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Retained Components 

André Beauducel 
University of Bonn 

Bonn, Germany 

Frank Spohn 
University of Hamburg 

Hamburg, Germany 

 

 
Factor loadings optimally account for the non-diagonal elements of the covariance matrix 
of observed variables. Principal component analysis leads to components accounting for a 
maximum of the variance of the observed variables. Retained-components factor 
transformation is proposed in order to combine the advantages of factor analysis and 

principal component analysis. 
 
Keywords: Factor analysis, principal component analysis, exploratory factor 
analysis. 

 

Introduction 

Common factor analysis (FA) is regularly used in order to identify latent constructs 

accounting for the covariance of observed variables whereas principal components 

analysis (PCA) is primarily used in order to explain as much of the variance as 

possible with a minimum of components (Conway & Huffcutt, 2003; Fabrigar, 

Wegener, MacCallum, Strahan, 1999; Preacher & MacCallum, 2003). There is a 

broad literature referring to similarities and differences between FA and PCA (Bentler 

& De Leeuw, 2011; Ogasawara, 2003; Harris, 2001; Velicer & Jackson, 1990; Unkel 

& Trendafilov, 2010). It is also known that both methods can produce identical or 

extremely similar results under specific conditions (Schneeweiss, 1997; Schneeweiss 

& Mathes, 1995) and that PCA is often used as a substitute for FA (Sato, 1990). 

Nevertheless, an important difference between FA and PCA is that communalities or 

unique error variances of the variables are not estimated in PCA whereas they are 
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estimated in FA (Harman, 1976; Tabachnick & Fidell, 2007). The estimation of 

communalities avoids an inflation of loadings in FA whereas an inflation of loadings 

regularly occurs in PCA (Widaman, 1993; Snook & Gorsuch, 1989). 

Another difference between PCA and FA is related to the scores resulting from 

these methods: The component scores are clearly determined in PCA whereas the 

factor scores are indeterminate in FA (Guttman, 1955; Lovie & Lovie, 1995; Grice, 

2001). Moreover, the component scores account for a maximum of the variance of the 

observed variables so that they represent an optimal data reduction. The principal 

components represent best summarizers for the observed variables (ten Berge & Kiers, 

1997), which might be relevant for psychological assessment. By contrast, in FA 

different factor score predictors with different advantages and disadvantages have 

been proposed (Beauducel & Rabe, 2009; Krijnen, 2006; ten Berge, Krijnen, 

Wansbeek, & Shapiro, 1999), however, there is no factor score predictor that is an 

optimal summarizer of the observed variables. In consequence, a method that 

combines an optimal estimation of the loading size (without inflation) with scores that 

represent an optimal data reduction is not available. Researchers have to decide: If 

they want to have an optimal representation of a latent construct and the corresponding 

loadings, they should opt for FA, if they want to get optimal summarizers of the 

observed variables, they should use PCA. In the present paper we start from the idea 

that a researcher wants to get both: An optimal (not inflated) loading matrix 

representing the common variance of latent constructs adequately and optimal 

summarizers of the observed variables. A method that combines the estimation of 

loading magnitude of FA with the optimal data reduction of PCA could be the 

projection of the factor loadings on the column space of the loadings of the 

components retained in PCA. The focus on the components retained for rotation and 

interpretation is necessary because typically the number of components retained in 

PCA is considerably smaller than the number of observed variables. Accordingly, the 

transformation resulting in factor loadings in the column space of the retained PCA 

loadings is called ‘retained-components factor transformation’ (RFT). First, some 

definitions are given, then RFT is introduced and RFT-factor scores summarizing 

the observed variables like principal component scores are presented. Finally, some 

properties of RFT are described and illustrated by means of a small simulation study 

and by means of an empirical example. 
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Methodology 

The principal component model 

According to Hotelling (1933) it is possible to decompose x, the random vector of 

observations of order p by means of a linear combination of components  with 

component loadings L. The observations x and the components  are assumed to 

have an expectation zero (E[x] = 0, E[] = 0) 

 

   x L  (1) 

 
This decomposition by means of components represents a population model. 

The principal component representation implies that L´L is diagonal with elements 

ordered from large to small (ten Berge & Knol, 1985). Moreover, it is assumed that 

L  0. When the principal component model is applied to sample data, it will be 

reasonable to distinguish between a random vector r of order q representing the 

intended and substantial variance and therefore the components retained for 

interpretation and a random vector n of order p - q representing the unintended or 

trivial variances and therefore the components not retained for interpretation 

(Hotelling, 1933). Accordingly, it is necessary to distinguish between M, the p x q 

loading matrix of the retained components and N the p x (p - q) loading matrix of 

the components not retained with L = [M  N]. This yields 

 

 r n  x M N  (2) 

 
with M´N = 0 and N´M = 0 following from L´L being diagonal. The population 

covariance matrix of the observed variables can be decomposed as follows: 

 

           LL MM NN  (3) 

