when p>>n, or even when p approaches n (Hastie, Buja, & 

Tibshirani, 1995). This Monte Carlo simulation study examines several methods 

that have been proposed for the high dimensional classification problem, including 

several based on discriminant analysis, as well as a variation of nearest centroid 

classificiation, and the recursive partitioning random forest methodology. The 

remainder of the manuscript is organized as follows: First we discuss discriminant 

analysis and explain why its use when p>>n is problematic, followed by a 

description of alternative classifiers that have been proposed for this case. After 

next describing the study goals, we then outline the simulation study design, 

followed by a description of the simulation results. Finally, we discuss the results 

of our simulation and place them in the context of the broader high dimensional 

classification literature. 

Goals of the current study 

The goal of the current study was to compare the performance of several methods 

for group classification in the presence of high dimensional data. This comparison 

was made using both simulated data and an existing data example. This work adds 

to the literature in the field in three primary ways. First of all, there has not been 

another published study in which all of these classification methods have been 

compared with one another using Monte Carlo methods. While prior research has 

demonstrated the utility of several of these approaches using extant data (e.g. 
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Clemmensen, Hastie, Witten, & Ersbøll, 2011; Zhang, Dai, Xu, & Jordan, 2010; 

Hastie, Buja, & Tibshirani, 1995) or small simulations (Hastie, Tibshirani, & 

Friedman, 2009), no prior published study has systematically compared the 

performance of all of the methods described here, each of which has been suggested 

as a possible alternative for the high dimensional case. Thus, the current study 

should further the literature in this regard by providing researchers with more 

information about which such tools might be optimal under which conditions.  The 

second goal of this study was to investigate the performance of RF in the presence 

of high dimensional data. While there have been some initial calls for such 

simulation research (Xu, Huang, Williams, Wang, & Ye, 2012), and some 

demonstrations with existing data (e.g. Zhang, Yu, Singer, & Xiong, 2001) there 

has not been a great deal of work done examining RF in this context. Finally, the 

third goal of this study was to introduce methods for high dimensional group 

prediction to social science researchers, in particular. Traditionally these methods 

have been used primarily with gene expression data, as a review of Bühlmann and 

van d Geer (2011) demonstrates. However, there are scenarios in the social sciences 

in which researchers are faced with small samples as well (e.g., Siklos & Kerns, 

2007; Palmer, 2006; Sanden, 2008). 

Methods for classification with high dimensional data 

Linear Discriminant Analysis 

Perhaps one of the most widely used classification methods is linear discriminant 

analysis (LDA). This technique, which is based upon a multivariate linear model, 

is used when there exists a grouping variable and a set of predictors that are believed 

to distinguish members of the 2 or more groups. The algorithm identifies weights 

for each of the predictors such that their linear combination maximally separates 

the groups from one another (Huberty & Olejnik, 2006). This linear combination 

appears in equation (1). 

 

 0

j

ji j jm mi

n
C x ln

N
 

 
    

 
   (1) 
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The terms in (1) are defined as: 

 

jiC Classification score for group j for subject i 

0j Constant for group j 

jm Weight for predictor m for group j 

mix Value of predictor m for subject i 

jn  Sample size for group j 

N Total sample size 

 

The natural log of the ratio of group size to the total sample serves as prior 

information about the relative frequency of the group in the population. In many 

applications, this prior probability of group membership is calculated using the 

values of jn  and N from the sample, as described above. However, the prior 

probability can also be provided directly by the researcher, bypassing the use of 

relative group size in the sample. This might be a useful strategy if it is known that 

the sample is not representative of the population in terms of the relative frequency 

with which members of each group appear. Determination of the coefficients in (1) 

is made so as to maximize the following criterion: 

 

  subject to 1T T

j b j j w j         (2) 

 

Here, the coefficients () are as defined previously, with b being the 

between class covariance matrix, and w  the within class covariance matrix. The 

resulting linear combination in (1) can be used to determine category membership 

for each observation in the original training data or in a cross-validation sample. 

Values of Cj are calculated for each member of the sample, and individuals are 

classified into the group for which they have the largest such score. 

In terms of determining variable importance in terms of group classification, 

researchers typically rely on the structure matrix, which can be interpreted as the 

correlation matrix between the individual predictors and C. While there is not a 

hypothesis test for these values, recommendations for cut values have been 

suggested, including 0.32 (Tabachnick & Fidell, 2013), which will be used in the 

current study. Thus, absolute values of the structure matrix elements greater than 

0.32 are taken as indicative that a predictor contributes to a classification solution. 

