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Maximum likelihood estimates (MLE) of regression parameters in the generalized linear 
models (GLM) are biased and their bias is non negligible when sample size is small. This 
study focuses on the GLM with binary data with multiple observations on response for 
each predictor value when sample size is small. The performance of the estimation methods 

in Cordeiro and McCullagh (1991), Firth (1993) and Pardo et al. (2005) are compared for 
GLM with binary data using an extensive Monte Carlo simulation study. Performance of 
these methods for three real data sets is also compared. 
 
Keywords: Binomial regression, modified score function, bias corrected MLE, 
Minimum ϕ-divergence estimation, Monte Carlo Simulation 

 

Introduction 

Generalized linear models (GLM) are frequently used to model small to medium 

size data. In case of binomial distributed response, logistic regression finds 

application to model the relationship between response and predictors. Maximum 

likelihood estimation (MLE) is usually used to fit a logistic regression model. It is 

well known that under certain regularity conditions, MLE of regression coefficients 

are consistent and asymptotically normal. However, for finite sample sizes, MLE 

tend to overestimate with an absolute bias that tends to increase with the magnitude 

of the parameter and with the ratio of the number of parameters to the number of 

observations. The bias in MLE decreases with the sample size and goes to zero as 

sample size tends to infinity. See Byth and McLachlan, (1978), Anderson and 

Richardson (1979), McLachlan (1980), Pike et al. (1980), Breslow (1981) and 

Hauck (1984) for the details. As a consequence, methods taking care of bias were 

explored. Jackknifed MLE and its versions and methods based on approximation 
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of bias using Taylor series expansion are widely studied in the literature. See Bull 

et al. (1994) and references therein. Cordeiro and McCullagh (1991) proposed 

second order unbiased MLE in GLM. Further, to simultaneously tackle the problem 

of bias and separation, Firth (1993) modified the score function to estimate the 

parameters unbiasedly up to first order. Maiti and Pradhan (2008) empirically 

established the superiority of these two methods over conditional maximum 

likelihood estimator in non-separable case through extensive simulation study.  

In the last decade, the minimum distance estimators have gained importance 

in many fields of statistics. Read and Cressie (1988) and Pardo (2006) outlined the 

use and importance of the ϕ-divergence measures in statistics. Pardo et al. (2005) 

proposed the minimum ϕ-divergence estimator or minimum distance estimator 

based on the family of power divergence (Cressie and Read, 1984) characterized 

by a tuning parameter λ for estimation of regression coefficients in logistic 

regression. The minimum ϕ-divergence estimator is a generalization of MLE 

(λ = 0). Other distance estimators like minimum chi-square estimator (λ = 1) and 

minimum Hellinger distance estimator (λ = −1/2) are particular cases as well. An 

extensive simulation study in Pardo et al. (2005) and Pardo and Pardo (2008) to 

choose among the estimators in logistic regression concluded that 2/3 is a good 

choice for λ. Hence, minimum ϕ-divergence estimator with λ = 2/3 emerged as an 

alternative to MLE in the sense of MSE for small size. The comparison of the 

minimum distance estimators with those taking care of bias remains the untouched 

problem of interest. 

Estimation in logistic regression 

Let Z be a response binary random variable taking value 1 or 0, generally referred 

to as “success” or “failure” respectively. Let k explanatory variables kx  are 

observed along with the response variable.    1| kP Z   x x  represents the 

conditional probability, of the value 1  given kx . Let X be the N × (k + 1) 

matrix with rows xi = (xi0,  xi1, …, xik), i = 1, …, N where xi0 = 1,   i. The logistic 

regression model is defined by the conditional probability 
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For more discussion on logistic regression see Hosmer and Lemeshow (1989) and 

Agresti (1990).  
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In laboratory or controlled setting, many individuals share same values for 

their explanatory variables. In other words, for each value of the explanatory 

variables there are several observed values of the random variable Z. The focus here 

is on this situation. The notations described earlier are required to be changed 

slightly. For this, the notations used in Pardo et al. (2005) were followed. Let there 

be I distinct values of xi = (xi0, xi1, …, xik), i = 1, 2, …, I. It is assumed that, for each 

xi, there is a binomial random variable 1
in

i i iY Z  with parameters ni and π(xi). 

