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Discrete Generalized Burr-Type XII 
Distribution 

B. A. Para 
University of Kashmir 

Srinagar, India 

T. R. Jan 
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Srinagar, India

 

 
A discrete analogue of generalized Burr-type XII distribution is introduced using a general 
approach of discretizing a continuous distribution. It may be worth exploring the possibility 
of developing a discrete version of the six parameter generalized Burr-type XII distribution 
for use in modeling a discrete data. This distribution is suggested as a suitable reliability 

model to fit a range of discrete lifetime data, as it is shown that hazard rate function can 
attain monotonic increasing (deceasing) shape for certain values of parameters. The 
equivalence of discrete generalized Burr-type XII (DGBD-XII) and continuous generalized 
Burr-type XII (GBD-XII) distributions has been established. The increasing failure rate 
property in the discrete setup has been ensured. Various theorems relating this new model 
to other probability distributions have also been proved. 
 

Keywords: Discrete generalized Burr-type XII distribution, discrete lifetime models, 
reliability, failure rate 

 

Introduction 

In reliability theory a number of continuous life models is now available in the 

subject to portray the survival behavior of a component or a system. Many 

continuous life distributions have been studied in details (see for example Kapur & 

Lamberson, 1997; Lawless, 1982; Sinha, 1986). However, it is sometimes 

impossible or inconvenient in life testing experiments to measure the life length of 

a device on a continuous scale. For example the lifetime of an on/off switching 

device is a discrete random variable, or life length of a device receiving a number 

of shocks it sustain before it fails is also a discrete random variable.  

Recently, the special roles of discrete distributions have received recognition 

from survival analysts. Many continuous distributions have been discretized. For 

example, the Geometric and Negative binomial distributions are the discrete 
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versions of Exponential and Gamma distributions. Nakagawa (1975) discretized 

the Weibull distribution. The discrete versions of the normal and Rayleigh 

distributions were also proposed by Roy (2003, 2004). Discrete analogues of 

Maxwell, two parameter Burr-type XII and Pareto distributions were also proposed 

by Krishna and Punder (2007, 2009). Recently the inverse Weibull distribution was 

also discretized by Jazi, Lai and Alamatsaz (2010). This article addresses the 

problem of discretization of generalized Burr-type XII (GBD-XII) distribution, 

because there is a need to find more plausible discrete lifetime distributions to fit 

to various life time data. 

The Discrete Generalized Burr XII Distribution: 

Roy (1993) pointed out that the univariate geometric distribution can be viewed as 

a discrete concentration of a corresponding exponential distribution in the 

following manner 

 

      1p X x s x s x     when 0,1,2,x   

 

where X is discrete random variable following geometric distribution with 

probability mass functions as 

 

    1 , 0,1,2,xp x x      

 

where s(x) represents the survival function of an exponential distribution of the 

form s(x) = exp(−λx), clearly θ = exp(−λ), 0 < θ < 1. Thus, one to one 

correspondences between the geometric distribution and the exponential 

distribution can be established, the survival functions being of the same form. 

The general approach of discretizing a continuous variable is to introduce a 

greatest integer function of X i.e., [X] (the greatest integer less than or equal to X 

till it reaches the integer), in order to introduce grouping on a time axis. If the 

underlying continuous failure time X has the survival function s(x) = p(X > x) and 

times are grouped into unit intervals, so that the discrete observed variable is 

dX = [X]. 
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The probability mass function of dX can be written as 

 

 

     

   

   

1

1

1 , 0,1,2,

p x p dX x p x X x

x x

s x s x x

     

  

   

  

 

 x  being the cumulative distribution function of random variable X. 

In reliability theory, many classification properties and measures are directly 

related to the functional form of the survival function. The increasing failure rate 

(IFR), decreasing failure rate (DFR), Increasing failure rate average (IFRA), 

decreasing failure rate average (DFRA), new better than used (NBU), new worse 

than used (NWU), new better (worse) than used in expectation NBUE (NWUE) 

and increasing (decreasing) mean residual lifetime IMRL (DMRL) etc. are 

examples of such class properties as may be seen from Barlow and Proschan (1975). 

If discretization of a continuous life distribution can retain the same functional form 

of the survival function then many reliability measures and class properties will 

remain unchanged. In this sense, the discrete concentration concept is considered 

herein as a simple approach that can generate a discrete life distribution model. 