The common factor model 

The common factor model that is assumed to hold in the population is given 

by 

 

 [ | ] c u         x  (4) 

 



BEAUDUCEL & SPOHN 

109 

where x is the random vector of observations of order p,  is the random vector of 

factors consisting of q common factors c and p orthogonal unique factors u.  is 

the factor pattern matrix of order p by q,  is the p x p diagonal unique loading 

matrix. It is assumed that  contains only positive values and that   0. The factors 

 are assumed to have an expectation zero (E[] = 0) and the standard deviation of 

 is one. Moreover, the expectation of the covariance of c with u is zero. The 

covariance matrix  can be decomposed into 

 

  2ΨΣ ΛΦΛ= +  (5) 

 

where  represents the q by q factor correlation matrix. 

Results 

Retained-components factor transformation 

In order to transform the retained component matrix M to be as similar as possible 

to the factor loading matrix  the following transformation was used: 

 

  MT  (6) 

 

with  the transformation matrix T and the factor loading matrix  as a target matrix, 

much like in procrustes rotation (Hurley & Cattell, 1962). Solving Equation 6 for 

T yields 

 

 
1)(  M MT M  (7) 

 

Entering T into Equation 6 yields *, because the transformed component 

loadings will in most cases be similar, but not identical to the target matrix . 

Accordingly, * contains the loadings resulting from retained-components factor 

transformation (RFT), 

 

 
1 *)(    M M MM  (8) 

 

Equation 2 and Equation 4 both explain the variance of the observed variables 

x, so that they can be equated. This yields 
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 r n c u      M N  (9) 

 

Premultiplication of Equation 9 with M(M´M)-1M´ yields 

 

 

 
   

   

1 1

1 1
´

r n

c u

 

 

 

 


   

    

M M M M M M M M M N

M M M M M M M M
 (10) 

 

Since M´N = 0 and according to Equation 8 it is possible to write 

 

 
* *

r c u    M  (11) 

 

with * = M(M´M)-1M´. Equation 11 gives a factorial representation of the 

retained components r. Thus, each retained component is decomposed into a 

projection from the common factors and from the unique factors. According to 

Equation 2 it is possible to write 

 

 
* *

c u n     x N  (12) 

 

Thus, the RFT has two error terms: One term representing the unique error of 

the factorial decomposition of the retained-components and the other error term 

represents the residual PCA components (i.e., those components that are not 

retained for interpretation). The covariance matrix of observed variables can be 

computed from RFT by means of 

 

 
  

* *

* *

* * * s

c u n c u n

c n u n

     

   


       

          

N

N N N

N

N

 (13) 

 

Postmultiplication of Equation 9 with c´, subsequent premultiplication with  

(N´N)-1N´ and transposing yields  

 

  
1

c n 


  N N N  (14) 

 



BEAUDUCEL & SPOHN 

111 

Postmultiplication of Equation 9 with u, subsequent premultiplication with 

 
1

 N N N  and transposing yields  

 

  
1

u n 


  N N N  (15) 

 

Entering Equation 14 and 15 into Equation 13 and some transformation yields 

 

 

   

   

 

1 1*2 2

1 1*2

1*2

* *

* *

*

*

2

*

* *

( )

( )

´
 

 



       

         

     

 

   

 

    

    

NN M M M M N N N N

NN M M M M NN N N N N

NN MM N N N N

M

N

M

N

 (16) 

 

since M´N = 0. Thus, the residual covariances that are represented by the loadings 

of the irrelevant components N have no covariance with * of RFT, since N´M = 0 

implies N´M(M´M)-1M´ = 0. In contrast, the residual covariances represented by 

N might be related to the FA-loadings, that is, N´  is not necessarily zero. One 

would therefore expect that advantages of RFT over conventional FA in terms of 

stability of parameters occur when the PCA residuals in NN´ primarily represent 

covariances due to sampling error. Moreover, RFT should help to avoid the 

overestimation of loadings as it occurs with PCA, because the PCA loadings are 

transformed in order to be as similar as possible to the factor loadings. Accordingly, 

a simulation study was performed in order to explore the quality of the sample RFT-

loadings as estimators of population factor loadings. 

Properties of the Retained-components factor score predictors 

A main reason for proposing RFT was that it allows for factor score predictors that 

are optimal summarizers of the observed variables. This property holds for 

Harman´s ideal-variable factor score predictor. The weights for Harman’s (1976) 

ideal-variable factor score predictor based on RFT are given by 

 

  
1

* * *
 

   HB  (17) 
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Moreover, according to Equation 2, the weights of the retained components are 

given by  

 

  
1


r

B M M M  (18) 

 

The relation between the component scores and Harman’s ideal variables 

scores for RFT can be expressed in terms of correlations. Therefore, the correlations 

between weighted composites of the observed variables can be computed. Entering 

BH and Br into the formula for the correlations between weighted composites 

(Harris, 2001), yields  

 

  
0.5

     H r H H r r HrB B B B B B C  (19) 

 

where the main diagonal of CHr contains the correlation matrix between Harman’s 

factor score predictor based on RFT and the retained principal components. 

