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A bivariate distribution whose marginal are gamma and beta prime distribution is 
introduced. The distribution is derived and the generation of such bivariate sample is shown. 
Extension of the results are given in the multivariate case under a joint independent 
component analysis method. Simulated applications are given and they show consistency 
of our approach. Estimation procedures for the bivariate case are provided. 
 

Keywords: Gamma distribution, Gamma function, Beta function, Beta distribution, 
generalized Beta prime distribution, incomplete gamma function 

 

Introduction 

The gamma and beta distributions are the two most commonly used distribution 

when it comes to analyzing skewed data. Since Kibble (1941), the bivariate gamma 

has gained considerable attention. The multivariate form of the gamma has been 

proposed in Johnson et al. (1997) and by many other authors, but there is no 

unifying formulation. Even in the multivariate exponential family of distributions, 

there is no known multivariate gamma (Joe, 1997 ). The simplest of the multivariate 

cases, the bivariate gamma distribution, is still raising debates, and has been 

proposed in Balakrishnan and Lai (2009). The marginal densities of the bavariate 

gamma can sometimes belong to other class of distributions. A modified version of 

Nadarajah (2009) bivariate distribution with Gamma and Beta marginals is 

considered, and a conditional component to the modeling is brought into account. 

Kotz et al (2004) proposed a bivariate gamma exponential distribution with gamma 

and Pareto distribution as marginals. In this article, a bivariate gamma distribution 
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with gamma and beta prime as marginal distributions is defined. By including the 

dependence structure, more flexibility is added. Consider two random variables X, 

identified as the common measure, and Y related to X, and assuming that X is a 

gamma random variable with parameters α and β and the distribution of Y | X is a 

gamma random variable with parameters a and X. The first section following this 

introduction shows the bivariate distribution with the conditional gamma. In the 

next section, ‘Properties,’ the main properties of the bivariate conditional gamma 

distribution are given. Extension to the multivariate setting is given in the next 

section, followed by a development of computational aspects in the inference. The 

calculations in this paper involve several special functions, including the 

incomplete gamma function defined by 
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,
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and the complementary gamma function defined as 
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Also, the beta function is defined as 
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for a, b, and x positive real values. For x   [0,1], α > 0 and β > 0, the beta 

distribution can be defined as 
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Model Building and Density functions 

Let X be a gamma rv’s with shape and rate parameters denoted by α and β, 

respectively. The probability density function (pdf) of X is given by 
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where α > 0 and β > 0. Many authors have developed structural models with the 

underlying gamma distribution. Consider another random variable Y such that the 

distribution of the random variable Y given a realization of X at x is a gamma with 

the parameters a and x. That is the density of Y | X is given by 
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where a > 0 and x > 0 are the shape and rate parameters respectively. So the joint 

density of the random variables defined above is given by the expression below 
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  (3) 

 

with parameters α > 0, β > 0 and a > 0. Equation (3) integrates to 1, so this is a 

legitimate distribution. Figure 1 shows the plot of the joint distribution defined in 

Equation (3) for different values of α, β and a. 

Thus the cumulative distribution of the random variable X and Y is 
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              a) α = 2.5, β = 1.3, a = 3.2           b) α = 1.5, β = 3.3, a = 2.2 
 
Figure 1. Joint Probability Density Function of (X,Y) 

 

 

Properties 

The main properties of the distribution as defined in (3), such as the marginal 

densities, their moments, their product products and covariance, are derived here. 

Marginal Density and Moments: 

The marginal density of X is given by (1). Marginal density of Y is given by the 

theorem below.  

 

Theorem 1: If the joint density of (X,Y) is given in (3), then the marginal density 

of Y is given by  
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Proof.  The marginal density of Y is given by 
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Probability density function of Y is a special form of Generalized Beta prime 

density with shape parameter 1 and scale parameter β. Figure 2 describes its pdf for 

different values of α. Probability density of generalized beta prime distribution with 

scale p and shape q is given by 
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Let T be a random variable such that T ~ Beta(a, α). Then 
1

T
Y

T





, has density 

given by (5). 