The values ni1, …, nI1 are the observed values of the random variables Y1, …, YI, 

representing the number of successes in n1, …, nI trials respectively when the 

explanatory variables are fixed. This divides the entire sample of size N into I 

subgroups each of size ni so that 1

I

i in . Because Zi's are independent, Yi's are 

also independent. Thus, the likelihood function for the logistic regression model is 

given by 

 

         
11

10 1, , 1
i ii

i

i

n nn
nI T T

k i n i iL    


  x x    (2) 

 

The MLE, ̂  is derived as a solution to score equation 

 

    l U   0    (3) 

 

where l (β) = log L(β) is the log likelihood function. 

Second order bias corrected MLE 

As discussed earlier, there are various methods which give rise to bias corrected 

versions of MLE in logistic regression (Anderson and Richardson, 1979; 

McLachlan, 1980; Schaefer, 1983; Copas, 1988 and Cordeiro and McCullagh, 

1991). Cordeiro and McCullagh (1991) derived an expression for the first order 

bias using Taylor series expansion. Let μ be the mean of response variable. The n−1 

bias of ̂  in GLM is given by 
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where  1 2W diag V     is an n × n weight matrix and 

 

  
1 12 dW H
   1F . 

 

ψ is the dispersion parameter of the GLM, Hd is an n × n diagonal matrix with the 

elements of H = X(XTWX)−1XT and F = diag{V−1μ'μ''} is also an n × n diagonal 

matrix. The MLE of B1(β) is then subtracted to obtain the second order bias 

corrected estimate 

 

    2

1
ˆ ˆ ˆ .B      

 

Modified score function method 

The bias in MLE is due to unbiasedness and curvature of score function. The score 

function is linear in case of normal error regression and hence MLE is unbiased. 

Firth (1993) modified the score function by introducing small bias in score function. 

This produces a separation resistant estimator with zero first order bias. 

The modified score function is defined as 

 

        *

1 0U U i B        

 

where i(β) is the Fisher information matrix. 

The solution point of the modified score equation locates a stationary point of 

 

      * 1
2
logl l i      

 

or equivalently, of the penalized likelihood function 

 

      
1/2*L L i      

 

where |i(β)|1/2 is the Jeffreys (1946) invariant Prior for the problem. 

In GLM with Binary data, the modified score function is (Firth, 1993) 

 

    * TU U X W      
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In logistic regression, Wξ has ith element hi (πi − 1/2) and hi is the ith diagonal 

element of the hat matrix. The solution  * ˆ0,U  MS   is free from the first order 

bias. 

Minimum ϕ-Divergence Estimation 

Let  1

T

i i  x   and  2 2 11 ,T

i i i i in n n    x   and 1

I

i iN n . To 

maximize (2) is equivalent to minimizing the Kullback divergence measure 

between the probability vectors 
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MLE for the GLM parameter β can be defined by 

 

   ˆ ˆarg min , ,KullbackD p p    (4) 

 

where the Kullback divergence measure is given by (see Kullback, 1985) 

 

   
 

2

1 1

ˆ
ˆ ˆ, log .

ijI

Kullback j i ij

ij

p
D p p

p
 

 
   

 
 p 


  

 

This measure is a particular case of the ϕ-divergence defined by Csiszar (1963) and 

Ali and Silvey (1966), 
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where Φ is the class of all convex functions ϕ(x), x > 0 such that at 

x = 1, ϕ(1) = ϕ'(1) = 0, ϕ''(1) > 0 and at x = 0, 0 ϕ(0/0) = 0 and 

0 ϕ(p/0) = p lim u → ∞ ϕ(u)/u. For more details, see Vajda (1989) and Pardo (2006). 
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Cressie and Read (1984) introduced an important family of ϕ-divergences called 

the power divergence family 
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It is interesting to note that 

 

      
0

ˆ ˆ, , .KullbackD D p p p p    (7) 

 

The minimum ϕ-divergence estimator (Pardo et al., 2005) in logistic regression is 

given by 

 

   ˆ ˆarg min ,D   p p    (8) 

Methodology 

Performance comparison for real data 

Usefulness of any method can be established only when it can be applied to a real 

data. To this end, the performance of these methods is compared for prediction 

purposes when real data is used. Three real data sets are employed as examples. 

