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Bayesian Estimation of the Parameters of
Two-Component Mixture of Rayleigh
Distribution under Doubly Censoring

Tabassum Naz Sindhu Navid Feroze Muhammad Aslam
Quaid-i-Azam University Allama Igbal Open University  Quaid-i-Azam University
Islamabad, Pakistan Islamabad, Pakistan Islamabad, Pakistan

Recently, the Bayesian analysis of the two-component mixture of lifetime models under
singly type | censored samples was discussed. The Bayes estimation of the parameters of
mixture of two Rayleigh distributions (MTRD) is developed under doubly censoring.
Different informative priors, under squared error loss function and k-loss function, have
been assumed for the posterior estimation. The performance of different estimators has
been compared in terms of posterior risks by analyzing the simulated and real life data sets.

Keywords: Inverse transformation method, mixture model, doubly censoring, loss
functions, Bayes estimator

Introduction

In survival analysis, data are subject to censoring. The most common type of
censoring is right censoring, in which the survival time is larger than the observed
right censoring time. In some cases, however, data are subject to left, as well as,
right, censoring. When left censoring occurs, the only information available to an
analyst is that the survival time is less than or equal to the observed left censoring
time. A more complex censoring scheme is found when both initial and final times
are interval-censored. This situation is referred as double censoring, or the data with
both right and left censored observations are known as doubly censored data.
Analysis of doubly censored data for simple (single) distribution has been
studied by many authors. Fernandez (2000) investigated maximum likelihood
prediction based on type Il doubly censored exponential data. Fernandez (2006) has
discussed Bayesian estimation based on trimmed samples from Pareto populations.
Khan et al. (2010) studied predictive inference from a two-parameter Rayleigh life
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model given a doubly censored sample. Kim and Song (2010) have discussed
Bayesian estimation of the parameters of the generalized exponential distribution
from doubly censored samples. Khan et al. (2011) studied sensitivity analysis of
predictive modeling for responses from the three-parameter Weibull model with a
follow-up doubly censored sample of cancer patients. Pak et al. (2013) has
proposed the estimation of Rayleigh scale parameter under doubly type-II
censoring from imprecise data.

In statistics, a mixture distribution is signified as a convex fusion of other
probability distributions. It can be used to model a statistical population with
subpopulations, where constituent of mixture probability densities are the densities
of the subpopulations. Mixture distribution may appropriately be used for certain
data set where the subsets of the whole data set possess different properties that can
best be modeled separately. They can be more mathematically manageable, because
the individual mixture components are dealt with more ease than the overall
mixture density. The families of mixture distributions have a wider range of
applications in different fields such as fisheries, agriculture, botany, economics,
medicine, psychology, electrophoresis, finance, communication theory, geology
and zoology.

Soliman (2006) derived estimators for the finite mixture of Rayleigh model
based on progressively censored data. Sultan, et al. (2007) described the properties
and estimation of mixture of two inverse Weibull distributions. Sultan, et al. (2007)
have discussed some properties of the mixture of two inverse Weibull distributions.
Saleem and Aslam (2008) presented a comparison of the Maximum Likelihood
(ML) estimates with the Bayes estimates assuming the Uniform and the Jeffreys
priors for the parameters of the Rayleigh mixture. Kundu and Howalder (2010)
considered the Bayesian inference and prediction of the inverse Weibull
distribution for type-11 censored data. Saleem et al. (2010) considered the Bayesian
analysis of the mixture of Power function distribution using the complete and the
censored sample. Shi and Yan (2010) studied the case of the two parameter
exponential distribution under type | censoring to get empirical Bayes estimates.
Eluebaly and Bouguila (2011) have presented a Bayesian approach to analyze finite
generalized Gaussian mixture models which incorporate several standard mixtures,
widely used in signal and image processing applications, such as Laplace and
Gaussian. Sultan and Al-Moisheer (2012) developed approximate Bayes estimation
of the parameters and reliability function of mixture of two inverse Weibull
distributions under Type-2 censoring.
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The Proposed Mixture Model and the Likelihood Function

The probability density function (pdf) of the Rayleigh distribution with rate
parameter 4 is

fi(%;)=2%4% exp(—%4%), 0<x; <, 4*>0, i=12 andj=12,.,n, (1)