In the case when P >N, which is the focus of this study, LDA is not typically 

a good choice for group classification because the within class covariance matrix 
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estimated using the sample is likely to be singular (Witten & Tibshirani, 2011). 

Even when this is not the case, Witten and Tibshirani have shown that the classifier 

in (1) will most likely exhibit a high variance, thereby degrading the resulting 

prediction model. Finally, in the case when P itself is large (irrespective of the size 

of N), LDA can prove problematic because the classifier in (1) will, by definition 

include all of the predictor variables, potentially leading to problems with 

interpreting the classifier function (Witten & Tibshirani). Therefore, while it is a 

popular and frequently used tool for researchers interested in classification, LDA 

may not be appropriate for cases in which the number of predictor variables is 

almost as large as, or larger than the number of subjects in the sample (Hastie, 

Tibshirani, & Friedman, 2009). Given these limitations, we will need to turn to 

alternative methods of classification better suited to the high dimensional problem. 

Penalized LDA 

One alternative for high dimensional classification is penalized LDA (PLDA), as 

proposed by Hastie, Buja, and Tibshirani (1995).  PLDA is based upon a 

regularization of the discriminant function; i.e. a reduction in the number of 

predictors (sometimes referred to as features) used to develop the prediction 

algorithm. By limiting the number of predictors, the resultant discriminant function 

should not suffer from the problems associated with LDA when P >N. The key to 

this method working optimally is the use of an appropriate regularization strategy.  

PLDA shares the basic methodology described above for LDA, including the form 

of (1) for the prediction algorithm. However, (2) is adjusted to the following: 

 

    subject to 1T T

j b j j j w jP          (3) 

 

In (3), P is a penalty function designed to regularize the set of predictor 

variables, by reducing it to only those that are most salient in differentiating the 

groups. 

 Witten and Tibshirani (2011) describe the penalty function to be used in (3) 

as the PLDA-L1 algorithm appearing in (4): 

 

  subject to 1T T

j b j j j j w j           (4) 

 
In this case, j  is the within class standard deviation for predictor j, and   is a 

tuning parameter that is set by the researcher. When   is large, the relative 
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importance of individual predictors is reduced, and some will even go to 0, meaning 

that they do not contribute to the classification function in (1) at all. The value of 

  is determined through the use of jackknife cross-validation, in which each 

member of the sample is removed in turn and various values of the tuning parameter 

are used with each jackknife sample. The optimal value is determined to be the one 

that minimizes classification error across the cross-validation samples. In addition, 

the inclusion of j  means that predictors with greater variation within classes will 

contribute less to the overall classification function than those with less such 

variability. Witten and Tibshirani assert that using PLDA-L1 will result in a 

function involving a subset of the predictors, and is most appropriate if the 

researcher desires a relatively sparse classifier function. It should be noted that 

Witten and Tibshirani also describe a second method for determining the penalty 

in (3), based on the fused Lasso method of regularization (Tibshirani, Saunders, 

Rosset, Zhu, & Knight, 2005). However, this approach was not employed in the 

current study because it assumes a linear ordering of the predictors, which was felt 

to be a limitation to its use in many applied settings. 

Regularized Discriminant Analysis (RDA) 

Guo, Hastie, and Tibshirani (2007) introduced an alternative to LDA in the high 

dimensional case that focuses on shrinking the within class covariance matrix ( w ) 

in the sample toward the diagonal matrix, through the use of a tuning parameter,  . 

This shrunken version of w  takes the following form 

 

    1w w wdiag        (5) 

 
The value of   ranges between 0 and 1, where 1   corresponds to 

standard LDA, and 0   yields highly regularized discriminant functions, in 

which a small number of predictors contribute to the within class covariance matrix. 