 

Theorem 2: Let Y be a random variable with a pdf given in (5). The mth moment 

of the random variable Y exists only if α > m. 

 

Proof:  From the previous theorem it can be seen that if T: Beta(a, α) and 

1

t
Y

t





, then the density of Y will be same as defined in (5). And the mth moment 

of Y is 
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The choice of α > 2 is made so that E[Y] and Var[Y] will both exist. 
 
 

 
 
Figure 2. The Probability Density Function of Y as defined in (5) 
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Product Moments 

Theorem 3: The product moment of the random variables (X,Y) associated with 

the pdf defined in (3) can be expressed as 
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Proof:  For m > 0 and n > 0 one can write 
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provided the integrals exist. Now for the mth product moment by choosing n = m in 

the above expression, one can write the product moment as 
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Note that the product moment depends only on a. 

  



A BIVARIATE DISTRIBUTION WITH CONDITIONAL GAMMA 

176 

Covariance Matrix 

With the density of X and Y as given in Equations (1) and (5), respectively, the 

variance-covariance matrix of X and Y is given by the following theorem 

 

Theorem 4: Denote the Variance-Covariance matrix of X and Y by Cov(X,Y), 

then 
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Proof:  Using Theorem 2, the variance and expectation of the random 

variable Y can be computed 
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Equation (2) implies that the distribution of X is a Gamma distribution with shape 

α and rate β. So variance of X is given by 

 

   2
Var X




  (9) 

 

Now the covariance between X and Y can be written as 
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Using the Equations (8), (9) and (10) the result follows. Note that the covariance 

between X and Y exists only when α ≠ 1, and is positive when α < 1. Variance of Y 

only exists when α > 2. 

Multivariate Extension Case 

Consider the multivariate case of the model: take n + 1 random variables as follows: 
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where Xi | X0 and Xj | X0 are independent components for i ≠ j and 

(i, j)  {1, 2, …, n}. Then using the same argument as in ‘Properties,’ the joint 

independent component model is built and the marginal density function for each 

random variable Xi is derived. In general, the density function of Xi is given by 
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Using the independence assumption of the above model, the joint density of 

X0, X1, …, Xn is then derived. The derived joint density will be of the form 
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The density of the joint distribution (X1, X2, …, Xn) and its variance 

covariance expression are derived next. 

For the density of (X1, X2, …, Xn), the integration of the joint density with 

respect to the variable X0 is needed. 

 

Density Function 

To derive the density function, the integral below is computed 
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And solving the integral in (12), the joint density is as follows 
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where xi > 0, ai > 0 for all i = 1, 2, …, n, and α >0, β > 0. In the distribution 

obtained from (13), if the choices of β = 1 and bi = 1 for all i = 1, 2, …, n are made, 

then the inverted Dirichlet distribution is obtained. The application of this 

distribution can be found in many places in the literature. Taio and Cuttman (1965) 

introduced this type of distribution and discussed about their applications. 

Covariance  

The covariance between Xi and Xj for i ≠ j is derived in Theorem 5. 

 

Theorem 5: If the random variables X1, X2, …, Xn have the density function 

defined in (13), then the covariance between Xi and Xj for i ≠ j is given by the 

expression below 
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Proof:  Using the same arguments in Theorem 2, the mth moments of Xi are 

derived. Based on the density of Xi defined by (11) 
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From (13) this useful identity is obtained 
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Using the identity in (15), the (m1, m2, …, mn)th mixed moment is given as 
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m  . In particular, the covariances between Xi and Xj, for i = 1, 2, …, n, 

is as 
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Note that the covariance between X0 and Xi for i = 1, 2, …, n is also derived as 

 



A BIVARIATE DISTRIBUTION WITH CONDITIONAL GAMMA 

180 

 

       

      

     

   

   

 

0 0 0

0 0 0

0 0 0

0

0

,

|

 as | : ,

1 1

1

i i i

i i

i
i i i i

i

ii

i i i

i

i

Cov X X E X X E X E X

E X E X X E X E X

a
E X E X E X X X Gamma a b x

X b

aa

X b b a

a

b

 

 



 

 

 
  

 

   
 

 

 


 (17) 

 

Bivariate cases will reduce to Equation (10). 

