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Some properties of the Gumbel-Weibull distribution including the mean deviations and 
modes are studied. A detailed discussion of regions of unimodality and bimodality is given. 
The method of maximum likelihood is proposed for estimating the distribution parameters 
and a simulation is conducted to study the performance of the method. Three tests are given 

for testing the significance of a distribution parameter. The applications of Gumbel-
Weibull distribution are emphasized. Five data sets are used to illustrate the flexibility of 
the distribution in fitting unimodal and bimodal data sets. 
 
Keywords: Mean deviation, bimodality, maximum likelihood estimation, lifetime 
data 

 

Introduction 

Problems on extreme values appeared in the work of Nicholas Bernoulli back in 

1709 for studying the problem of the mean largest distance from origin for n 

random numbers on a straight line (see Johnson et al., 1995, p. 1). During 1920s 

and 1930s, many papers on the distribution of extremes appeared in the literature. 

Gumbel (1958) gave detailed results on extreme value theory in his book Statistics 

of Extremes. Furthermore, Gumbel (1958) has been referred to by Johnson et al. 

(1995) as the first to bring attention to the possibility of using the Gumbel 

distribution to model extreme values of random data. For more information on 

extreme value distributions, see Johnson et al. (1995), Gumbel (1958), Kotz and 

Nadarajah (2000), and Beirlant et al. (2006). 

The Weibull distribution is well known for its ability to model different types 

of data. Weibull distribution also has many applications in risk analysis and quality 
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control because its hazard rate is decreasing when the shape parameter a < 1, 

constant when a = 1, and increasing when a > 1. For more information on Weibull 

distribution, see Johnson et al. (1994). 

Alzaatreh, Lee and Famoye (2013) proposed a method for generating new 

distributions, namely, the T-X family. The cumulative distribution function (CDF) 

of the T-X family is defined as        
  W F x

G x r t dt R W F x


  , where X is 

any continuous random variable with CDF F(x) and probability density function 

(PDF) f(x), r(t) and R(t) are the PDF and the CDF of a continuous random variable 

T. They further studied a T-X family by defining W(F(x)) = −log(1−F(x)), where 

the random variable T is defined on (0, ∞). Al-Aqtash et al. (2014) defined and 

studied a family of T-X distributions arising from the logit function 

W(F(x)) = ln{F(x)/(1− F(x))} and provided some general properties of this T-X 

family, including symmetry, quantile function and Shannon entropy. The CDF of 

the T-X distribution has the form 

          
     ln / 1

ln / 1
F x F x

G x r t dt R F x F x



   , where T is defined on 

(−∞, ∞). The main difference from the T-X family studied by Alzaatreh, Lee and 

Famoye (2013) is that the random variable T is defined on (−∞, ∞) instead of (0, ∞). 

Taking T to be Gumbel with PDF      ( )/ ( )/1/ expt tr t e e          and X to 

be Weibull with PDF         1
/ / exp /

a a
f x a x x  


  , Al-Aqtash et al. 

(2014) defined the four-parameter Gumbel-Weibull distribution (GWD) with CDF 

 

        
1/ 1/

/ //exp 1 exp 1 ,
a a

x x
G x e e e

 
   

    
        

   
  

 

where 
/0 , , , , 0x e a        and   . The corresponding PDF is 

 

            
1 1/ 1/

1 / / /
/ 1 exp 1 .

a a aa x x xa
g x x e e e

 
  

 


  
  

    
 

  (1) 

 

Al-Aqtash et al. (2014) derived some properties of GWD such as moments 

and Shannon entropy. In this article, additional properties including the mean 

deviations and modality are studied. In particular, the applications of this 

distribution are emphasized. 
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Mean deviations 

Two measures of spread, namely the mean deviation from the mean and the mean 

deviation from the median for GWD are now presented. Let X be a random variable 

from the GWD with mean μ and median M. 

The mean deviation from the mean is given by 

 

 
           

   

0 0 0

0

2

2 2 ,

E X x g x dx x g x dx x g x dx

G xg x dx





   

 

 

      

 

  


  (2) 

 

where    
0

G g x dx


   . In a similar way, the mean deviation from the median 

is given by 

 

 

   

       

 

0

0 0

 0

2

2 .

M

M

E X M x M g x dx

M x g x dx x M g x dx

xg x dx





  

   

 



 



 (3) 

 

The integral  
0

v

xg x dx  in (2) and (3) can be computed numerically. 

Modes of Gumbel-Weibull distribution 

Al-Aqtash et al. (2014) studied the moments and skewness in detail, and mentioned 

that GWD can be unimodal or bimodal. However, no study on GWD modes was 

given. The modes of GWD are provided and the regions of unimodality and 

bimodality for specific values of β are investigated. Differentiating the density of 

GWD in (1) with respect to x results in 

 

           

              

2 1/ 1/
2 / / /

2

1/
/ / /

/ 1 exp 1

1 1 / / / 1 1 .

a a a

a a a

a x x x

a ax x x

a
g x x e e e

a e a x a x e e
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The derivative g'(x) does not exist when x = 0. Other critical point(s) satisfy 

g'(x) = 0, hence if there is a mode for GWD, then it will be either at x = 0 or it will 

satisfy equation 

 

               
1/

/ / /
1 1 / / / 1 1 0

a a aa ax x x
a e a x a x e e


  

   
 

       
 

. (4) 

 

In (4), set λ = 1 because λ is a scale parameter and it will not affect the distribution 

shape. The expression on the left hand side of (4) simplifies to 

 