Thus, given any continuous life variable with survival function s(x) a discrete 

lifetime variable X with probability mass function p(x) is defined by 

 

      1 , 0,1,2,p x s x s x x      

 

Using this concept for the purpose of discretizing generalized Burr-type XII 

distribution, suppose that Y1 and Y2 are independently distributed continuous 

random variables. If Y1 has an exponential density function 

  1

1 1, , 0; 0
yf y e y  

    and Y2 has a gamma distribution with pdf

 
 

2 1

2 2 2; , , 0; 0; 0
k

y kf y k e y k y
k


     


, then the random variable 

1

2

Y
X c

Y
  has a six parameter generalized Burr-type XII distribution with 

parameters (μ = 0, σ = 1, α, θ, c, k) with a density function 
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  
 

1

; 0, 0; 0; 0; 0
1

k c

c

k c x
f x x c k

x k

 
 

 



     
 

  (1) 

 

The pdf plot for DGB-XII variate X for different values of parameters is shown in 

Figure 1. It is evident that the distribution of the random variable X is right skewed. 
 

 

 
 

Figure 1. PDF plot for GBD-XII (α, θ, c, k) 
 

 

 

Introducing location parameter μ and scale parameter σ in (1) results in 

 

  

1

1

1 1

1

, 0, 0, 0, 0, 0, 0, 0

c

k

k
c

x
k c

f x x c k

x


 


   


  







 
 
        

  
  

   
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Reliability measures of GBD-XII random variable X 

Various reliability measures of GBD-XII random variable X are given by 

 

Survival Function: 

 

 

     

 

 

0

1

0

1

1
1

x

k c
x

c

k
k c

s x p X x f x dx

x k cx
dx

x x k

x





  





   

 
 

 



   

 

rth Moment: 

 

 

 

 
 

/

1

0

1, / , 0; / ; 0; 0; 0; 0

where ,
1

r c

r

a

a b

r
E x k B k r c x k r c r c

c

x
B a b dx

x


 








   
           

   






  

 

Failure Rate: 

 

  
 

   

1

, 0; 0; 0; 0; 0
c

c

f x k cx
r x x k c

s x x


 

 



      


  

 

Second Rate of Failure: 

 

 

 
 

 

 

log
1

log 0; 0; 0; 0; 0
1

c

c

S x
SRF x

S x

x
k x k c

x

 
 

 

 
    

 
       

   

  

 

A discrete generalized Burr XII variable, dX can be viewed as the discrete 

concentration of the continuous generalized Burr-type XII variate X distribution, 

where the corresponding probability mass function of dX can be written as 



PARA & JAN 

249 

 

       

    
    log 1loglog

1

1

cc

kk ck c k

xx

p dX x p x s x S x

x x

  

     

  



 

    

    

 
  

 

  

 

The pmf of DGBD-XII takes the form 

 

  

 

    

log

log 1loglog

1 0

1,2,3,
cc xx

x

p x
x

 

  

 

  



 

  


   
  

 

  (2) 

 

 
where ; 0 1

0; 0; 0; 0

ke

k c

 

 

  

   
  

 

Figures 2 through 5 give the pmf plot of (2) for 

(α = 0.3; θ = 0.1; c = 4; β = 0.1), (α = 0.3; θ = 0.1; c = 1; β = 0.1), 

(α = 0.3; θ = 0.01; c = 0.5; β = 0.1), and (α = 1; θ = 1; c = 2; β = 0.5), respectively. 
 
 

 
 

Figure 2. PMF plot for DGBD-XII     Figure 3. PMF plot for DGBD-XII 

(α = 0.3; θ = 0.1; c = 4; β = 0.1)                   (α = 0.3; θ = 0.1; c = 1; β = 0.1) 
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  Figure 4. PMF plot for DGBD-XII          Figure 5. PMF plot for DGBD-XII 

          (α = 0.3; θ = 0.01; c = 0.5; β = 0.1)                     (α = 1; θ = 1; c = 2; β = 0.5) 

 

 
 

The pmf at x = 0 is independent of the shape parameter c. It is monotonic decreasing 

if 

 

 

 

 
  

, ,

log loglog
log 2

where , ,
log 2 log

where ;0 1; 0; 0; 0; 0k

e

c

e k c

  

  



 
  



   







 
  
   

      

  

 

otherwise it is no longer monotonic decreasing but is unimodal, having a mode at 

x = 1 i.e., it takes a jump at x = 1 and then decreases for all x ≥ 1.For α = θ = c = 1 

pmf of discrete generalized Burr-type XII distribution coincides with discrete 

pareto distribution and for α = θ = 1 DGBD-XII reduces to discrete Burr-type XII 

distribution. 