The numbers of predictors in each real data are not same. A single predictor, two 

predictor and multiple predictor situations are considered in real data to compare 

the prediction performance of the methods. 

Example 1: Single Predictor Case 

First, for the single predictor case, pneumoconiosis data (Montgomery et. al., 2006; 

pp. 449) concerning the proportion of coal miners who exhibit symptoms of severe 

pneumoconiosis and the numbers of years of exposure (X1) is analyzed. The data 

includes n = 8 observations on number of years of exposure, number of severe cases 

and total number of miners. Table 1 presents the estimated regression coefficients 

using the methods discussed earlier.   
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Table 1. Estimates of regression coefficients: Example 1 

 

Predictors ̂   
 2

̂  ˆ
  ˆ MS  

Intercept -4.55621 -4.47047 -4.54838 -4.48677 

# Years of Exposure 0.07889 0.07707 0.08753 0.07747 

 

Example 2: Two Predictors Case 

The two predictors case example uses ingots data, which appeared in Cox and Snell 

(1989, pp. 10-11). This data is a result of an industrial experiment concerning steel 

ingots. It consists of 19 observations on the number of ingots not ready for rolling 

out of certain number of trials tested for a number of heating time (X1) and soaking 

time (X2). This data is also analyzed by Pardo et al. (2005) to illustrate the use of 

minimum ϕ-divergence estimator. Table 2 presents the estimates of regression 

coefficients in the binomial logistic regression.  
 
 
Table 2. Estimates of regression coefficients: Example 2 

 

Predictors ̂  
 2

̂  
ˆ
  ˆ MS  

Intercept -5.51316 -5.42360 -4.88651 -5.47685 

Heating time 0.07688 0.07573 0.06881 0.07690 

Soaking time 0.07201 0.11485 0.04469 0.10876 

 

Example 3: Multiple Predictors Case  

In this next example, a real data with more than two predictors is analyzed and 

considers data (Andersen 1997, pp. 171) used by Pardo and Pardo (2008) to 

illustrate the variable selection method based on minimum ϕ-divergence estimator. 

The data consists of observations on 6 objective indicators (X1, …, X6) of the actual 

indoor climate in 10 classrooms of a Danish Institute, the number of students in the 

class and the number of yes-answers to the question whether they felt that the 

indoor climate at the moment was pleasant or not so pleasant. Table 3 presents the 

estimates of regression coefficients in the binomial logistic regression. The 

minimum ϕ-divergence estimate of coefficient of X3 and X5 differ in magnitude as 

compared to estimates from other three methods to a larger extent. 
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Table 3. Estimates of regression coefficients: Example 3 

 

Predictors ̂  
 2

̂  
ˆ
  ˆ MS  

Intercept 5.75029 5.48737 7.15570 5.50296 

X1 0.53530 0.51090 1.29870 0.51380 

X2 -0.51320 -0.49247 -1.15230 -0.49442 

X3 9.04758 8.65945 19.28910 8.69477 

X4 0.64191 0.61565 1.42370 0.61780 

X5 8.93732 8.67950 25.20410 8.67973 

X6 -0.04478 -0.04263 -0.07700 -0.04283 

 
 

It is not possible decide between the estimators merely by looking at the 

estimated regression coefficients. To compare the performance in each example, 

the predicted probabilities of success using each estimator were computed. As a 

measure of discrepancy between estimated and observed probability of success, the 

Pearson chi-square defined as 

 

 

2
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1
1 2

ˆ
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was used, where, 1i

i

n

i n
P    and c represents the method used to estimate probability 

of success. The Pearson chi-square corresponding to estimators considered for all 

the examples are listed in the Table 4. The Pearson chi-square for ˆ
  is smallest in 

case of Examples 1 and 3. For Example 2, value of Pearson chi-square is smallest 

for ̂ . It reveals that the performance of minimum ϕ-divergence estimators to 

predict probabilities of success in binomial logistic regression applied to real data 

is better than MLE and its bias corrected versions. 
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Table 4. Pearson chi-square 

 

Estimator ̂  
 2

̂  
ˆ
  ˆ MS  

Example 1 0.0058 0.0057 0.0056 0.0019 

Example 2 0.7570 0.8733 0.8648 0.8682 

Example 3 0.2419 0.2393 0.2394 0.0216 

 

Monte-Carlo Simulation Study 

Estimation methods were compared using Monte-Carlo simulation; a two predictor 

binomial logistic regression model including an intercept was considered. The 

design matrix is of order 11 × 3 with first column as ones. The other two columns 

contain random numbers from two independent standard uniform distributions. To 

generate observations on response variable, two different parameter structures were 

considered and accordingly two different models were defined as Model I: 

β = (1, 2, −3); Model II: β = (1, −1.5, 2). 
 