        
1/

1 1 / 1 1 .
a a ax a a x xa e ax a x e e



 


        (5) 

 

Analytical solution of equating (5) to zero is not possible. Numerical 

approximation is applied to study the modes and the regions of unimodality and 

bimodality. To study the modes of the GWD, fix β and allow a and σ to change 

from 0.01 to 10 at an increment of 0.01. This gives one million different ordered 

pairs (σ, a). For each ordered pair, (5) is computed as a vector using a vector x with 

values 0.000001, 0.00001, 0.0001, 0.001, and then from 0.01 to 10 at an increment 

of 0.01. Values of x below 0.000001 cause execution errors as a approaches 10, 

because  
1/

1
axe



  grows rapidly toward ∞ as x approaches zero. Because it was 

observed that the PDF of GWD quickly approaches zero when x > 10, x less than 

10 was chosen. 

A 1000×1000 matrix P was constructed to store the symbols {–2, –1, 1, 2}, 

and track how many times the sign of the components of the vector (5) changes. If 

the vector is always negative, set P(σ,a) = –1 indicating one mode at point x = 0. If 

(5) starts negative, then changes to positive and finally becomes negative, set 

P(σ,a) = –2 indicating one mode at point x = 0 and another mode at x > 0. If (5) starts 

positive and becomes negative, then changes to positive, and finally becomes 

negative, set P(σ,a) = 2 indicating two distinct modes at x > 0. Finally, if (5) starts 

positive, then becomes negative, set P(σ,a) = 1 indicating one mode at x > 0. 

For fixed β, the parameter space of GWD is made up of four regions, each 

region contains a symbol from {–1, –2, 2, 1}, separated by boundary curves. The 

boundary curves are estimated by using regression model. The four distinct regions 

for GWD modes are marked R1, R2, R3, and R4 corresponding to symbols –1, –2, 

2 and 1 respectively. The regions R1 and R4 determine the region of unimodality, 

while the regions R2 and R3 determine the region of bimodality. Figures 1, 2 and 
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3 show the regions of unimodality and bimodality are not robust to the parameter 

β. To save space the following three cases are presented to demonstrate the 

complexity of the modal property of GWD. 

Case 1 (β = 0.5) 

Figure 1 shows the four distinct regions R1, R2, R3, and R4 for GWD modes, and 

four PDFs representing the four regions when λ = 1. For example, the PDF of GWD 

with parameters σ = 10 and a = 1.7 falls in R2, thus it is bimodal with one mode at 

0 and the other mode is at x = 2.71. In this case, only two curves C1 and C2 are 

found as boundaries for the four regions. The regression models for C1 and C2 have 

R2 = 100% and are given by 

 

 C1: 
2 30.04373 5.556 0.1453 0.04509 , 1.85a a a a       , and 

 C2:  
2

1 2 30.6539 0.5853 0.2609 0.2292 ,1.52 10.a a a a


          

 
 

 
 
Figure 1. Regions of unimodality and bimodality and PDFs of GWD when β=0.5 and λ=1 

 

 

Case 2 (β = 1) 

Figure 2 shows the four distinct regions R1, R2, R3, and R4 for GWD modes, and 

four PDFs from the four regions when λ = 1. For example, the PDF corresponding 

to σ = 10 and a = 1.4 is bimodal, the first mode is at 0 and the other mode is at 

x = 3.55. Three curves C1, C2, and C3 separate the four regions. The regression 

models for C1, C2, and C3 all have R2 = 100% and are given by 
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 C1: 
2 30.05499 6.977 0.2862 0.1072 , 1.49a a a a       ,  

 C2:  
1

1/2 3/21.668 2.999 1.655 0.3443 ,1.27 3.26,a a a a


        and 

 C3: 
1/2 3/212.26 14.43 4.332 0.5391 ,3.26 10.a a a a          

 
 

 
 
Figure 2. Regions of unimodality and bimodality and PDFs of GWD when β=1 and λ=1 

 

Case 3 (β = 2) 

Figure 3 shows the four distinct regions R1, R2, R3, and R4 for GWD modes 

separated by three curves and four PDFs from the four regions when λ = 1. For 

example, the PDF corresponding to σ = 10 and a = 1 is bimodal with modes at 0 

and at x = 6.83. The three regression models, all with R2 = 100%, are given by 

 

 C1:  
2/3

3/2 3 9/20.01444 25.78 0.1418 0.1129 , 1.15,a a a a         

 C2:  
2

2 4 60.9390 2.688 1.814 0.4480 ,0.93 1.289,a a a a


        and 

 C3: 
2 30.3479 1.531 0.1226 0.004977 ,1.289 5.05.a a a a         
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Figure 3. Regions of unimodality and bimodality and PDFs of GWD when β=2 and λ=1 

 

 
 

The distance between the two modes when GWD is bimodal was also examined, 

which is demonstrated in Table 1. From Table 1 it is observed that, when σ 

increases and all the other parameters are fixed, the distance between two modes 

increases, and when a increases, the distance decreases. However, no clear 

increasing or decreasing pattern is observed as β increases when all other 

parameters are fixed. Figure 4 further illustrates the diverse shapes of GWD and 

the distances between two modes when σ, β, or a changes, respectively. 
 