Entering Equation 17 and 18 into Equation 19 and some transformation yields 

 

         
1

1 1 1 11 1 1


             G M M M M M M G M M M M M M G G I  (20) 

 

with G= (M´M)-1M´. Thus, the correlations between the component scores and 

Harman’s ideal variables scores are all perfect for the RFT-solution. This implies 

that Harman’s ideal variables scores of the RFT-solution are optimal summarizers 

of the observed variables as are the principal components. 

Since Thurstone’s (1935) least squares regression score predictor is often 

used and recommended (Krijnen, 2006), the relationship between the regression 

score predictor based on RFT and the principal component scores was explored. 

Since the principal component scores have the interesting property of being the 

optimal summarizers of the observed variables, they should be regarded as a 

criterion and the RFT regression factor scores as predictors. Thus, q multiple 

regressions and corresponding multiple correlations can be calculated for the q 

retained components. If the multiple correlations between the regression score 

predictors and the principal component scores as criterion is one, this indicates that 

the scores represent the same overall individual differences, even though they might 

be distributed differently on the factors and components. The weights for 

Thurstone’s regression factor score predictor based on RFT are 
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  
11 * 1          

T
B M M M M  (21) 

 

The corresponding regression weights for the prediction of the retained 

principal components from Thurstone’e regression factor score predictor are  

 

  
1* 1 * 1 *( )  ´
      B M M M  (22) 

 

The multiple correlation is calculated as 

 

 
     

   

1 1 12 *

1 1* * 1 * 1 *(  )

 
  

  

      

         



 

R B M M M M M M M M M

M M M M M M

 (23) 

 

Some transformation yields 

 

 
2 1 1( )  R M M  (24) 

 

A singular value decomposition of  yields  = SDS´, with D containing a 

diagonal matrix of eigenvalues in descending order. Accordingly it is possible to 

write 

 

 1/2 1/2    LL SD D S S  (25) 

 

From -1= (SD-1S´)´ we get L-1L´= SD1/2D-1D1/2S´ = Ip x p, which implies 

 

 
1 1/2 1 1/2

        
q x q

M M  SD D D S I  (26) 

 

and, accordingly, (M´-1M)-1=Iq x q, which implies that all multiple correlations 

with the RFT regression factor scores as predictors and each principal component 

as criterion are one. 

Simulation Study  

The expectation that the RFT-loadings are more stable than the FA-loadings when 

the residual covariances represent sampling error was investigated by means of a 

small simulation study based on orthogonal and oblique three-factor models. For 
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the Models 1 to 4, the population FA-loadings were identical to the population 

RFT-loadings. Schneeweiss and Mathes (1995) have shown that factor loadings can 

be perfectly transformed into the retained component loadings when all unique 

factor loadings are equal. Whenever the retained component loadings can be 

perfectly transformed into the factor loadings, it follows from Equations 6 and 7 

that the RFT-loadings will be identical to the factor loadings (* = ), because 

Equation 7 yields the transformation matrix for the transformation of the retained 

component loadings into factor loadings. The condition of equal uniqueness of all 

variables holds for population Models 1 and 2. Moreover, population Models 1 to 

4 represent a perfect simple structure (independent clusters) where all non-salient 

loadings are zero and the salient loadings on each factor are identical even when 

there are different salient loadings on different factors for Models 3 and 4 (see Table 

1). This implies that multiplication with a scalar will allow to transform each vector 

of factor loadings into the corresponding component loadings. Again, a perfect 

transformation of retained component loadings into factor loadings implies that the 

RFT-loadings and the factor loadings are identical. 

Whereas Model 1 represents an orthogonal perfect simple structure with large 

salient loadings Model 2 represents an orthogonal perfect simple structure with 

moderate salient loadings. Model 3 represents an oblique perfect simple structure 

with large salient loadings and Model 4 represents an oblique perfect simple 

structure with moderate salient loadings (see Table 1). 
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Table 1: Population loadings for models with identical FA- and RFT-loadings 

 