As with PLDA, jackknife cross-validation is used to identify the optimal value of 

 . When w  is obtained, it is applied to (2), and the classifier in (1) is developed 

based upon this shrunken within class covariance matrix. In practice, RDA yields 

a classification function that utilizes many fewer predictors than are present in the 

data, or than would be used in standard LDA, thus avoiding problems associated 

with complex classifiers containing many correlated predictors, as cited above. 
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Sparse Discriminant Analysis (SDA) 

RDA regularized the set of predictors by applying a penalty to the within class 

covariance matrix. Alternatively, regularization could be achieved through 

applying the penalties directly to the discriminant function coefficients for the 

predictors ( j ). This approach, known as sparse discriminant analysis (SDA) was 

described in Clemmensen, Hastie, Witten, and Ersboll (2011). It is based on the 

elastic net (Zou & Hastie, 2005), which is used with linear models in the presence 

of high dimensional and/or highly collinear data. In the context of discriminant 

analysis, this elastic net approach seeks to minimize the following function: 

 

 
2 ΩT

j j j j jY X        (6) 

 
The parameters  and   are tuning parameters, Y  is an indicator variable for 

whether an individual belongs to a particular group, j  is a score matrix, and Ω  is 

a positive definite penalty matrix. In the current study, we use the elastic net 

approach suggested by Clemmensen, et al., such that Ω I , where I is the identity 

matrix. Jackknife cross-validation is used to determine the optimal values of  and 

 . The elastic net approach to regularization has some theoretical advantages over 

other approaches, including the lasso based PLDA method described above. Chief 

among these advantages are that highly correlated predictors tend to have similar 

coefficients in the final equation, and a greater number of predictors might be 

included in the final equation (Zou & Hastie, 2005).   

Nearest Shrunken Centroids (NSC) 

Another approach that we will examine for dealing with the high dimensionality 

classification problem is based upon an approach known as diagonal-covariance 

LDA. This method is based upon centroid classification, in which a multivariate 

mean (centroid) across all predictors is estimated for each group, and then new 

cases are placed in the class to whose centroid their scores are closest. NSC is a 

variant of this approach in which the class centroids are shrunken toward the overall 

centroid of the sample by an amount equal to a predetermined threshold value. The 

nearest centroid classification rule is expressed as: 

 

 
2

2
im jm

ij j

m

x x
ln

s
 


     (7) 
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In (7) ij  is the discriminant score of subject i for category j, jmx  is the mean 

for predictor m in category j, 2

ms  is the variance of predictor m pooled across all 

categories, and imx  is the value of predictor m for subject i. An individual is placed 

into the group for which their value of ij  is smallest. 

NSC adjusts the nearest centroid classification in the following way. First, the 

value jmd  is calculated, reflecting the difference between each group mean and the 

overall mean, as seen in (8). 

 

 
 0

jm m

jm

j m

x x
d

m s s





 (8) 

 

Here, terms are as defined in (7), with the addition that mx  is the overall mean 

across categories for predictor m, 2 1 1
j

k

m
n n

  , and 0s  is the median of the ms  

values. Its purpose is to ensure that jmd  does not become too large if the value of a 

given predictor is close to 0. The second step in NSC involves determining the 

degree to which the individual predictors’ group means should be shrunk toward 

the overall mean across groups. In order to do so, the value of the threshold 

parameter,  must be made. This is typically done using jackknife cross-validation 

in which a potential  is used and predictions are made for each jackknife sample. 

The threshold value that yields the most accurate cross-validation predictions is the 

one to be used in the final NSC algorithm. Shrinkage occurs by adjusting jmd  as in 

(9): 

 

   '

jm jm jmd sign d d     (9) 

 

Finally, (8) is solved for jmx  and shrunken versions of the predictor means 

are calculated as in (10). 

 

  ' '

0jm m j m jmx x m s s d     (10) 

 

The shrunken centroids obtained in (10) are then used in (7). An important 

point to note here is that if for a given predictor, the shrinkage takes its centroid 

value down to (or past) 0, the centroid is assigned the value of 0. As an example, if 
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a predictor centroid is 1 and the amount of shrinkage determined using (9) and (10) 

is -2, then the shrunken centroid value would be 0, because 1-2 takes the value 

down to (and past) 0. NSC is known to have two advantages when used with high 

dimensional data. First, it reduces the impact of predictors with high variances, thus 

also reducing the amount of noise in the predictions themselves. Second, it creates 

a de facto predictor selection algorithm by removing the impact of variables that 

contribute relatively less to group separation (Tibshirani, Hastie, Narasimhan, & 

Chu, 2002). 