 

 
 
Figure 4. PDFs of GWD when the distribution is bimodal and λ=1 
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Table 1. Distance between two modes when GWD is bimodal and λ = 1 

 

a σ β = 0.6 β = 0.8 β = 1 β = 1.5 β = 2 

2 

4       1.68   

5  1.62 1.91 2.13 2.14 

6 1.82 2.07 2.21 2.44 2.57 

7 2.14 2.29 2.43 2.68 2.87 

8 2.34 2.49 2.61 2.89 3.10 

9 2.51 2.65 2.79 3.07 3.30 

10 2.65 2.80 2.94 3.25 3.49 

 3 

4  1.23 1.20   

5 1.50 1.52 1.51 1.35  

6 1.68 1.70 1.71 1.67  

7 1.81 1.85 1.87 1.88 1.78 

8 1.91 1.96 1.99 2.03 2.01 

9 1.99 2.05 2.09 2.16 2.18 

10 2.06 2.12 2.17 2.27 2.31 

4  

4 1.04 0.98 0.87     

5 1.27 1.22 1.15   

6 1.43 1.39 1.35   

7 1.55 1.53 1.50 1.37  

8 1.62 1.62 1.61 1.53  

9 1.69 1.71 1.70 1.67 1.54 

10 1.75 1.77 1.78 1.77 1.69 

5  

4 0.87 0.78       

5 1.07 0.99 0.88   

6 1.22 1.16 1.08   

7 1.33 1.29 1.23   

8 1.43 1.39 1.35 1.17  

9 1.49 1.47 1.44 1.32  

10 1.55 1.54 1.52 1.42 1.21 

6  

4 0.73 0.62    

5 0.92 0.81    

6 1.05 0.97 0.87   

7 1.17 1.09 1.02   

8 1.26 1.20 1.13   

9 1.34 1.29 1.23 1.03  

10 1.40 1.36 1.32 1.16   
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Parameter estimation 

Next, the parameter estimation using the maximum likelihood method is addressed 

and a simulation is conducted to study the performance of the method. Let (x1, x2 

… xn) be a random sample from a GWD with parameters β, σ, a, and λ, then the 

log-likelihood function from (1) is given by 

 

 

 

 

    

1

1 1

1/
/( / )

1 1

( , , , ) ln ( )

1
ln ln ln ln ( 1) ln

1
1 ln 1 1 .

aa
i

n

i

i

an n
i

i

i i

n n
xx

i i

a g x

x
n a a a x

e e




  

  
 






 




 

 

 
        

 

 
     
 



 

 

  (6) 

 

The first partial derivatives of (6) are 

 

  
1/

( / )

1

1
a

i

n
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and 
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1
( / )

1 1

1 1/
( / ) ( / )

1

/ 1 1/ / 1
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a x x
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i

n a a a
x x e
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x e e




 

  
   








 

 




    



 

 


 (10) 

 

On setting (7) through (10) equal to zero and solving the system of equations 

iteratively using NLMIXED procedure in SAS, the maximum likelihood estimates 

of the parameters are obtained. 

Because the parameters a and λ are from Weibull distribution (WD), and the 

parameters β and σ are from Gumbel distribution (GD), moment estimates of WD 

parameters and GD parameters are used as initial estimates. By assuming that (x1, x2 

…  xn) has WD, wi = ln(xi) can be computed. The initial estimates for a and λ are 

 0 / 6wa s  and  0 0exp /w a   , where w  and sw are respectively the 

mean and the standard deviation of the sample (w1 …  wn) (Johnson et al., 1994, pp. 

635-643), and  (1) 0.57722     is Euler’s constant. The random sample (x1, x2 

…  xn) is transformed to a sample from GD by 0

0ln(exp( / ) 1)
a

i iz x   . The initial 

estimates for β and σ are 0 0/

0 e
    and 0 6 /zs  , where 0 0z     and σ0 

are the moment estimates from GD, z  and sz are respectively the mean and standard 

deviation of (z1 …  zn) (Johnson et al., 1995, p. 12). 

A simulation study is conducted to examine the performance of the maximum 

likelihood estimates (MLEs). The bias (actual – estimate) and standard deviation 

are used to measure the performance. Three sample sizes n = 250, 500 and 1000 

are used. The data are simulated from standard exponential distribution and then 

transformed into GWD using the transformation  
1/

ln{( / ) 1}
a

X Y     . The 

process is repeated 100 times for each parameter combination and each sample size. 

This simulation study is conducted for many parameter combinations, but for 

brevity the results for the parameter combinations β = 0.5, 1, 4, σ = 2, a = 1, 2, 4, 

and λ = 1 are reported. 

The average bias and the standard deviation of the MLEs are computed and 

presented in Table 2. From the table it is observed that the bias appears reasonable 

and in general the standard deviation decreases as n increases. These observations 

also hold for the other parameter combinations that are not reported in Table 2. The 

simulation study shows that the maximum likelihood method is appropriate for 

estimating the GWD parameters. 
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Table 2. Average bias and standard deviation for MLEs when σ = 2 and λ = 1 

 

  

   