 
Table 5. AMSE with its SD 

  ̂  
 2

̂  
ˆ
  ˆ MS  

Model I 

n1 
2.4014  2.4195  2.4173  0.2902  

(0.5287) (0.5235) (0.5244) (0.3909) 

n2 
2.4055  2.4355  2.4298  0.4202  

(0.6030) (0.5951) (0.5956) (0.5254) 

n3 
2.3944  2.4068  2.4055  0.1768  

(0.4684) (0.4646) (0.4654) (0.2292) 

n4 
2.4228  2.4553  2.4512  0.4210  

(0.5837) (0.5739) (0.5759) (0.4849) 

n5 
2.4455  2.4945  2.4873  0.7497  

(0.7145) (0.6952) (0.6992) (1.0160) 

n6 
2.4371  2.4811  2.4757  0.7200  

(0.7172) (0.6996) (0.7032) (0.9379) 

n7 
2.4201  2.4518  2.4464  0.4432  

(0.5828) (0.5755) (0.5761) (0.5208) 

n8 
2.4332  2.4562  2.4537  0.3410  

(0.5633) (0.5566) (0.5580) (0.3640) 

n9 
2.5535  2.6306  2.6189  1.5971  

(0.9460) (0.8986) (0.9091) (5.8009) 

n10 
2.6685  2.7568  2.7364  3.1885  

(1.1593) (1.0321) (1.0605) (6.3671) 
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Table 5, continued 

    ̂  
 2

̂  
ˆ
  ˆ MS  

Model II 

n1 
1.8489  1.8528  1.8524  0.3023  

(0.2223) (0.2206) (0.2207) (0.3825) 

n2 
1.8673  1.8732  1.8723  0.5364  

(0.2760) (0.2722) (0.2725) (0.7490) 

n3 
1.8511  1.8537  1.8535  0.2053  

(0.1868) (0.1857) (0.1858) (0.3301) 

n4 
1.8588  1.8653  1.8648  0.5813  

(0.2877) (0.2828) (0.2833) (0.8713) 

n5 
1.8819  1.8913  1.8903  0.8732  

(0.3377) (0.3297) (0.3305) (1.1947) 

n6 
1.8753  1.8840  1.8833  0.7925  

(0.3233) (0.3165) (0.3172) (0.9626) 

n7 
1.8644  1.8705  1.8695  0.5432  

(0.2984) (0.2935) (0.2942) (0.6855) 

n8 
1.8500  1.8550  1.8547  0.4296  

(0.2526) (0.2498) (0.2501) (0.8013) 

n9 
1.9098  1.9237  1.9221  1.8013  

(0.4462) (0.4260) (0.4284) (3.5744) 

n10 
1.9155  1.9282  1.9268  2.1006  

(0.4511) (0.4276) (0.4305) (7.0825) 

 
Table 6. Average absolute bias 

  ̂  
 2

̂  
ˆ
  ˆ MS  

Model I 

n1 0.2556  0.2534  0.2535  0.0023  

n2 0.2580  0.2539  0.2545  0.0048  

n3 0.2546  0.2531  0.2531  0.0018  

n4 0.2550  0.2508  0.2511  0.0002  

n5 0.2576  0.2508  0.2513  0.0065  

n6 0.2640  0.2575  0.2580  0.0108  

n7 0.2586  0.2543  0.2548  0.0055  

n8 0.2516  0.2487  0.2488  0.0094  

n9 0.2606  0.2471  0.2485  0.0210  

n10 0.2721  0.2475  0.2510  0.0010  

Model II 

n1 0.5785  0.5780  0.5780  0.0075  

n2 0.5793  0.5785  0.5786  0.0149  

n3 0.5780  0.5777  0.5777  0.0031  

n4 0.5788  0.5779  0.5779  0.0159  

n5 0.5792  0.5778  0.5779  0.0258  

n6 0.5787  0.5774  0.5774  0.0120  

n7 0.5782  0.5773  0.5774  0.0093  

n8 0.5783  0.5776  0.5776  0.0079  

n9 0.5842  0.5813  0.5814  0.0309  

n10 0.5810  0.5781  0.5782  0.0182  



SAKATE & KASHID 

195 

Consider the following 10 different combinations of number of trials 

 