The cumulative distribution function (CDF) of the distribution is

F(xij)zl—exp(—ﬂizxijz), 0<x; <o, 4°>0, i=12 andj=12...,n (2)

A density function for mixture of two components densities with mixing weights
(p1,1- pa) is

f(x)=p,f,(x)+(1-p)f,(x), 0<p,<1. 3)
The cumulative distribution function for the mixture model is:
F(x)=pFR(x)+(1-p)F(x) (4)

Consider a random sample of size ‘n’ from Rayleigh distribution, and let
Xiy X410+ X be the ordered observations that can only be observed. The remaining

‘r—1- smallest observations and the ¢ n—s ’ largest observations have been
assumed to be censored. Now based on causes of failure, the failed items are
assumed to come either from subpopulation 1 or from subpopulation 2; so the

X vee Xig @nd Xop 5000 Xog failed items come from first and second subpopulations
respectively. The rest of the observations which are less than X, and greater than
X, have been assumed to be censored from each component. Where
X, =max (%%, ) and x, =min(x,, %, ) . Therefore, M =8-N+1 and

M, =S, —I, +1 number of failed items can be observed from first and second
subpopulations respectively. The remaining n—(s—r+2) items are assumed to be

censored observations, and S—r+2 are the uncensored items. Where ' =1 +1,
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S=S§ +S,andM=mM +M,. Then the likelihood function for the Type Il doubly

censored sample X = {(Xlr1 yerey Xisl),(x2r2 v Ko, )} , assuming the causes of the failure

of the left censored items are identified, can be written as:

L(ﬂ“l';Lz’ p1|x)°C plsl (1_ pl)s2 {Fl(x(rl)’ﬂi)}rl_l{lz (X(fz)’ﬂ?)}rz_l
(s 5 (5)
0T ) T 502

i=n i=r,

-1 r,-1 n-s

L(A A5 pifX)oc D0 (-1)"

k=0 k, =0 k; =0

N—S—Kg+8; 1— Sy +K3
et 61| n-s|™ (1-p) (6)
kl k2 k3

<A™ 27 oxpl =27 (2, ) e {2 (2, )

where \N(xlj) = ile(i) + (n -5- ks)xz(s) + kxz(rl), \N(xzj) = szz(i) + ksxz(s) + kxz(rz),

l:l"l l:I‘Z

m,=s-r+landm,=s,-r,+1

Bayes Estimation

For the Bayesian estimation, let us assume that the parameters 4 and p, i=12 are

independent random variables, and then we consider the following priors for
different parameters:

Bayesian Estimation using Nakagami Prior

The prior for the rate parameters 4 for i = 1, 2, is assumed to be the Nakagami
distribution, with the hyper-parameters a; and bj, given by
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2a : -A%a,
f, (4)=—_ p2i S a,h >0 7
() aen AL A @

The prior for py is assumed to be the beta distribution, whose density is given
by

I(c,+d,)

()= )T (a)

P (1- pl)dl_l, c,d, >0 (8)
From equation (7)-(8), propose the following joint prior density of the vector
©=(1,4,p,)

2

ai 2" 1
9(®)oc 4’ 1exp( ]pl "1-p)"T

0<p, <L a>0b>0¢>0,d >0

©)

By multiplying Equation (9) with Equation (6), the joint posterior density for
the vector ® given the data becomes

I‘l—l -1 n-s

@ k1‘*'k2 N—s—Kg+8;,+¢,—1
kl k, K (10)

x(1— pl)sz+k3+d1—1/ri/|2(ai+mi)—l exp {_ﬂ’.z (% N Q(Xij )]}

Marginal distributions of 4 andp, i=12 can be obtained by integrating the
nuisance parameters.

Bayesian Estimation using Chi Prior

The prior for the rate parameters 4 for i=1, 2, isassumed to be the chi distribution,
with the hyperparameter e;, given by
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2 _ 2
f, (;Ll)zz_,@e"lexp(ij, e >0 (11)
3
T
The prior for py is assumed to be the beta distribution, whose density is given
by

I'(c,+d,)

fp(pl)= F(CZ)F_(dZ) Py

“*(1-p)"*", ¢,d,>0 (12)

From equation (11)-(12), we propose the following joint prior density of the
vector ©=(1,,4,,p,)

2

g(®)oc A" exp(_;“' j P2t (1-p,)"",<0p, <1, & >0,¢,>0,d, >0 (13)