β a n bias sd bias sd bias sd bias sd 

0.5 

1 

250 -0.0096 0.0867 -0.0354 0.1514 -0.0734 0.2750 -0.0307 0.2047 

500 0.0082 0.0830 -0.0473 0.1326 -0.0853 0.2192 -0.0574 0.1931 

1000 0.0097 0.0642 -0.0329 0.1003 -0.0532 0.1565 -0.0471 0.1482 

2 

250 0.0065 0.0942 -0.1094 0.3163 -0.0893 0.2785 -0.0336 0.1140 

500 0.0136 0.0879 -0.1103 0.2745 -0.0921 0.2170 -0.0341 0.1054 

1000 0.0110 0.0652 -0.0674 0.2015 -0.0532 0.1565 -0.0230 0.0754 

4 

250 0.0065 0.0942 -0.2188 0.6325 -0.0893 0.2785 -0.0151 0.0562 

500 0.0148 0.0874 -0.2270 0.5470 -0.0935 0.2162 -0.0156 0.0512 

1000 0.0114 0.0650 -0.1363 0.4031 -0.0539 0.1570 -0.0109 0.0372 

1 

1 

250 -0.0049 0.1832 -0.0319 0.1281 -0.0644 0.2429 -0.0380 0.2055 

500 0.0443 0.1597 -0.0413 0.1030 -0.0482 0.1738 -0.0862 0.1872 

1000 0.0346 0.1375 -0.0300 0.0893 -0.0317 0.1248 -0.0625 0.1626 

2 

250 0.0335 0.2084 -0.1343 0.3083 -0.0905 0.2539 -0.0462 0.1276 

500 0.0663 0.1723 -0.1317 0.2518 -0.0755 0.1812 -0.0550 0.1061 

1000 0.0426 0.1435 -0.0790 0.1956 -0.0431 0.1287 -0.0348 0.0845 

4 

250 0.0335 0.2084 -0.2685 0.6166 -0.0905 0.2539 -0.0210 0.0625 

500 0.0682 0.1715 -0.2591 0.4872 -0.0722 0.1788 -0.0263 0.0512 

1000 0.0415 0.1431 -0.1498 0.3893 -0.0410 0.1296 -0.0160 0.0416 

4 

1 

250 -0.0876 0.7596 -0.0017 0.0956 -0.1131 0.4299 0.0160 0.2424 

500 0.0049 0.6856 -0.0160 0.0792 -0.0755 0.2637 -0.0192 0.2154 

1000 -0.0265 0.7518 -0.0021 0.0774 -0.0249 0.2223 -0.0195 0.2401 

2 

250 0.3277 0.8897 -0.1143 0.2423 -0.0298 0.3595 -0.0722 0.1654 

500 0.3395 0.8917 -0.1004 0.2081 0.0101 0.2951 -0.0761 0.1637 

1000 0.3088 0.8031 -0.0810 0.1858 0.0276 0.2184 -0.0657 0.1430 

4 

250 0.3712 0.8546 -0.1404 0.4622 -0.0696 0.4325 -0.0225 0.0836 

500 0.3876 0.8298 -0.1720 0.3838 -0.0244 0.2715 -0.0283 0.0754 

1000 0.2294 0.8272 -0.1171 0.3705 -0.0106 0.2208 -0.0189 0.0720 

Tests about parameter β  

When β = 1, the GWD reduces to 

 

       
1 1/ 1/1 ( / ) ( / ) ( / )

0 ( ) / 1 exp 1
a a aa x x xa

g x x e e e
 

  


  
    . (11) 

 

The three-parameter GWD in (11) can be compared with the four-parameter 

GWD in (1) by testing the null hypothesis 

 

 0 1: 1 against : 1H H   . (12) 

̂ ̂ â ̂
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The hypotheses in (12) are tested by using the likelihood ratio test (Neyman 

and Pearson, 1928), the Wald test (Wald, 1943), or the score test (Rao, 1948). 

The likelihood ratio statistic for testing (12) is 

0 1
ˆ ˆˆ ˆ2 ( , , ) ( , , , )a a        

 
, where 0 ( , , )a   is the log-likelihood value 

of the three-parameter GWD and 1
ˆ ˆˆ ˆ( , , , )a    is the log-likelihood value of the 

four-parameter GWD. The likelihood ratio statistic η has asymptotic chi-square 

distribution with one degree of freedom. 

The Wald statistic for testing (12) is 
ˆ ˆ

ˆ( 1) /Z SE
 

  , where ̂  is the MLE 

from the four-parameter GWD and ˆSE


 is the standard error of ̂ . The Wald 

statistic ˆZ

 has an approximate standard normal distribution. 

The score statistic for testing (12) is S = VTI−1V, where the score vector V is 

the 4×1 gradient vector of  with entries i iV    , I is the 4×4 information 

matrix with entries 
2

, [ ]i j i jI E       ,  is the GWD log-likelihood function 

in (6), θ1 = β, θ2 = σ, θ3 = a, and θ4 = λ, and S is computed under the null hypothesis 

β = 1. The score statistic S has an approximate chi-square distribution with one 

degree of freedom. 

A simulation study is conducted to compare the powers of the three tests for 

parameter β. Three sample sizes n = 250, 500 and 1000 are used in the study. The 

data are simulated from GWD as described under Parameter Estimation, and the 

parameters are estimated by the method of maximum likelihood. The simulation is 

repeated 200 times for each parameter combination and each sample size. The 

proportion of times of rejecting H0 is used to estimate the power of each test. Two 

significance levels, 5% and 10%, are used and the results are similar. Many 

parameter combinations are used in the simulation. For brevity, Table 3 reports the 

results for 5% and the parameter values β = 0.5, 1, 2, 4, σ =1.6, 2, a = 1, 2, 3, 4, and 

λ = 1. 