Random Forest 

The final method of classification to be considered in this study is the Random 

Forest (RF) of Brieman (2001), which is based upon the classification and 

regression tree (CART) recursive partitioning algorithm that Breiman, Friedman, 

Olshen, & Stone (1984) described. For CART with a categorical outcome variable, 

predictors are used to partition members of the sample in ever more heterogeneous 

groups, with respect to the outcome. The partitioning continues until a 

predetermined stopping rule has been reached such that no further divisions of the 

sample will yield appreciable gains in prediction accuracy. 

A problem with CART is that it has a tendency to overfit the training data, 

making the resultant prediction algorithm less generalizable to the general 

population. However, it is also true that CART solutions are unbiased so that if they 

are averaged across a great many samples from the population, the results should 

provide very accurate prediction heuristics (Dietterich, 2000; Bauer & Kohavi, 

1999). Brieman used this unbiasedness property in developing RF, which consists 

of an ensemble of CART results applied to a sample, and then averaged to create a 

single prediction algorithm. RF works by randomly selecting B subsamples of the 

original sample, either with replacement and therefore being of size n, or only a 

portion of the total sample without replacement so that the subsample is less than 

n. Those individuals not included in a subsample for a given tree are referred to as 

the out of bag sample. In addition, a subsample of the predictors is also randomly 

selected, and used with CART to create a prediction tree for the subsample of 

individuals. This process is completed a large number of times (e.g. 1000), and the 

resulting trees are saved after each analysis. Each tree is then applied to members 

of the training sample, or to new individuals, and a predicted outcome (e.g. 

classification) is obtained. These results are then averaged across the B trees for 

each individual in order to obtain a RF predicted value. The diversity of solutions 

introduced through the large number of trees based on subsamples of both 
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individuals and predictors results in a final solution that is more generalizable than 

any individual CART model. 

Variable importance in prediction is determined through permutation tests 

(Nicodemus, Malley, Strobl, & Ziegler, 2010). For RF, the permutation importance 

of an individual predictor variable is calculated by comparing the number of correct 

predictions made by the actual data (i.e. the predictor ordered as it appears in the 

original dataset) with the number of correct predictions made when the variable has 

been permuted (i.e. randomly shuffled), averaged across all trees in the ensemble. 

The classification accuracy rate across trees for the original variable with no 

permutation is then compared with that of the mean accuracy rate for the permuted 

trees. If the difference in prediction accuracy is large, and presumably in favor of 

the tree based on the original data, we would conclude that the variable is important 

in accurately predicting group membership. On the other hand, if the difference in 

classification accuracy between the actual and permuted values is very small, then 

we would conclude that the variable does not contribute much more to determining 

group membership than if it were random and thus totally unrelated to the outcome. 

More formally, importance for variable xm for a single tree (t) is calculated as: 

 

  
   ˆ ˆ

i iO i iP

t m

I y y I y y
VI x

B B

 
 
 

 (11) 

 

where 

 

Predicted class for observed dˆ ataiOy   

Predicted class for permuted dˆ ataiPy   

out-of-bag sampleB   

 

If variable xm is not included in the tree, then VI=0. In order to obtain the 

overall variable importance measure for the RF, we then calculate 

 

  
 

1

T

t mt
m

VI x
VI X

T




 (12) 

 

where T is the total number of trees in the ensemble. 
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Methods 

The research questions outlined above were addressed through the use of a Monte 

Carlo simulation study carried out with in the R software system, version 2.15.1 (R 

Foundation for Statistical Computing, 2011). The variables that were manipulated 

in the simulation study were selected in order to mirror conditions that researchers, 

particularly in the social sciences, might see when faced with a high dimensional 

dataset. For all conditions, data were simulated for two groups and unless otherwise 

noted the data were from a standard multivariate normal distribution. 

Manipulated variables 

Method   A total of 6 methods were examined in this study, 

including LDA, RF, PLDA, SDA, NSC, and RDA. For methods relying on the 

setting of tuning parameters for optimal performance, the jackknife cross-validation 

methods described above were incorporated into the simulation code. 

 

Sample size    Sample size conditions included in the study were 10, 

20, 30, 40, and 50.  In all cases group sizes were held equal. 

 

Number of predictors  The number of predictors simulated in this study 

were 14, 28, and 50.  Taken together with the sample size conditions discussed 

above, the ratios of P to N ranged from 5/1 to just over 1/4. While these conditions 

would not be considered terribly high dimensional in genetics, or another science 

where extreme high dimensionality is common, they do represent relatively high 

dimensional data in the context of psychology, education, and other social sciences, 

in which researchers typically strive to have many more subjects than variables. 