By multiplying Equation (13) with Equation (6), the joint posterior density
for the vector ® given the data becomes

-1 1r,-1 n-
k1+k2 n—s—K;+8,+C, -1
7(0]X) ZZ;}H { 1]Lr21]£nsJ P,
ke Uk kg (14)
Sy+kg+d,— m, +&,— 1
x(L—p,)* A 1exp{—}%2(§+§2(xij )j}

Bayesian Estimation using Rayleigh Prior

The prior for the rate parameters 4 for i=1, 2, is assumed to be the Rayleigh
distribution, with the hyperparameter vi given by

4 A
f, (2“-)=V__zeXp(Tizj7 v; >0 (15)

The prior for py is assumed to be the beta distribution, whose density is given
by
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I'(c,+d
f(p)- i)
r(c,)r(d,)
From equation (15)-(16), propose the following joint prior density of the
vector ©=(4,,4,,p,):

Pt (1-p)"",  c,dy >0 (16)

g(@)ocﬂ,exp(zl11 jpl Y(1-p)*7,<0p, <L v, ¢,>0,d, >0  (17)

By multiplying Equation (17) with Equation (6), the joint posterior density
for the vector ® given the data becomes

I‘lll‘z n-s

2
@ X -1 Ktk N—s—kg+5,+C5—1
ky k, Ky (18)

x (L— py) e e A2 exp {—ﬁf.z [# + Q(Xij )j}

Marginal distributions of A and p, i=1,2 can be obtained by integrating the
nuisance parameters.

Bayes Estimation of the Vector of Parameters @

The Bayesian point estimation is connected to a loss function in general, signifying

the loss induced when the estimate @ differ from true parameter € . Because there
is no specific rule that helps us to identify the appropriate loss function to be used,
squared error loss is used in this article as it serve as standard loss. It is well known
that under the squared error loss function, the Bayes estimator of a function of the
parameters is the posterior mean of the function and risk is the posterior variance.

It is defined as| (é, 0) = (9—67)2 .
It was originally used in estimation problems when the unbiased estimator of

6 was being considered. Another reason for its popularity is due to its relationship
to least squares theory. The use of SELF makes the calculations simpler.
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The K-Loss function (KLF), defined as: | (é, 49) = (9—6’)2 /66 , was proposed

by Wasan (1970). It is well fitted for a measure of inaccuracy for an estimator of a
scale parameter of a distribution defined on R* =(0,0). Under K-Loss function

the Bayes estimates and posterior risks are defined as 6 = J E(@|x)/E(0"]|x), and
p(é) =2{E(0]X)E(0™* | x) -1} respectively.

The respective marginal distribution of each parameter has been used to
derive the Bayes estimators and posterior risks for 4,4, and p1 under the squared

error loss function (SELF) and K- loss functions (KLF). The Bayes estimators and
posterior risks of 4,4, and p: under squared error loss function (SELF) assuming

Nakagami prior are given as:

The Bayes estimators of 4,4, and piare:

REYEYE: " B(A,A )T (a,+m +1/2)I'(a,+m
1(SELF) — =N 1222 k k “1llr=1lln= ( ) ((a1+m1+1/2) ) ( : 2) (ag+m,)
k=0 k,=0 k;=0 2 S 2{a1/b1+Q(X1j)} 2{a2/b2+Q(x2j)}
k1 K, K

=
|
LN
ey
|
LN
=]
|
n

. . ok, B(A.A ) (a,+m)I'(a,+m,+1/2)
setry = N -1 a+ a,+m,+1/2
Ao(seLr) klz_okzz_;)ka_o( ) [rllJ[rzlJ[nSJZ{%/QJrQ(X“)}(l ml)Z{azlb2+Q(xzj)}(z ,+1/2)