Model 1 Model 2 

.700 .000 .000 .500 .000 .000 

.700 .000 .000 .500 .000 .000 

.700 .000 .000 .500 .000 .000 

.700 .000 .000 .500 .000 .000 

.700 .000 .000 .500 .000 .000 

.000 .700 .000 .000 .500 .000 

.000 .700 .000 .000 .500 .000 

.000 .700 .000 .000 .500 .000 

.000 .700 .000 .000 .500 .000 

.000 .700 .000 .000 .500 .000 

.000 .000 .700 .000 .000 .500 

.000 .000 .700 .000 .000 .500 

.000 .000 .700 .000 .000 .500 

.000 .000 .700 .000 .000 .500 

.000 .000 .700 .000 .000 .500 

  
Model 3 Model 4 

.714 .000 .000 .520 .000 .000 

.714 .000 .000 .520 .000 .000 

.714 .000 .000 .520 .000 .000 

.714 .000 .000 .520 .000 .000 

.714 .000 .000 .520 .000 .000 

.000 .665 .000 .000 .472 .000 

.000 .665 .000 .000 .472 .000 

.000 .665 .000 .000 .472 .000 

.000 .665 .000 .000 .472 .000 

.000 .665 .000 .000 .472 .000 

.000 .000 .616 .000 .000 .424 

.000 .000 .616 .000 .000 .424 

.000 .000 .616 .000 .000 .424 

.000 .000 .616 .000 .000 .424 

.000 .000 .616 .000 .000 .424 

 
inter-factor correlations 

1.000   1.000 -.061 .363 

-.032 1.000  -.061 1.000 -.475 

.273 -.329 1.000 .363 -.475 1.000 
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Population FA-loadings and the corresponding RFT-loadings for models with 

unequal FA- and RFT-loadings ( ≠ *) are given in Table 2 and 3. Models 5 and 

6 are orthogonal, Model 5 has a simple structure with large salient loadings, and 

Model 6 has a simple structure with moderate salient loadings (see Table 2). 

Moreover, Model 7 has an oblique simple structure and high salient loadings 

whereas Model 8 represents an oblique simple structure with low to moderate 

salient loadings (see Table 3). The eight models with their corresponding 

population factor loading matrices presented in Tables 1, 2, and 3 were used in 

order to generate population correlation matrices according to Equation 5. It should 

be noted that even for those population models where the FA- and RFT-loadings 

were not equal, the means of the FA- and the RFT-loadings were generally similar 

(see Tables 2 and 3, bottom). The only exception was found for the first factor of 

Model 7, where the mean RFT-loading was a bit smaller than the mean factor 

loading. Overall, this demonstrates that the RFT-loadings are not inflated. 

From each population 500 random normal samples with 50, 75, 150, 300, and 

1000 cases were taken. Maximum likelihood factor analysis (MLFA), unweighted 

least squares factor analysis (ULFA), and PCA were performed for each sample 

correlation matrix. It should be noted that the relative size of the MLFA-loadings 

does not depend on the standard deviations of the observed variables, which means 

that MLFA is scale free (Lawley, 1940). On the other hand, PCA is not scale free 

so that the relative size of the PCA-loadings can be affected by different standard 

deviations of the observed variables. Since RFT is based on PCA, it is not 

recommended to calculate RFT for ML-factors when covariance matrices are 

analyzed. Therefore, the present simulation study was based on correlation matrices 

so that no effects of scaling on the loadings were expected. It was decided to include 

a correlation-based MLFA into the simulation study, because ML-estimation is 

rather common in the context of factor analysis.  
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Table 2: Popluation loading matrices of Model 5 and 6 

 

 FA-loadings RFT-loadings 

 Model 5 

 .600 .000 .000 .638 .000 .000 

 .650 .000 .000 .673 .000 .000 

 .700 .000 .000 .705 .000 .000 

 .750 .000 .000 .734 .000 .000 

 .800 .000 .000 .759 .000 .000 

 .000 .600 .000 .000 .638 .000 

 .000 .650 .000 .000 .673 .000 

 .000 .700 .000 .000 .705 .000 

 .000 .750 .000 .000 .734 .000 

 .000 .800 .000 .000 .759 .000 

 .000 .000 .600 .000 .000 .638 

 .000 .000 .650 .000 .000 .673 

 .000 .000 .700 .000 .000 .705 

 .000 .000 .750 .000 .000 .734 

 .000 .000 .800 .000 .000 .759 

M .233 .233 .233 .234 .234 .234 

  
 Model 6 

 .400 .000 .000 .437 .000 .000 

 .450 .000 .000 .474 .000 .000 

 .500 .000 .000 .507 .000 .000 

 .550 .000 .000 .535 .000 .000 

 .600 .000 .000 .559 .000 .000 

 .000 .400 .000 .000 .437 .000 

 .000 .450 .000 .000 .474 .000 

 .000 .500 .000 .000 .507 .000 

 .000 .550 .000 .000 .535 .000 

 .000 .600 .000 .000 .559 .000 

 .000 .000 .400 .000 .000 .437 

 .000 .000 .450 .000 .000 .474 

 .000 .000 .500 .000 .000 .507 

 .000 .000 .550 .000 .000 .535 

 .000 .000 .600 .000 .000 .559 

M .167 .167 .167 .167 .167 .167 
 

Note. "M" denotes the column mean. 