 

Group mean separation  The separation between group means was 

quantified in terms of Cohen’s d effect size.  For all predictors the groups’ means 

differed by the same amount, either 0.2, 0.5, or 0.8. Thus, for example, in the P=50 

group mean difference 0.5 case, all 50 variables were simulated to differ by 0.5 

between the two groups. Group 1 was simulated to have means of 0 and standard 

deviations of 1 across conditions, and group 2 was simulated with means of 0.2, 

0.5, or 0.8 and standard deviations of 1 for all predictors, depending on the group 

mean separation condition. 

 

 



HOLMES FINCH 

95 

Correlation among predictors  The predictors were simulated to have 

correlations among one another of 0, 0.5, or 0.8.  These values were selected in 

order to assess performance of the methods in two relatively extreme cases (no 

correlation, very high correlation), and when the correlation was in the middle. 

 

Distribution of the predictors  In order to investigate the performance of the 

methods when data were normal and when they were not, two distribution 

conditions were simulated:  multivariate normal and skewed with skewness of 2.5. 

Given the reliance of some of the methods on the assumption of normality, in 

particular LDA, it was of some interest to ascertain the impact that violating the 

assumption would have on performance of the methods. 

 

Simulation outcomes    Two outcome variables were examined in 

this study. First, the overall misclassification rate for a cross-validated sample 

drawn from the identical distribution as the training sample for a given combination 

of simulation conditions was recorded. This rate simply represents the proportion 

of cases that were incorrectly classified by each method. The second outcome 

variable of interest was the proportion of predictor variables that were correctly 

identified as being associated with group separation. As noted above, all predictors 

were simulated to differ between the groups, so in the population this proportion 

was 1 for every simulation condition. Therefore, this outcome variable reflects the 

proportion of predictors that each method correctly found to contribute to group 

differences. For LDA, a variable was considered to contribute to the classification 

solution if the absolute value of its structure value was 0.32 or greater (Tabachnick 

& Fidell, 2013).  With respect to RF, variables were considered to be important if 

the permutation test statistic described above was statistically significant at  

With regard to RDA, SDA, and PLDA variable importance was determined through 

the standardized discriminant weights. Based on findings in Cao, Boitard, and 

Besse (2011), variables were considered to be important predictors if these 

standardized values were greater than or equal to 0.1. Finally, with respect to NSC, 

a predictor was considered to contribute to the prediction if its weights were not 

shrunken to 0, again in keeping with recommendations in the literature (Christin, 

Hoefsloot, Smilde, Hoekman, Suits, Bischoff, & Horvatovich, 2013). 

All simulation conditions were completely crossed with one another for a total 

of 324 different simulations. For each of these simulations, 1000 replications were 

generated and analyzed. In order to ascertain which main effects and interactions 

of the manipulated conditions contributed significantly to the outcome variables, 

repeated measures analysis of variance (ANOVA) models were used. For each 
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combination of simulation conditions, the outcome variables were calculated for 

each of the methods studied here, for each replication. These outcomes were then 

averaged across the 1000 replications in order to create individual values for the 

two outcomes of interest. These values then served as the dependent variables in 

two separate ANOVA models (one for misclassification and one for proportion of 

predictors correctly identified). The within subjects variable was method of 

classification, and the between subjects variables were the other manipulated 

factors described above. In addition to the statistical significance of the main effects 

and interactions of these factors, the  effect size was also used to identify model 

effects worthy of post hoc investigation. Main effects and interactions that were 

statistically significant, and which had  of 0.1 or greater were considered 

“important”, because they were associated with at least 10% of the variance in the 

outcome variable. 

Results 

Classification accuracy 

The ANOVA used to determine which of the manipulated factors or their 

interactions were related to overall classification accuracy. The interaction of 

method (M) by sample size (N) by correlation (C) was significantly associated with 

classification accuracy (
2

40,952 3.621,  0.001,  0.132F p    ), as was the 

interaction of M by number of predictors (P) 

(
2

8,472 11.937,  0.001,  0.168F p    ), and the interaction M by mean difference 

(D) (
2

68,952 10.514,  0.001,  0.429F p    ). The overall misclassification rates by 

method, sample size, and correlation among the predictors appear in Table 1. 
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Table 1.  Misclassification rates by Method, Sample Size (N), and Correlation among the 

predictor variables (C) 
 