When β ≤ 1, it is observed from Table 3 that the score test is the most powerful 

followed by the Wald test while the likelihood ratio test is poor. On the contrary, 

when β > 1, the likelihood ratio test is the most powerful followed by the score test 

and the Wald test. In general, the power increases as the sample size increases. 
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Table 3. The proportion of times the null hypothesis is rejected when λ = 1 

 
  n=250 n=500 n=1000 

σ β a LR Wald Score LR Wald Score LR Wald Score 

1.6 

0.5 

1 0.000 0.005 0.430 0.000 0.045 0.745 0.020 0.600 0.955 

2 0.000 0.000 0.420 0.000 0.060 0.685 0.040 0.600 0.940 

3 0.000 0.005 0.435 0.000 0.060 0.650 0.010 0.530 0.945 

4 0.000 0.000 0.495 0.000 0.060 0.690 0.020 0.620 0.970 

1 

1 0.000 0.000 0.015 0.000 0.005 0.050 0.005 0.040 0.070 

2 0.000 0.000 0.060 0.000 0.060 0.165 0.015 0.125 0.145 

3 0.000 0.000 0.070 0.000 0.060 0.140 0.010 0.060 0.095 

4 0.000 0.000 0.070 0.000 0.045 0.120 0.015 0.055 0.080 

2 

1 0.090 0.000 0.005 0.340 0.010 0.020 0.740 0.110 0.405 

2 0.070 0.000 0.005 0.220 0.000 0.020 0.720 0.055 0.340 

3 0.070 0.000 0.000 0.315 0.005 0.050 0.670 0.095 0.395 

4 0.065 0.000 0.005 0.295 0.000 0.030 0.675 0.115 0.350 

4 

1 0.605 0.010 0.120 0.980 0.050 0.450 1.000 0.515 0.975 

2 0.585 0.015 0.075 0.935 0.040 0.435 1.000 0.400 0.945 

3 0.490 0.000 0.065 0.935 0.025 0.385 1.000 0.410 0.945 

4 0.650 0.030 0.100 0.935 0.075 0.475 1.000 0.585 0.980 

2 

0.5 

1 0.000 0.090 0.660 0.030 0.560 0.945 0.480 0.970 1.000 

2 0.000 0.085 0.715 0.020 0.495 0.925 0.545 0.990 1.000 

3 0.000 0.080 0.740 0.035 0.490 0.940 0.525 0.985 1.000 

4 0.005 0.120 0.745 0.025 0.575 0.960 0.545 0.985 1.000 

1 

1 0.000 0.000 0.050 0.000 0.000 0.060 0.005 0.030 0.090 

2 0.000 0.020 0.100 0.010 0.050 0.110 0.030 0.070 0.080 

3 0.000 0.000 0.085 0.000 0.065 0.105 0.025 0.045 0.055 

4 0.000 0.010 0.090 0.005 0.065 0.080 0.010 0.025 0.030 

2 

1 0.360 0.005 0.030 0.730 0.080 0.360 0.985 0.760 0.925 

2 0.345 0.010 0.060 0.655 0.130 0.345 0.920 0.715 0.820 

3 0.290 0.005 0.055 0.645 0.105 0.360 0.940 0.735 0.830 

4 0.290 0.005 0.040 0.715 0.115 0.370 0.930 0.775 0.860 

4 

1 0.940 0.160 0.425 1.000 0.515 0.935 1.000 1.000 1.000 

2 0.840 0.110 0.285 1.000 0.380 0.835 1.000 0.955 1.000 

3 0.875 0.100 0.305 1.000 0.485 0.885 1.000 0.940 1.000 

4 0.880 0.095 0.365 1.000 0.510 0.905 1.000 0.965 1.000 

Applications 

Applications of the GWD to five data sets are now presented. These five data sets 

exhibit various shapes of distribution including right-skewed, approximately 

symmetric, left-skewed, reversed J-shape and bimodal distributions for 

demonstrating the flexibility of the GWD for fitting real world data. The parameters 

are estimated by using the method of maximum likelihood. The fit is compared to 
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other distributions based on the p-value of the Kolmogorov-Smirnov (K-S) statistic, 

and the Akaike information criterion (AIC). 

Breaking stress of carbon fibers data 

The data for breaking stress of carbon fibers of 50 mm length (GPa) in Table 4 is 

obtained from Nicholas and Padgett (2006). This data was used by Cordeiro and 

Lemonte (2011) to illustrate the application of the four-parameter beta-Birnbaum-

Saunders distribution (BBS) when compared to the two-parameter Birnbaum-

Saunders distribution (Birnbaum and Saunders, 1969). The data set is unimodal and 

is approximately symmetric (skewness = – 0.13 and kurtosis = 0.34). 
 
 

Table 4. Breaking stress of carbon fibers data 

 

0.39 0.85 1.08 1.25 1.47 1.57 1.61 1.61 1.69 1.80 1.84 

1.87 1.89 2.03 2.03 2.05 2.12 2.35 2.41 2.43 2.48 2.50 

2.53 2.55 2.55 2.56 2.59 2.67 2.73 2.74 2.79 2.81 2.82 

2.85 2.87 2.88 2.93 2.95 2.96 2.97 3.09 3.11 3.11 3.15 

3.15 3.19 3.22 3.22 3.27 3.28 3.31 3.31 3.33 3.39 3.39 

3.56 3.60 3.65 3.68 3.70 3.75 4.20 4.38 4.42 4.70 4.90 

 
 

Table 5. MLEs for breaking stress of carbon fibers data (standard errors in parentheses) 

 

Distribution BBS* BED BGE GWD 

Parameter 
estimates 

â  = 0.1930  â  = 7.5072  â  = 0.6473  ̂  = 3.4359  

(0.0259) (0.7642) (0.3077) (1.1494) 

    

b̂  = 1876.7324  b̂  = 20.9967  b̂  = 1198.50  ̂  = 5.5673  

(605.05) (1.4865) (5.9057) (2.8064) 