  



RETAINED-COMPONENTS FACTOR TRANSFORMATION 

118 

Table 3: Popluation loading matrices of Model 7 and 8 

 
 FA-loadings RFT-loadings 

 Model 7 

 .673 .000 .000 .654 .001 .005 
 .694 .000 .000 .666 .000 .002 

 .714 .000 .000 .677 .000 .000 

 .734 .000 .000 .688 .001 .002 

 .755 .000 .000 .698 .001 .005 

 .000 .624 .000 .001 .636 .006 

 .000 .644 .000 .000 .648 .003 

 .000 .665 .000 .000 .659 .000 

 .000 .686 .000 .001 .671 .003 

 .000 .706 .000 .001 .681 .006 

 .000 .000 .573 .005 .006 .586 

 .000 .000 .594 .003 .003 .597 

 .000 .000 .616 .000 .000 .609 

 .000 .000 .638 .003 .004 .620 

 .000 .000 .659 .006 .007 .629 
M .238 .222 .205 .227 .221 .205 

  

 inter-factor correlations 

 1.000   1.000   
 -.031 1.000  -.035 1.000  
 .271 -.327 1.000 .265 -.340 1.000 

  

 Model 8 

 .478 .000 .000  .496  .002  .007 
 .498 .000 .000  .508  .001  .003 

 .520 .000 .000  .521  .000  .000 

 .540 .000 .000  .531  .001  .004 

 .561 .000 .000  .541  .002  .007 

 .000 .428 .000  .002  .446  .010 

 .000 .450 .000  .001  .458  .005 

 .000 .471 .000  .000  .468  .001 

 .000 .492 .000  .002  .478  .006 

 .000 .514 .000  .003  .487  .011 

 .000 .000 .376  .009  .012  .397 

 .000 .000 .399  .004  .006  .407 

 .000 .000 .423  .001  .001  .417 

 .000 .000 .446  .006  .008  .425 

 .000 .000 .470  .011  .015  .433 
M .173 .157 .141 .176 .159 .142 

  

 inter-factor correlations 

 1.000   1.000   
 -.060 1.000  -.067 1.000  
 .359 -.468 1.000 .340 -.505 1.000 

 
Note. "M" denotes the column mean. 
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Varimax-rotation was performed for the orthogonal models (Model 1, 2, 5, and 6) 

and Promax-rotation (Kappa=4) was performed for the oblique models (Model 3, 

4, 7, and 8). Then, according to Equation 8 the RFT-loadings were computed from 

the unrotated sample PCA retained component loadings and the factor loadings. 

Varimax-rotation of the RFT-loadings was performed for the orthogonal models 

and Promax-rotation (Kappa=4) was performed for the oblique models.  

Although the RFT constitutes a new model comprising aspects both from 

PCA and FA, researchers might want to use the RFT especially as a substitute for 

FA. Therefore, the root mean square (RMS) difference between the sample FA-

loadings and the corresponding population FA-loadings was compared with the 

RMS difference between the sample RFT-loadings and the corresponding 

population FA-loadings (Figures 1 and 2). The RMS difference represents the 

overall difference between sample and population FA-loadings, but it does not 

indicate whether an over- or underestimation occurs. Therefore, the mean-

difference between the mean sample loadings and the population FA-loadings was 

also calculated (see Table 4). The mean-difference is negative when the sample 

RFT-, FA-, or PCA-loadings underestimate the population FA-loadings and it is 

positive when the sample loadings overestimate the population FA-loadings.  

Figure 1 contains the RMS differences between the sample MLFA-loadings, 

sample ULFA-loadings, sample ML-RFT-loadings, sample UL-RFT-loadings, 

sample PCA-loadings and the corresponding population FA-loadings for Models 1 

to 4. RMS differences were equal or smaller for RFT-loadings based on ML-

estimation than for MLFA-loadings. Moreover, RMS differences were equal or 

smaller for RFT-loadings based on UL- estimation than for ULFA-loadings. Thus, 

when the population FA-loadings and the population RFT-loadings are equal, the 

precision of the sample RFT-loadings as estimates of the population FA-loadings 

is at least as high as the precision of the FA-loadings. The mean-differences 

between sample MLFA-loadings, sample ULFA-loadings, sample RFT-loadings 

and the corresponding population FA-loadings were extremely small for Models 1 

to 3 (see Table 4). They were a bit larger for Model 4, where a slight tendency for 

an underestimation of loadings was found for all methods. PCA-loadings have, in 

general, the largest RMS and, thus, the lowest precision as estimates of the FA-

loadings, especially for sample sizes of 150 cases and above (see Figure 1) and the 

mean-differences were of a relevant size (see Table 4), indicating the known 

tendency of PCA-loadings to overestimate the population FA-loadings. 
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Figure 1. Root mean squared difference (RMS) between the sample MLFA-, ULFA-, ML-

RFT-, UL-RFT-, PCA- loadings and the corresponding population factor loadings for 
Models 1 to 4. 
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Table 4. Mean-difference between sample loading estimates and population FA-loadings 
 