To introduce location parameter μ and scale parameter σ then the discretized 

version of f(x1) is given as 
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     

 

1 1 1 1 1 1

1 1

1 1

1 1

1

1

1

1

P dX x p x p x X x

P x x x

x x
P X

x x

 

 

 

 

 

     

    

   
   

 

     
     

   

  

 

where ∅(x1) represents cumulative distribution function of random variable X. 

The survival function of discrete generalized Burr-type XII random variable 

dX is given by 

 

 

     

     

   log loglog

1

1 0 1 1

0,1,2,
c cx x x xk

s x p dX x p dX x

p dX p dX p dX x

a x
   
 

    

          

  

  

  0; 0; 0; 0a c k       

 

Thus, survival function of discrete generalized DGBD-XII is same as continuous 

GBD-XII for integer points of x. 

The failure rate of discrete generalized Burr-type XII random variable is given 

by 

 

 
 

 

 

 

 
log

1
1

0,1,2, ; 0; 0; 0; 0

c

c

p x x
r x

s x x

x a c k

 


 



  
   

  

    

  (3) 

 

i.e., the conditional probability that failure occurs at a time x given that the system 

has not failed by x − 1. 

Note that r(0) = r(1) gives 
 log 2

log 2
c a


 

   (for example). If α = θ = 1, the 

hazard function of discrete generalized Burr-type XII distribution coincides with 

two parameter discrete Burr-type XII distribution. Note that r(x) is decreasing in x 

if 0 < c < a and for c = a; r(0) = r(1) and for c > a, r(0) > r(1) i.e., monotonic 

increasing, and r(x) < r(x − 1)   x > 2 i.e., r(x) decreases for all x > 1, uniformly 

in β. 
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For different values of α and θ, c can take different values as: 

 

a) θ = .5; α = 100 gives c = 1.003 

b) θ = .99; α = .5 gives c = 1.993 

c) θ = 9999; α = .9 gives c = 13.43 

d) θ = 1; α = 1 gives c = 1.585 

 

Taking part a) it could be seen that for  

 

θ = .5; α = 100 gives c = 1.003 (for example as above) 

r(0) > r(1), for 0 < c < a (for example when c = 1) 

and for c = a; r(0) = r(1) 

and for c > a, r(0) < r(1) implies a monotonic increasing  

and r(x) < r(x − 1) ∀ x ≥ 2  

i.e., r(x) takes a jump at r = 1 and decreases for all x ≥ 1, uniformly in β. 

 

Similarly, for all other cases where c can take different values for different 

values of α and θ, r(x) will show its monotonicity accordingly as in the above case. 

For discrete generalized Burr-type XII distribution i.e., DGBD-XII(α, θ, c, β) 

 

 

 
 

 

 

  

 

loglog

log 1log

log log
1

log log , 0; 0; 0; 0
1

c

c

x

x

c

c

s x
SRF x

s x

x
c k

x

 



 

 

 
  

 



 

  
         

 
     

   

  

 

and to see whether SRF(x) shows the same monotonicity as r(x) 

 

 
 

log log
1

c

c

x
SRF x

x

 


 

 
  

   

  

For SRF(0) = SRF(1) 

 
 

2

log 2
log 2

log 2
c








     (for example) 
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Using the same procedure as in (3) it is clear that SRF(x) shows the same 

monotonicity as that of r(x). 
 
 

 
 

Figure 6. second rate of failure        Figure 7. second rate of failure 

plot of DGBD-XII        plot of DGBD-XII  
    (α = 1; θ = 1; c = 2; β = 0.1)        (α = 1; θ = 1; c = 1.585; β = 0.1) 

 

 
 

 
 

Figure 8. second rate of failure        Figure 9. second rate of failure 

plot of DGBD-XII        plot of DGBD-XII  
   (α = 1; θ = 1; c = 0.5; β = 0.1)          (α = 1; θ = 1; c = 0.1; β = 0.1) 

 

 

Figures 6 through 9 illustrate the alternative hazard rate plot for DGBD-XII 

for different values of parameters. Note that SRF(x) is decreasing in x if 0 < c < a 
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and for c = a; SRF(0) = SRF(1) and for c > a, SRF(0) > SRF(1) i.e., monotonic 

increasing, and SRF(x)  < SRF(x − 1)   x > 2 i.e., SRF(x) decreases for all x > 1. 