    

̂  = 1.0445  ̂  = 0.1131  ̂  = 5.099  â  =2.4231  

(0.0036) (0.0170) (1.9670) (0.5078) 

    

̂  = 57.6001   ̂  = 0.0824  ̂  = 1.1324  

(0.3313)  (0.0419) (0.4524) 

Log Likelihood – 91.36 – 91.22 – 85.96 – 84.83 

AIC 190.7 188.4 179.9 177.7 

K-S 0.1422 0.1338 0.0817 0.0666 

p-value 0.1384 0.1884 0.7710 0.9313 
 

*Parameter estimates and value of AIC statistic from Cordeiro and Lemonte (2011).  
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Figure 5. Histogram and the fitted PDFs for the breaking stress of carbon fibers data 

 

 
 

Four distributions are used to fit the data: the beta-exponential (BED) 

defined by Nadarajah and Kotz (2006), the beta-generalized exponential (BGE) 

defined by Barreto-Souza et al. (2010), the beta-Birnbaum-Saunders, and GWD. 

The MLEs and goodness of fit statistics are presented in Table 5. The MLEs, 

standard errors of MLEs, and the AIC statistic of BBS distribution are obtained 

from Cordeiro and Lemonte (2011). Figure 5 displays the histogram and the PDFs 

of the fitted distributions. 

To compare the four-parameter GWD in (1) to the three-parameter GWD in 

(11), the likelihood ratio statistic η = 14.302, the Wald statistic ˆZ


 = 2.119, and the 

score statistic S = 6.630 are obtained. All the test statistics lead to rejecting the null 

hypothesis of three-parameter GWD in favor of the four-parameter GWD at 5% 

significance level. The four-parameter GWD outperforms the other three 

distributions by comparing the AIC and K-S statistics. This application suggests 

that the four-parameter GWD fits unimodal symmetric data very well when 

compared to the other distributions. 

Australian athletes’ data 

The Australian athletes’ data reported by Cook and Weisberg (1994) contains 13 

variables on 102 male and 100 female Australian athletes collected at the Australian 

Institute of Sport. Jamalizadeh et al. (2011) used the heights for the 100 female 

athletes and the hemoglobin concentration levels for the 202 athletes to illustrate 

the application of a generalized skew two-piece skew-normal distribution. 

Choudhury and Abdul Matin (2011) also used percentage of the hemoglobin blood 

cell for the male athletes to illustrate the application of an extended skew 
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generalized normal distribution. Next, the GWD was applied to two of the variables 

in the Australian athletes’ data, the sum of skin folds (SSF) and the height in 

centimeters for the 100 female athletes. 

The Weibull-Pareto distribution (WPD) defined by Alzaatreh, Famoye and 

Lee (2013), the beta-normal distribution (BND) defined by Eugene et al. (2002), 

the exponentiated-Weibull (EWD) defined by Mudholkar and Srivastava (1993), 

and the GWD are used to fit both data sets. 

The sum of skin folds for the 100 female athletes in Table 6 is right skewed 

(skewness = 0.79, kurtosis = 0.73). The MLEs and the goodness of fit statistics are 

in Table 7. The histogram and the densities of the fitted distributions are provided 

in Figure 6. 
 
 
Table 6. The sum of skin folds data 

 

33.8 36.8 38.2 41.1 41.6 42.3 43.5 43.5 46.1 46.2 46.3 47.5 

47.6 48.4 49.0 49.9 50.0 52.5 52.6 54.6 54.6 55.6 56.8 57.9 

58.9 59.4 61.9 62.6 62.9 65.1 67.0 68.3 68.9 69.9 70.0 71.3 

71.6 73.9 74.7 74.9 75.1 75.2 76.2 76.8 77.0 80.1 80.3 80.3 

80.3 80.6 83.0 87.2 88.2 89.0 90.2 90.4 91.0 91.2 95.4 96.8 

97.2 97.9 98.0 98.1 98.3 98.5 99.8 99.9 101.1 102.8 102.8 103.6 

103.6 104.6 106.9 109.0 109.1 109.5 109.6 110.2 110.7 111.1 113.5 114.0 

115.9 117.8 122.1 123.6 125.9 126.4 126.4 131.9 136.3 143.5 148.9 156.6 

156.6 171.1 181.7 200.8                 

 
 

The three tests about parameter β are used to compare the three- and four-

parameter GWD and the tests are not significant. Thus, the three-parameter GWD 

is adequate to fit the data. On fitting the three-parameter GWD, the K-S statistic 

shows that it is not as good as the four-parameter GWD. By comparing the 

goodness of fit statistics among the four distributions in Table 7, it is observed that 

all distributions provide good fits. The GWD provides the best fit based on the K-

S statistic. This application suggests that GWD fits right skewed data very well. 
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Table 7. MLEs for sum of skin folds data (standard errors in parentheses) 

 

Distribution WPD BND EWD GWD 

Parameter 
estimates 

ĉ  = 3.6308 â  = 9.7706 â  = 1.2245 ̂  = 1.0299 

(1.0568) (0.4008) (0.4378) (1.0094) 

    

̂  = 0.7183 b̂  = 0.1967 ̂  = 6.5038 ̂  = 1.3303 

(0.1799) (0.0223) (6.3413) (0.3218) 

    

̂  = 23.0497 ̂  = 9.1517 ̂  = 41.4980 â  = 2.2896 

(7.6212) (4.3612) (24.4832) (0.9184) 

    

 ̂  = 25.4309  ̂  = 81.7841 

 (0.9049)  (27.2786) 

Log Likelihood – 486.07 – 487.06 – 487.17 – 485.89 

AIC 978.1  982.1  980.3  979.8  

K-S 0.0825  0.0711  0.0808  0.0705  

p-value 0.5043  0.6925  0.5307  0.7022  

 
 

 
 
Figure 6. Histogram and the fitted PDFs for sum of skin folds data 

 

 
 

The height in centimeters for the 100 Australian female athletes in Table 8 is 

unimodal and left skewed (skewness = –0.57, kurtosis = 1.32). The MLEs and the 

goodness of fit statistics are in Table 9. The histogram and the PDFs of the fitted 

distributions are plotted in Figure 7. 