Model N MLFA ML-RFT ULFA UL-RFT PCA 

 50 -.003 -.002 -.002 -.001 .019 

 75 -.002 -.001 -.001 -.001 .021 

1 150 -.001 .000 -.001 .000 .022 

 300 .000 .000 .000 .000 .023 

 1000 .000 .000 .000 .000 .023 

        50 -.002 -.008 .000 .001 .032 

 75 -.002 -.001 .001 .001 .036 

2 150 .000 .001 .001 .001 .041 

 300 .000 .001 .000 .001 .043 

 1000 .000 .000 .000 .000 .044 

       
 50 -.005 -.002 -.003 -.001 .021 

 75 -.003 -.001 -.002 -.001 .023 

3 150 -.001 .000 -.001 .000 .025 

 300 .000 .000 .000 .000 .026 

 1000 .000 .000 .000 .000 .026 

       
 50 -.020 -.045 -.016 -.014 .013 

 75 -.017 -.024 -.015 -.012 .020 

4 150 -.012 -.007 -.006 -.006 .032 

 300 -.006 -.003 -.002 -.002 .041 

 1000 -.002 -.002 -.001 -.001 .046 

        50 -.002 -.002 -.002 -.001 .019 

 75 -.002 -.001 -.001 -.001 .020 

5 150 -.001 -.001 -.001 .000 .021 

 300 .000 .000 .000 .000 .022 

 1000 .000 .001 .000 .001 .023 

       
 50 -.001 -.018 .001 .002 .033 

 75 .000 .001 .001 .002 .036 

6 150 .000 .001 .000 .002 .040 

 300 .000 .001 .000 .001 .042 

 1000 .000 .001 .000 .001 .043 

       
 50 -.021 -.009 -.010 -.008 .015 

 75 -.012 -.009 -.010 -.008 .015 

7 150 -.009 -.007 -.008 -.007 .018 

 300 -.006 -.006 -.006 -.006 .021 

 1000 -.006 -.006 -.006 -.006 .021 

       
 50 -.017 -.044 -.015 -.014 .013 

 75 -.018 -.017 -.016 -.015 .017 

8 150 -.013 -.009 -.011 -.008 .031 

 300 -.007 -.004 -.006 -.003 .040 

 1000 -.003 -.002 -.004 -.002 .046 

M  -.005 -.006 -.004 -.003 .028 
 

Note. "M" denotes the column mean. 
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The RMS differences between population FA-loadings and corresponding 

sample FA-loadings, sample RFT-loadings, and sample PCA-loadings were 

presented for Models 5 to 8 in Figure 2. Both for ML- and UL-estimation, the RMS 

differences were smaller for the RFT-loadings than for the FA-loadings. Although 

the population RFT-loadings were different from the population FA-loadings for 

Models 5 to 8, the sample RFT-loadings were at least as precise estimators of the 

population FA-loadings as the sample FA-loadings. The mean-differences between 

sample and population loadings were extremely small for MLFA-, ULFA-, ML-

RFT-, and UL-RFT-loadings in Models 5 and 6. They tend to be a bit more negative 

for Model 7 and especially for Model 8 for samples comprising 50 and 75 cases 

(see Table 4). The overall mean-difference between UL-based RFT-loadings and 

population factor loadings was slightly smaller than the overall mean-difference for 

any other method (see Table 4, bottom). Again, the PCA-loadings had the lowest 

precision as estimates of the population FA-loadings both in terms of RMS (Figure 

2) and in terms of the mean-differences, which indicate the overestimation of 

population FA-loadings by means of PCA (Table 4). 
 
 

 
 
Figure 2. Root mean squared difference (RMS) between the sample MLFA-, ULFA-, ML-

RFT-, UL-RFT-, PCA- loadings and the corresponding population factor loadings for 
Models 5 to 8. 
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The RMS differences between the inter-correlations of the population factors 

and the sample inter-correlations for MLFA, ULFA, the corresponding RFT, and 

the sample principal components were presented for the oblique population models 

(Model 3, 4, 7, and 8, see Figure 3). For Models 4, 7, and 8 and sample sizes below 

150 cases the RMS differences were smaller for MLFA than for the RFT based on 

ML-estimation. Especially, when based on 50 cases, the RMS was large for the 

ML-based RFT for Models 4 and 8. However, this effect did not occur for the UL-

based RFT. In contrast, when sample size was at least 150 cases the RMS was 

smaller for the ML-based RFT than for MLFA. For UL-based RFT the RMS tends 

to be equal or smaller than for ULFA. Overall, the mean-differences between 

sample inter-correlations and population factor inter-correlations indicate that the 

correlations tend to be underestimated (see Table 5). The effect of underestimation 

was most pronounced for PCA. Moreover, the underestimation of inter-factor 

correlations was less pronounced for RFT-solutions than for the FA-solutions with 

all methods (see Table 5). 
 