N C LDA RF PLDA SDA NSC RDA 

10 0 0.34 0.09 0.24 0.24 0.21 0.21 

 0.5 0.39 0.13 0.23 0.23 0.35 0.37 

 0.8 0.42 0.16 0.20 0.21 0.40 0.41 

20 0 0.29 0.10 0.19 0.24 0.19 0.19 

 0.5 0.37 0.12 0.18 0.24 0.35 0.35 

 0.8 0.42 0.09 0.18 0.16 0.40 0.40 

30 0 0.29 0.04 0.20 0.31 0.20 0.20 

 0.5 0.37 0.07 0.17 0.13 0.36 0.36 

 0.8 0.41 0.07 0.18 0.14 0.39 0.40 

40 0 0.26 0.05 0.18 0.35 0.18 0.18 

 0.5 0.36 0.08 0.18 0.17 0.35 0.35 

 0.8 0.40 0.09 0.19 0.19 0.39 0.39 

50 0 0.24 0.08 0.18 0.36 0.17 0.17 

 0.5 0.37 0.10 0.16 0.21 0.36 0.36 

 0.8 0.42 0.10 0.20 0.23 0.41 0.41 

200 0 0.19 0.07 0.16 0.33 0.16 0.16 

 0.5 0.36 0.08 0.18 0.30 0.36 0.36 

 0.8 0.39 0.09 0.20 0.33 0.39 0.39 

 
 

The results in Table 1 show that RF uniformly had the lowest 

misclassification rates of the methods studied here, across both sample size and 

correlation among the predictor variables. The highest misclassification rates 

belonged to LDA, particularly for the combination of N less than 40, and C of 0.5 

or 0.8.  For the combination of N less than 50 and C of 0.5 or 0.8, SDA had among 

the lowest misclassification rates, after RF, though when the predictors were 

uncorrelated, these rates were among the highest, particularly for larger sample 

sizes. Finally, PLDA did not exhibit increases in misclassification rates with 

increasing sample sizes, unlike SDA, and it generally had lower misclassification 

rates for C of 0.5 or 0.8 than any other method except for RF, and SDA with N less 

than 50. In short, PLDA generally maintained consistent misclassification rates at 

or just under 0.2 for the conditions simulated here. 
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Table 2: Overall Misclassification Rates by Method and number of Predictors (P) 
 

P LDA RF PLDA SDA NSC RDA 

14 0.37 0.14 0.31 0.22 0.34 0.33 

28 0.34 0.09 0.23 0.21 0.32 0.31 

50 0.33 0.10 0.15 0.20 0.31 0.30 

 
 

Table 2 includes the misclassification rates for M by P.  Each of the 

approaches exhibited lower misclassification rates in the presence of more 

predictors. This effect was muted, however, for all of the methods except PLDA.  

In the latter case, the decrease in the proportion of misclassified cases was 0.16 

from 14 to 50 predictors, whereas for the other methods, the decline in 

misclassification was never more than 0.04. In other words, the number of 

predictors included in the analysis had a much greater impact on the performance 

of PLDA than it did on any of the other methods studied here. Finally, Table 3 

includes the overall misclassification rates for M by D. Across all methods, 

misclassification rates declined as differences in group means increased.  This 

decline was particularly notable for PLDA, which produced a difference in 

misclassification of 0.29 between D=0.2 and D=0.8. Similarly, LDA, NSC, and 

RDA also evinced declines in misclassification of more than 0.2 between the 

smallest and largest group separation conditions. On the other hand, both RF and 

SDA displayed much smaller such declines, though for these methods as well, the 

rates declined with increasing group separation. 

 
Table 3: Overall Misclassification Rates by Method and Difference in Group Means (D) 
 

D LDA RF PLDA SDA NSC RDA 

0.2 0.47 0.15 0.45 0.26 0.45 0.43 

0.5 0.35 0.11 0.19 0.21 0.31 0.30 

0.8 0.23 0.07 0.16 0.17 0.21 0.21 

 
 

Correct Identification of Predictors Contributing to Group Separation 

As with the misclassification rates, ANOVA used to determine which of the 

manipulated factors or their interactions were related to the proportion of predictors 

correctly identified as being associated with group separation. The interaction of M 

by P was significantly associated with the proportion of predictors correctly 



HOLMES FINCH 

99 

identified as related to group differences (
2

40,392 2.818,  0.001,  0.223F p    ). 