The hypothesis in (12) is used to test the significance of the parameter β. All 

the tests, the likelihood ratio (η = 13.772), the Wald ( ˆZ


 = 2.309), and the score 
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(S = 4.487) reject the null hypothesis in favor of the four-parameter GWD. By 

comparing the goodness of fit statistics among the four distributions it was found 

that all distributions are competitors as they provide good fits to the data. The four-

parameter GWD appears to provide the best p-value of the K-S statistic, and shares 

the best value of the AIC statistic with the exponentiated-Weibull distribution. This 

application suggests that GWD fits left skewed unimodal data very well. 
 
 
Table 8. The heights data 

 

148.9 149.0 156.0 156.9 157.9 158.9 162.0 162.0 162.5 163.0 163.9 165.0 

166.1 166.7 167.3 167.9 168.0 168.6 169.1 169.8 169.9 170.0 170.0 170.3 

170.8 171.1 171.4 171.4 171.6 171.7 172.0 172.2 172.3 172.5 172.6 172.7 

173.0 173.3 173.3 173.5 173.6 173.7 173.8 174.0 174.0 174.0 174.1 174.1 

174.4 175.0 175.0 175.0 175.3 175.6 176.0 176.0 176.0 176.0 176.8 177.0 

177.3 177.3 177.5 177.5 177.8 177.9 178.0 178.2 178.7 178.9 179.3 179.5 

179.6 179.6 179.7 179.7 179.8 179.9 180.2 180.2 180.5 180.5 180.9 181.0 

181.3 182.1 182.7 183.0 183.3 183.3 184.6 184.7 185.0 185.2 186.2 186.3 

188.7 189.7 193.4 195.9                 

 
 
Table 9. MLEs for heights data (standard errors in parentheses) 
 

Distribution WPD BND EWD GWD 

Parameter 
estimates 

ĉ  = 8.1823 â  = 0.8697 â  = 14.7405 ̂  = 6.2028 

(3.3244) (0.6607) (3.2361) (2.2535) 

    

̂  = 2.8449 b̂  = 6.3120 ̂  = 2.7836 ̂  = 3.9326 

(1.1079) (0.7454) (1.3390) (2.9597) 

    

̂  = 125.1377 ̂  = 191.46 ̂  = 170.26 â  = 12.268 

(16.9742) (3.9729) (4.5462) (2.1530) 

    

 ̂  = 12.0376  ̂  = 147.02 

 (3.1219)   (12.5835) 

Log Likelihood – 351.03 – 350.31 – 350.37 – 349.33 

AIC 708.1 708.6 706.7 706.7 

K-S 0.0801 0.0725 0.0711 0.0565 

p-value 0.5427 0.6692 0.6923 0.9071 
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Figure 7. Histogram and the fitted PDFs for heights data 

 

 

Application to lifetime data 

Two data sets that represent the stress rapture life in hours of Kevlar 49/epoxy 

strands when subjected to a constant sustained stress level pressure until failure are 

used to illustrate an application to lifetime data. Both data sets are from Andrews 

and Herzberg (1985) and the original source is Barlow et al. (1984). Cooray and 

Ananda (2008) used the data sets to illustrate the usefulness of the generalized half 

normal distribution (GHN) when compared to other commonly used distributions. 

Four distributions are used to fit both data sets: the exponentiated-Weibull, beta-

normal, generalized half normal, and GWD. The MLEs, log-likelihood value, and 

the value of K-S statistic of GHN distribution are obtained from Cooray and 

Ananda (2008). 

The data set in Table 10 represents the failure times of Kevlar 49/epoxy 

strands when the pressure is at 90% stress level. This data is leptokurtic, unimodal, 

highly right skewed, and has reversed-J shape with a potential outlier (skewness = 

3.05, kurtosis = 14.47). 

The MLEs, log likelihood values, values of AIC and K-S, and p-values of 

the K-S are in Table 11. Figure 8 contains the histogram and the PDFs of the fitted 

distributions. The three tests about parameter β are used to test its significance. 