Likelihood and Estimation for Bivariate Case 

In this section, the maximum likelihood estimation process and Fisher information 

matrix for the bivariate model are introduced. Statistical analysis software (SAS) is 

used to generate data and R is used to get the maximum likelihood estimates 

(MLEs). 

Log likelihood 

Let (xi, yi), for i = 1, 2, …, n, be a sample of size n from the bivariate gamma 

distribution as defined in Equation (3). Then, the log likelihood function is 
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The first order derivatives of the log likelihood with respect to the three parameters 

are 
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where ( ) ln( ( ))
d

x x
dx

    is the Digamma function. 

Solving above Equations (19-21) simultaneously, the MLEs of the parameters 

can be formulated. As the MLEs are not in a closed form, an R code is developed 

to get the estimates. 

 

Fisher Information Matrix 

The Fisher information matrix g is given by the expectation of the covariance of 

partial derivatives of the log likelihood function. Let (θ1, θ2, θ3) = (α, β, a); then the 

components of the Fisher information matrix are given by 
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 (22) 

 

Inverting the fisher information matrix, the asymptotic standard errors of the 

maximum-likelihood estimates can be obtained. 

Example Using Simulated Data 

 A number of simulations are performed to evaluate the statistical properties and 

the estimation are computed using maximum likelihood method. Because of the 

complexity of the target density and of the likelihood, there is no closed form of the 

estimators. Effective sample sizes will be directly impacting the estimates. R 
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program is used to do the optimization, but SAS 9.3 version is used to simulate data 

with samples of sizes n = 200 and 25. 

Accordingly, for each set of parameters and sample size, X0 is simulated from 

a gamma distribution with parameters α and β. Then, for each X0, generate X1 based 

on X0 according to Equation (3) with the same value of a. 

The simulation results presented under the table give the estimates of the 

parameters. Figure 3 gives the plot of log likelihood and shows the uniqueness of 

the solution estimate for each parameter at sample size 200. 

The results show that the larger the sample size, the more accurate the 

estimates are. A plot of the estimates versus sample size is given in Figure 4. 

Simulation results 

Table 1. Estimation of parameters for different sample sizes 

 
 Estimates (SE) 

Actual Values n = 200 n = 25 

α = 2.5 ̂  = 2.326 (0.819) ̂  = 2.001 (1.175) 

β = 1.3 ̂  = 1.206 (0.474) ̂  = 1.061 (0.708) 

a = 3.2 â  = 3.229 (0.442) â  = 3.075 (0.772) 

   

α = 6.3 ̂  = 6.816 (2.503) ̂  = 5.287 (3.243) 

β = 2.1 ̂  = 2.225 (0.848) ̂  = 1.757 (1.131) 

a = 1.2 â  = 1.169 (0.232) â  = 1.280 (0.415) 
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Figure 3. MLE estimates of parameters for a sample of 200 

 

 
 

 
 

Figure 4. Parameter estimation for increasing sample size 
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Conclusion 

In this paper, a bivariate conditional gamma and its multivariate form are proposed. 

Their associated properties are presented and the simulation studies have shown 

significant improvement in the parameter estimations, taking into account the intra-

correlation and dependence among the observed mixing random variables. While 

our proposed model process is guided by a formal fit criteria, Bayesian approach is 

another option to determine the parameters. However, the proposed approach has 

the advantage of giving a simple implementation for mixed outcome data. 
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