In addition, the interaction of M by D (
2

68,952 10.514,  0.001,  0.457F p    ), and 

M by predictor distribution (PD) (
2

4,94 17.556,  0.001,  0.428F p    ) were also 

significantly related to the proportion of predictors identified as important. 
 
 
Table 4: Proportion of Predictors Associated with Group Differences Correctly Identified 

by Method and Number of Predictors (P) 
 

P LDA RF PLDA SDA NSC RDA 

14 0.19 0.53 0.18 0.53 0.85 0.83 

28 0.003 0.41 0.08 0.38 0.66 0.73 

50 0.001 0.08 0.05 0.24 0.57 0.55 

 
 

Table 4 includes the proportion of the number of predictors by M and P.  LDA 

consistently displayed among the lowest, if not the lowest proportion of predictors 

correctly identified. The next lowest rates belonged to PLDA, which performed 

similarly to LDA with P=14, and somewhat better for P=28 and 50.  RF and SDA 

had comparable predictor identification rates for P=14 and 28, but the performance 

of RF fell more dramatically for P=50 than was the case for SDA. The best 

performers in terms of correctly identifying predictor variables associated with the 

group differences were NSC and RDA, each of which had proportions that were 

0.2 or higher than their nearest competitors. For example, when P=14, both 

methods accurately identified over 80% of the predictors as being associated with 

group separation. This value dropped to 57% and 55%, respectively, when P=50, 

which represented more accurate performance than any of the other methods, even 

at their best, when P=14. 

The proportion of predictors correctly identified by the method (M) and group 

mean separation (D) appears in Table 5. 
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Table 5: Proportion of Predictors Correctly Identified by Method and Difference in Group 

Means (D) 
 

D LDA RF PLDA SDA NSC RDA 

0.2 0.47 0.15 0.45 0.26 0.45 0.43 

0.5 0.35 0.11 0.19 0.21 0.31 0.30 

0.8 0.23 0.07 0.16 0.17 0.21 0.21 

 
 

As was evident in Table 4, across methods LDA had the lowest correct 

proportion of predictors, except for D=0.8, in which case PLDA had the lowest 

proportion. Indeed, the ability of PLDA to correctly identify the number of 

predictors associated with group membership did not seem to be associated with 

group separation, as its rate stayed large constant. RF and SDA had similar rates to 

one another for D=0.2 and D=0.8, but SDA performed somewhat better when 

D=0.5. Neither of these methods performed as well as RDA or NSC, however.  

RDA had the highest proportion of predictors correctly identified for both D=0.2 

and 0.5, and was slightly lower than NSC for D=0.8. Furthermore, the rates for 

RDA were largely unaffected by the degree of group separation, making it almost 

as accurate for low mean differences as for high ones. On the other hand, the 

performance of NSC was much more strongly influenced by D, as is evidenced by 

the change in the proportion of predictors from 0.2 to 0.8. 

Table 6 includes the proportion of predictors by PD. 
 
 
Table 6: Proportion of Features Correctly Identified as Important by Method and Predictor 

Distribution 
 

PD LDA RF PLDA SDA NSC RDA 

Normal 0.13 0.38 0.20 0.43 0.66 0.98 

S2.5 0 0.30 0.07 0.33 0.65 0.42 

 
 

Several of the methods were deleteriously impacted by the presence of 

skewness in the distribution of predictors, in particular RDA, which was nearly 

perfect in identifying the correct number of important predictor variables when the 

data were normal, but did so less than half the time for skewed data. Similarly, LDA, 

RF, PLDA, and SDA all had proportions of predictor rates for the S2.5 condition 

0.08 or more lower than was the case with normal data. On the other hand, the 

performance of NSC in terms of correctly identifying the number of predictors was 

virtually unaffected by predictor distribution. 
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Discussion 

The goal of this simulation study was to compare several methods for supervised 

group classification in the presence of high dimensional data. Prior work in this 

area has tended to focus on a small number of such methods using applied examples 

with single datasets, or small simulation studies with relatively few manipulated 

conditions. The goal of this study was to expand upon these earlier efforts in several 

ways. First, by utilizing a larger set of simulated conditions than has been seen 

previously, we were able to test the various methods across a wider array of 

scenarios. In addition, we included a number of methods in this study that had not 

been previously compared with one another, including RF, which has never been 

systematically studied in the high dimensional case. Finally, this study examined 

the performance of the methods both in terms of their ability to correctly classify 

individuals into groups, and in terms of their use of salient predictors. 