 

1

2

3

4

5

6

:15,15,15,15,30,30,30,30, 40, 40, 40

: 5,5,5,5,15,15,15,15, 40, 40, 40

: 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40

:10,10,10,10, 20, 20, 20, 20,15,15,15

:10,10,10,10,5,5,5,5,15,15,15

:10,10,10,10,10,10,10,10,10,10,

n

n

n

n

n

n

7

8

9

10

10

: 5,5,5,5,30,30,30,30,15,15,15,15

: 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20

: 5,5,5,5,5,5,5,5,5,5,5

: 5,5,5,5,5,5,5,5, 4, 4, 4

n

n

n

n

  

 

The observations on response variable are random numbers from B(ni, πi1). In this 

way, 20 models were generated differing in parameter structure and structure of 

number of trials. Unknown regression coefficients were estimated using four 

methods including MLE. To compute the minimum ϕ-divergence estimate, the 

power divergence family in (6) with λ = 2/3 were used as suggested in Pardo et. al. 

(2005). Each model was simulated 1,000 times and average MSE (AMSE) and 

average absolute bias in estimate due to each estimation method are reported in the 

Tables 5 and 6. The figures in parentheses represent standard deviation (SD) of 

MSE. The AMSE and average absolute bias were computed using the following 

formulae 

 

  
1000 2 2

1 0

1 1 ˆAMSE .
1000 3

c

ij j

i j

 
 

     

 
1000 2

1 0

1 1 ˆAverage absolute bias .
1000 3

c

ij j

i j

 
 

     

Results 

It is evident from the Tables 5 and 6, the minimum ϕ-divergence estimator has 

smaller MSE and bias as compared to others for all combinations of number of 

trials. For a small magnitude of number of trials, as in case of last combination, the 
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AMSE of all the estimators is more or less same; however, variability in the 

minimum ϕ-divergence estimate is quite high. The estimate based on modified 

score function and second order bias corrected MLE are close enough to 

uncorrected MLE in this setting. The bias correction obtained as such is negligible. 

From Tables 5 and 6, performance of minimum ϕ-divergence estimator is better 

than the others for all but last two combinations of number of trials i.e., n9 and n10.  

The variation in MSE and absolute bias averaged over the three regression 

coefficients is shown in Figures 1 and 2 respectively for n1 and n10. Although the 

motivation behind defining the minimum ϕ-divergence estimator was altogether 

different, it performs better than the bias corrected versions of MLE. This makes 

the minimum ϕ-divergence estimator an attractive alternative to MLE as well as is 

its bias corrected versions in binomial logistic regression. 
 
 

   
(a) Model I: n1             (b) Model II: n1 

 
 
Figure 1 (a, b). Box Plot of MSE of estimates averaged over three regression 

coefficients. 
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(c) Model I: n10           (d) Model II: n10 

 
Figure 1 (c, d). Box Plot of MSE of estimates averaged over three regression 

coefficients. 

 

 

 
(a) Model I: n1 

 

 
(b) Model I: n10 

 

Figure 2 (a, b). Box Plot of bias of estimates averaged over three regression coefficients. 
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(c) Model II: n1 

 

 
(d) Model II: n10 

 
Figure 2 (c, d). Box Plot of bias of estimates averaged over three regression coefficients. 

 

 

Conclusion 

The performance of some of the estimators belonging to two different classes, i.e., 

minimum distance estimators and bias corrected MLE in a binomial logistic 

regression model, was compared. Three real data examples from different fields 

followed by a Monte Carlo simulation study were used to illustrate the comparisons. 

Results show that second order bias corrected MLE and estimates obtained using 

modified score function method lead to an estimate, which is same as MLE when 

number of trials is large. From this comparison study it may be concluded that, for 

a number of trials greater than 5, minimum ϕ-divergence estimator is an attractive 

alternative to MLE as well as bias corrected and modified score function method. 
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