 

 
 
Figure 3. Root mean squared difference (RMS) between the inter-correlations for sample 

MLFA-, ULFA-, ML-RFT-, UL-RFT-, PCA and the corresponding population factor inter-
correlations for the oblique models (Model 3, 4, 7, and 8). 
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Table 5. Mean-difference between sample factor and component inter-correlations and 

population inter-factor correlations for the oblique models (Model 3, 4, 7, and 8) 

 

Model N MLFA ML-RFT ULFA UL-RFT PCA 

3 

50 -0.054 -0.039 -0.045 -0.041 -0.073 

75 -0.023 -0.017 -0.022 -0.019 -0.057 

150 -0.014 -0.011 -0.013 -0.011 -0.052 

300 -0.007 -0.006 -0.007 -0.006 -0.049 

1000 -0.003 -0.003 -0.003 -0.003 -0.047 

       

4 

50 -0.226 -0.167 -0.21 -0.194 -0.232 

75 -0.189 -0.112 -0.17 -0.151 -0.207 

150 -0.124 -0.076 -0.105 -0.082 -0.174 

300 -0.06 -0.038 -0.053 -0.041 -0.15 

1000 -0.017 -0.014 -0.017 -0.014 -0.135 

       

7 

50 -0.047 -0.034 -0.041 -0.038 -0.072 

75 -0.027 -0.019 -0.025 -0.021 -0.061 

150 -0.013 -0.01 -0.012 -0.01 -0.053 

300 -0.007 -0.005 -0.007 -0.005 -0.05 

1000 -0.002 -0.001 -0.002 -0.001 -0.047 

       

8 

50 -0.211 -0.151 -0.207 -0.189 -0.228 

75 -0.183 -0.138 -0.166 -0.15 -0.208 

150 -0.121 -0.079 -0.108 -0.087 -0.177 

300 -0.061 -0.04 -0.056 -0.042 -0.151 

1000 -0.018 -0.012 -0.017 -0.013 -0.135 

M  -0.07 -0.049 -0.064 -0.056 -0.118 
 

Note. "M" denotes the column mean. 

Empirical Study 

Since the simulation study focused on the loadings and factor inter-correlations, the 

empirical example presented in the following focused on the robustness of factor 

score predictors. A sample of 497 German participants (353 females; 71 %; age: M 

= 33.1; SD = 12.6) was recruited by means of newspaper advertising and through 

advertising in university courses. The participants indicated written informed 

consent and filled in 20 items (10 extraversion items, 10 neuroticism items) of the 

German Version of the Eysenck Personality Inventory (EPI; Eggert, 1983). Since 

there are more females in the sample, the data do not represent a balanced sample 
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of the population. Nevertheless, asymmetries of demographic parameters are not 

rare in empirical research, so that it seemed reasonable to demonstrate RFT by 

means of this sample. 

Two factors were extracted by means of ULFA, because two factors 

(Extraversion and Neuroticism) were expected to occur. The Promax-rotated 

ULFA-solution (Kappa=4), the corresponding Promax-rotated RFT-solution, and 

the Promax-rotated PCA-solution are presented in Table 6. The Neuroticism-factor 

is rather clear whereas the Extraversion-factor is rather weak, because four items 

do not load as expected. Overall, the ULFA loading pattern and the corresponding 

RFT loading pattern were very similar, although some of the largest ULFA loadings 

were a bit smaller in the RFT-solution. Moreover, inspection of Table 6 reveals the 

well-known overestimation of loadings that occurs with PCA. 

 
Table 6. Pattern-loadings of Promax-solution of ULFA, UL-based RFT, and PCA for 20 

items of the EPI 
 

 ULFA UL-RFT PCA 

item N E N E N E 

e01 -.02 .48 -.03 .47 -.04 .58 

e03 -.46 .18 -.46 .18 -.52 .22 

e05 .17 .28 .18 .32 .20 .40 

e08 .16 .37 .16 .40 .17 .50 

e10 .38 .18 .39 .19 .44 .24 

e13 .00 .51 -.01 .50 -.01 .62 

e15 -.16 .44 -.17 .43 -.20 .53 

e17 -.05 .57 -.06 .52 -.08 .65 

e20 .00 .03 .00 .03 .00 .04 

e22 .15 .19 .16 .22 .18 .27 

n02 .47 .11 .47 .11 .53 .14 

n04 .36 .07 .38 .07 .43 .09 

n07 .63 .15 .59 .14 .67 .18 

n09 .49 -.07 .49 -.07 .55 -.09 

n11 .33 -.16 .35 -.18 .40 -.22 

n14 .53 -.03 .53 -.03 .60 -.04 

n16 .49 -.08 .49 -.08 .56 -.09 

n19 .24 .13 .25 .14 .29 .18 

n21 .38 .07 .40 .07 .45 .09 

n23 .57 -.06 .55 -.06 .63 -.07 

 Inter-correlations 

 -.05 -.05 -.03 

First 10 eigenvalues of unrotated PCA: 

3.34, 2.20, 1.40, 1.25, 1.09, 1.02, .96, .89, .86, .79 
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In some occasions researchers want to get scores for each participant, so that 