Only the likelihood ratio test rejects the null hypothesis of the three-parameter 

GWD, while the other two tests fail to reject the null hypothesis in (12). Because 

the likelihood ratio test is the most powerful when β > 1, one can conclude that the 

parameter β is significant. 
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Table 10. Kevlar 49/epoxy strands failure times data (pressure at 90%) 

 

0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.04 0.05 0.06 0.07 

0.07 0.08 0.09 0.09 0.10 0.10 0.11 0.11 0.12 0.13 0.18 

0.19 0.20 0.23 0.24 0.24 0.29 0.34 0.35 0.36 0.38 0.40 

0.42 0.43 0.52 0.54 0.56 0.60 0.60 0.63 0.65 0.67 0.68 

0.72 0.72 0.72 0.73 0.79 0.79 0.80 0.80 0.83 0.85 0.90 

0.92 0.95 0.99 1.00 1.01 1.02 1.03 1.05 1.10 1.10 1.11 

1.15 1.18 1.20 1.29 1.31 1.33 1.34 1.40 1.43 1.45 1.50 

1.51 1.52 1.53 1.54 1.54 1.55 1.58 1.60 1.63 1.64 1.80 

1.80 1.81 2.02 2.05 2.14 2.17 2.33 3.03 3.03 3.34 4.20 

4.69 7.89                   

 
 
Table 11. MLEs for Kevlar 49/epoxy strands failure times data (pressure at 90%) 

(standard errors in parentheses) 
 

Distribution GHN* EWD BND GWD 

Parameter 
estimates 

̂  = 1.2238 â  = 1.0604 â  = 12.4298 ̂  = 1.8064 

 (0.2399) (0.3071) (0.5037) 

    

̂  = 0.7108 ̂  = 0.7929 b̂  = 0.4467 ̂  = 3.2713 

 (0.2870) (0.0475) (0.6459) 

    

 ̂  = 1.2180 ̂  = -1.5065 â  = 0.9200 

 (0.3933) (0.1347) (0.1594) 

    

  ̂  = 1.1413 ̂  = 0.2071 

    (0.0317) (0.1072) 

Log Likelihood – 103.33 – 102.79 – 132.98 – 100.23 

AIC 210.7 211.6 274.0 208.5 

K-S 0.0800 0.0844 0.1129 0.0687 

p-value 0.5377 0.4680 0.1526 0.7266 
 

*MLEs, log likelihood, and K-S from Cooray and Ananda (2008), the standard errors were not given. 

 
 

By comparing the p-value of the K-S and the AIC among the four 

distributions, it is observed that the GWD outperforms the other distributions. This 

application suggests that the GWD fits unimodal reversed-J shape data very well. 
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Figure 8. Histogram and the fitted PDFs for failure times data (90% pressure) 

 

 
 

The second part of the Kevlar data in Table 12 represent the failure times 

when the pressure is at 70% stress level. This data is multimodal, platykurtic, and 

approximately symmetric (skewness = 0.1, kurtosis = –0.79) with very wide range. 

Table 13 contains the MLEs, AIC and K-S statistics, and the p-value of the K-S 

statistic. Figure 9 provides the histogram and the PDFs of the fitted distributions. 
 
 
Table 12. Kevlar 49/epoxy strands failure times data (pressure at 70%) 

 

1051 1337 1389 1921 1942 2322 3629 4006 4012 4063 

4921 5445 5620 5817 5905 5956 6068 6121 6473 7501 

7886 8108 8546 8666 8831 9106 9711 9806 10205 10396 

10861 11026 11214 11362 11604 11608 11745 11762 11895 12044 

13520 13670 14110 14496 15395 16179 17092 17568 17568   

 
 

When the three tests about β are used to compare the three-parameter GWD 

with the four-parameter GWD, the parameter β is not significantly different from 

1. The three-parameter GWD was also fitted to the data and the result is comparable 

to that of four-parameter GWD. By using the K-S statistic, the three-parameter 

GWD is not as good as the four-parameter GWD. 

By comparing the goodness of fit statistics in Table 13 among the four 

distributions, it was found that the four distributions are competitors and fit the data 

very well. The GWD and the beta-normal distribution capture the data with a 

bimodal density curve. The GHN with the smallest AIC and largest p-value of the 

K-S statistic does not capture the bimodality property. This application suggests 

that GWD is capable of providing an adequate fit to bimodal data. 
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Table 13. MLEs for Kevlar 49/epoxy strands failure times data (pressure at 70%) 

(standard errors in parentheses) 
 

Distribution GHN* EWD BND GWD 

Parameter 
estimates 

̂  = 10906.98 â  = 5.2226 â  = 0.1626 ̂  = 1.3118 

 (2.9883) (0.1039) (0.5144) 

    

̂  = 1.64067 ̂  = 0.2644 b̂  = 0.1157 ̂  = 4.1091 

 (0.1887) (0.0199) (1.0456) 

    

 ̂  = 14559 ̂  = 7826 â  = 2.6948 

 (2007.54) (1759.97) (0.8101) 

    

  ̂  = 1339.35 ̂  = 6165.69 

    (245.62) (1749.51) 

Log Likelihood – 479.56 – 479.03 – 480.52 – 478.51 

AIC 963.1 964.1 969.0 965.0 

K-S 0.067 0.0825 0.0797 0.0749 

p-value 0.9804 0.8926 0.9144 0.9462 
 

* MLEs, log likelihood, and K-S from Cooray and Ananda (2008), the standard errors were not given. 

 
 

 
 
Figure 9. Histogram and the fitted PDFs for failure times data (70% pressure) 
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Summary and conclusion 

In this article, some properties of the four-parameter GWD, a member of the T-X 

family of distributions are provided. The paper provides important properties such 

as modes and mean deviations for GWD. The method of maximum likelihood is 

proposed for parameter estimation. The result of the simulation on the performance 

of the maximum likelihood method shows that the method is appropriate for 

estimating the parameters of GWD. Three test statistics are used to test the 

significance of the parameter β. The score test is the most powerful when β ≤ 1, 

while the likelihood ratio test is the most powerful when β > 1. Five datasets are 

used to illustrate the application of the GWD and the results are compared to other 

existing distributions. The results of these applications suggest that GWD can be 

used to fit right-skewed, left-skewed, symmetric, unimodal and bimodal data. 
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