The rth moment of discrete generalized Burr-type XII distribution, i.e. DGBD 

(α, θ, c, β), is as follows 

 

 
   

   

   

log log log

0 0

1 1

c cx c xr r r

x x

rr

x

E X x p x x

x x S x

      
    

 





   
  

   
 

 


  (4) 

 

    
log

1

1 1 1

1r r

x xk ck r

r
E X r x s x

x






  

   
     

 

Now,  
log

1 1 1

1r

x xk ck r

r
E x r

x






 

   
   ,  rE x  will take a finite value if ck > r, 

and from (4),    
 loglog

1 1

cx

x xE x s x
  
  

     and 

 

 

     

   

   
 

22 2

1

1

log2 log

1

1

2

2
c

x

x

x

x

E x x x s x

xs x E x

E x E x
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







 



   
 

 

 







 

 

which are infinite series and cannot be written as closed form. The parameter β of 

DGBD-XII (α, θ, c, β) and the parameter k of GBD-XII (α, θ, c, k), are matched via 

β = e−k. It is therefore observed from the survival functions of DGBD-XII and 

GBD-XII distributions 

 

 
       loglog log log

1 0
0

c ckx xk c

x xx dx
           

      

       

 

In other words, μd−1 < μc < μd where μc and μd are the means of the continuous and 

discrete generalized Burr XII distributions, respectively. 
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Appendix: Some theorems related to discrete generalized 
Burr XII distribution 

Lemma 1 

If X is a continuous random variable with increasing (decreasing) failure rate IFR 

(DFR) distribution, then dX = [X] has a discrete increasing (decreasing) failure rate 

dIFR (dDFR). 

 

Proof:  (See Roy and Dasgupta, 2001) 

Lemma 2 

If X is a non-negative continuous random variable and Y is a non-negative integer 

valued discrete random variable, then 

 

  X Y X Y     

 

Proof:  Note that 

 

             X Y X Y X Y X Y         

 

where the last equality holds because Y is integer valued. Therefore 

 

     X Y X Y     

Theorem 1 

If X ~ DGBD-XII (μ = 0; σ = 1; α, θ, c, β) then 

 

  log ~ where ; 0; 0; 0; 0
c

kx
Y Geo e c k

 
   




  

       
  
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Proof:   

 

              P Y y  log
cx

P y
 



   
    

    

  

 log
cx

P y
 



  
   

  
  by Lemma 2 

              P Y y  

1 1/
log

c
ye

P X
 



  
        

  

 

1/
1log

log

log

c
c

ye  
 



 


        

           

 
1log logy  
   

  ~y Geo      y = 0, 1, 2, … 

 

As βy is the survival function of geometric random variable. 

Theorem 2 

If X ~ GBD-XII (μ = 0; σ = 1; α, θ, c, k) then Y = [X] ~ DGBD-XII (μ = 0; σ = 1; α, 

θ, c, β); where β = e−k; α > 0; c > 0; k > 0; θ > 0 

 

Proof: 

 

              P Y y     P X y P X y     

  

by Lemma 2 

  
k

k cy  


    

 
 loglog

cy  
      y = 0, 1, 2, … 

       β = e−k; 0 < β < 1 

 

Thus, Y = [X]~DGBD-XII (α, θ, c, β) 
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Theorem 3 

If X ~ exp(k), the exponential distribution with failure rate k. Then 

 
1/

log
c

Xe
Y

 



  
   
   

 ~ DGBD-XII (α, θ, c, β), where β = e−k; α > 0, c > 0, k > 0, 

θ > 0. 

 
Proof: 
 

              P Y y  

1/
log

c
Xe

P y
 



   
    
     

  

 

1/
log

c
Xe

P y
 



  
   

   

   by Lemma 2 

  log logcP X y      
 

  

 
 log logck y

e
     

    

 
 log ck yke
 


 

  

              P Y y  
 loglog

cy  
     y = 0, 1, 2, … 

 

which is the survival function of DGBD-XII (α, θ, c, β). Thus, Y ~ DGBD-XII (α, 

θ, c, β). 

Theorem 4 

Let X be a random variable following continuous generalized Burr XII distribution 

with E(Xr) < ∞   r = 1, 2, … 

 

Then E(Yr) < ∞ where Y = [X] ~ DGB (α, θ, c, k) 

 

Proof:  Proof is straightforward, because 0 ≤ [X] ≤ X, so clearly if 

E(Xr) < ∞   r = 1, 2, …, then E([X]2) < ∞. 


	Journal of Modern Applied Statistical Methods
	11-2014

	Discrete Generalized Burr-Type XII Distribution
	B. A. Para
	T. R. Jan
	Recommended Citation


	Introduction
	References
	Appendix: Some theorems related to discrete generalized Burr XII distribution