As described above, the results of this simulation study clearly support the 

use of RF if the primary goal of the researcher is to correctly classify individuals 

into their appropriate groups. No other method was nearly as effective in this regard, 

across all conditions simulated here. Conversely, standard LDA was the worst 

performer in terms of prediction accuracy, across virtually all conditions simulated 

here. The other approaches, each of which relied on some type of regularization or 

penalty function, produced misclassification rates between these two methods. In 

examining why RF might have performed so much better than the alternatives, we 

might consider its very nature as a recursive partitioning algorithm. As noted above, 

a problem with many prediction models in the high dimensional case is that the 

covariance matrices used to obtain model coefficients are ill behaved and 

sometimes singular. The regularization methods studied here (e.g. RDA, PLDA, 

SDA, NSC) each attempts to deal with this problem by reducing the number of 

predictors that are used in the prediction. However, in doing so, they also reduce 

the number of variables that contribute to group prediction, including those that 

might be salient. RF, on the other hand, does not use the covariance matrix at all, 

and thus does not face the problem of poor estimation of model coefficients faced 

by LDA, and reduction in the number of variables used in prediction that is a part 

of the regularized approaches. RF simply divides the sample based on the available 

data, selecting the best predictors at each step of the tree building process. 

Furthermore, because it relies on a large number of such trees, each of which is 

based upon a subset of the predictors and members of the sample, it should be more 

generalizable to the population than perhaps are some of the other methods. And 

indeed, we found this to be the case in the current study. 
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While RF provided the most accurate predictions of group membership, it was 

not particularly effective at identifying the number of salient predictors of group 

separation. The permutation test used to do so is still fairly new and untried, and so 

while it has been shown to work reasonably well with larger samples (Nicodemus, 

Malley, Strobl, & Ziegler, 2010), there has been little work done with small samples, 

regardless of the number of predictors. Given that significance for a given predictor 

variable is determined by comparing classification accuracy using it in its natural 

state, and when it is randomly ordered, it is possible that with small samples and 

many predictors there is simply little difference in accuracy associated with any 

one variable. On the other hand, both NSC and RDA were much more accurate in 

terms of identifying the number of predictors associated with group separation. In 

considering which of these methods might be optimal if a researcher’s goal is to 

identify variables associated with group separation, the results of this study would 

suggest that the decision should be based upon the nature of data being used. For 

example, if the researchers are unsure as to how different the predictor group means 

are, or if it is known that differences for some of them are relatively small, and the 

data are normally distributed, then RDA might be the best choice. Its ability to 

correctly identify the number of salient predictors was optimal when the data were 

multivariate normal, and it seemed largely uninfluenced by the degree of mean 

separation. In particular, it was the most effective approach when the effect size 

separating the groups was small. On the other hand, if the researcher knows that the 

data are not normally distributed, NSC might be the best approach to use because 

it was the least affected by the skewness simulated here.  RDA performed relatively 

poorly in the presence of skewed data. 

Recommendations and directions for future research 

The results of this study suggest some recommendations for practice for researchers 

faced with high dimensional data. First, if the primary goal is to develop some type 

of prediction algorithm to be used with future cases, then RF seems to be the best 

choice. It provided much more accurate predictions than any of the other methods, 

regardless of the nature of the data. On the other hand, if the researcher is most 

interested in trying to identify which variables are most associated with group 

separation, then NSC or RDA may be better choices than RF. In particular, if the 

data are normally distributed, RDA would be recommended, whereas if the data are 

skewed then NSC is likely the optimal choice. In all cases, LDA is not 

recommended when the number of predictors approaches, or is larger than the 

sample size. 
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The current study represents an extension of prior work in this area in terms 

of the number of high dimensional prediction methods examined, and the number 

of conditions simulated. However, it also has limitations that future research should 

seek to address. First of all, only two groups were simulated here.  Future studies 

in this area need to compare the performance of these methods with three or more 

groups. In addition, all of the variables were simulated to be related to group 

separation. However, in reality researchers are often faced with a situation in which 

only some of the variables are related to group differences. Therefore, future 

simulation studies should include some predictors that are not different between the 

groups. Finally, given the clear impact of predictor distribution on the accuracy of 

some methods, future studies should expand upon the nature of nonnormal data, 

including some categorical variables. 
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