Thurstone’s regression score predictor was computed for the ULFA-solution and 

for the RFT-solution (see Equation 21). Since gender was distributed rather 

unequally, the robustness of factor score predictors might be questioned. In order 

to investigate the robustness of the score predictors, 150 random splits of the total 

sample into two subsamples (249 vs. 248 participants) were performed. The 

weights for the computation of score predictors were calculated for ULFA, for UL-

based RFT, and for PCA component scores in each sub-sample. Then, the weights 

were applied to compute the score predictors and component score in the total 

sample so that the root mean squared (RMS) correlation between the scores based 

on the two sub-samples was computed as an indicator of the robustness of the score 

predictors. The RMS correlation was .94 with a standard deviation of .06 for 

ULFA, .97 with a standard deviation of .04 for the UL-RFT score predictors, 

and .95 with a standard deviation of .07 for PCA. 

Conclusion 

A transformation of the retained principal component loadings to be as similar as 

possible to the factor loading matrix was proposed. This transformation was called 

‘retained-components factor transformation’ (RFT). It was shown that Harman’s 

ideal variables factor score predictor based on RFT has perfect correlations with 

the principal components. It can therefore be concluded that Harman’s factor score 

predictor based on RFT is an optimal summarizer of the observed variables. 

Moreover, Thurstone’s regression score predictor based on RFT was shown to have 

a perfect multiple correlation with the principal components, indicating that the 

RFT based regression score predictor summarizes the same overall individual 

differences as the principal components, even when the variances are distributed 

differently on the RFT factors and principal components. Thus, the RFT based 

regression score predictor is also an optimal summarizer of the observed variables. 

In a simulation study based on orthogonal and oblique simple structure the 

means of the population loadings were very similar for FA and RFT. This 

demonstrates that the RFT-loadings are not inflated as has been found for PCA-

loadings when compared to FA-loadings (Widaman, 1993; Snook & Gorsuch, 

1989). Moreover, the RMS difference between the population factor loadings and 

the sample loadings was overall equal or smaller for RFT-loadings than for FA-

loadings and PCA-loadings. This implies that RFT-loadings can be used as 

estimates of population factor loadings. Moreover, the mean-difference between 

the RFT-loadings and the population factor loadings was smallest for the RFT 
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based on UL-estimates. This indicates that the UL-based RFT-loadings might be 

slightly more precise than other estimates of the factor loadings. Moreover, the 

underestimation of inter-factor correlations was less pronounced for RFT-solutions 

than for the FA-solutions. 

The empirical example was based on 20 items of the EPI. The simple structure 

of the two-factor solutions was not perfect and the sample had an unbalanced 

gender distribution. Thus, the sample contains imperfect data as they occur in 

empirical research. The Promax loading pattern of the ULFA-solution and the 

Promax loading pattern of the UL-based RFT-solution were very similar and would 

probably lead to the same interpretation of the factors whereas the PCA-loadings 

were again inflated. Nevertheless, many of the largest loadings in the ULFA-

solution were smaller in the RFT-solution. The total sample was divided into two-

subsamples and the weights for Thurstone’s regression score predictor were 

computed in the subsamples. These weights were then applied to the total-sample 

in order to compute score predictors. The RMS of the correlation between the score 

predictors based on sub-sample weights was a bit smaller for ULFA than for the 

UL-based RFT. This indicates that score predictors that are based on UL-RFT could 

be a valuable alternative to conventional scores.  

To summarize, RFT could be regarded as interesting in several applied 

settings because the simple structure models investigated in the present simulation 

study and in the empirical study are relevant for many areas of research. It was 

found that RFT allows for a model without inflated loadings, which can be used as 

estimates of population factor loadings. The underestimation of inter-factor 

correlations was less pronounced when based on RFT than for FA. Moreover, the 

RFT model implies score predictors that are optimal summarizers of the observed 

variables and the regression score predictor based on UL-RFT was more robust 

than the ULFA-based regression score predictor. In this sense, RFT combines the 

advantages of PCA (score predictors that are optimal summarizers of observed 

variables) with the advantages of FA (RFT-loadings are not inflated).  

It should be noted that the computation of the RFT-loadings can be based on 

any initial factor model when the analyses are based on the inter-correlations of the 

observed variables (maximum likelihood, unweighted least-squares, principal axis 

factoring, etc.). Although RFT was also calculated for MLFA, it should be noted 

that this is only possible when the analyses are based on the inter-correlations of 

the observed variables. When covariances are used instead of correlations, MLFA 

will lead to a scale-free solution whereas PCA will depend on scaling, so that the 

RFT might be biased. Accordingly, when RFT is based on covariances ULFA or 

principal axis factoring would be an appropriate method. Moreover, the stability of 
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the results of the simulation study indicates that the UL-based RFT-loadings should 

be preferred over ML-based RFT-loadings in small samples. A small R script that 

can be used in order to compute the RFT-loadings from an initial loading matrix is 

available from the authors (http://beauducel.de/research.html). 
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