R N gl k1+k2 B LA) m )T (a, +m,
PuseLr) = ZZZ [l 1}(5 _]]{n_sj (A + A21+n£a1+ )T (8, +m,)
Ky

k=0 k, =0 ky=0 2{81/b1+Q(X1j)}( y )2{a2/b2+Q(X2j)}(a2+m2)
K, K,

The Posterior risks of 4,4, and p1are:
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. il 1 nos %, +m +1)I'(a, +m
p(j'l(SELF))z NilZZZ(_l)kl k 13:11 ) ( 2 2) (amy) (/q’l(SELF )
k=0 ko =0 k;=0 rl -lji-1]n-s 2 a1/b1+Q {a2/b2+Q(x2 )}
l k2 k3
. ) U " a1+m ) (a +m, +1) A 2
P sy )= N2 2 D (<) ey |2
( (SELF)) k012050 rl -1 r2 -1 nk S 2 allbl-l-Q {azlbz-l-Q(ij)}( o +My +1) ( (SELF))
k, 3
. LR ik B(A+2A)l(a,+m)T(a,+m,) . 2
p( pl(SELF)) =N Z Z Z(_l)k ‘ (3 +my) (a,+my) _( I:)1(5E|J:))
k=0 k, =0 k=0 -1 n-1{n=s|s(5y ofx W™ a, /b, +Q( X, e
s {au/b+0(x, ) 2{a, /b, +0(x,; )}
The Bayes estimators of 4,4, and p1 under KLF are:
1
it 'zz‘f n-s (_1)k1+k2 B(A, AZ)F(a1+m +1/2)I(a,+m,) 2
k=0 k=0 k3 =0 l’l—l r, -1{ln-s 2{a1/b1+Q(X1j)}(a1+ml+ {a /b +Q(ij)} (ap+my,)
3 _ K, K, K
/11(|<|_|:) T (_l)kﬁkz B(Ai, Az)l—‘(a1 +m 1/2) ( mz)
k=0 k; =0 k;=0 =1 r,-1{n-s 2{31/b1+Q(X1j)}(al+ml 172) {a /b, +Q( 21)} 3y 411y
K, k, K,
1
ﬁ‘“zz‘f n-s (_1)k1+k2 B(A,A )T (a,+m)I(a,+m,+1/2) 2
k=0 k=0 k=0 N -1 r, -1{| n-s 2{a1 / b1 + Q(X1] )}(31+”H) 2{a2 /bz +Q(X2j )}(az+mz+1/2)
A _ Ky K, K
/12(KLF) | 51 1 n-s (_1)k1+k2 B(Al, Az)l—‘(a1 —+ ml)l“(az +m, -1/ 2)
k=0 k=0 ky=0 r;l_ _1 r2 _1 n-—=s 2{a1 / b1 +Q(X1J )}(a1+”11) 2{&2 /b2 —|—Q(XZJ )}(az+m2—1/2)
K, k, K
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Pyker) =

B(A+LA)I(a,+m)I(a,+m,)

(ap+m,)

2{a,1b,+Q(x, ) ™ 2(a, /b, +0(x, )}
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The Posterior risks of 4, 4, and p; under KLF are:

_rl—lrz—ln—s ik, B Ai’AZ Fa1+m +1/2)I'(a,+m
N ZZZZ(_l)k k r=1llr=1lln=s ( ) ((a1+ml+1/2; ) ( : 2) (ay+my)
k=0 k, =0 ky=0 1 2 2{31/b1+Q(x1j)} 2{&2/b2+Q(X2j)}
kl kZ k3

P(@KLF)) =2 A

x> Z(_l)k1+kz [rl 1}[5 1}{,15] B(A.A)T(a,+m —1/2)I'(a,+m,) B

k=0 kp=0 k=0 2{a1/b1+Q(X1j)}(a1+na 112) 2{&2 /b, +Q(X2j)}
k Uk )Lk
Sidedes B(A, A)(a,+m )T (a,+m,+1/2)
N (_1) -1 -1 _ (ag+my) (a+my+1/2)
k=0 k=0 ky=0 I I, n-3 2{a1/b1-|-§2(x1j )} 2{a2/b2 +Q(X2j)}
ko )UKk )\ ks

=
S

P o P n-1jr-1|n-s Z{al/le,Q(le)}(l%)z{azlb2+Q(x2j)}
kl k2 k3

(KLF)): Xﬁifzini(l)kﬁkz[ }[ J( } B(Al,Az)F(aeiﬁml)F(aermz—1/2(a)2+m21/2)_1

it tons ko B(A+LA )'(a+m)I'(a,+m
N_ZZZZ(_l)k k r-1|lr,-1{ n-s - Az()al*”g?i 0 1) (2z:m2)
k=0 kp=0 k;=0 1 2 2{a1/b1+Q(x1j)} 2{a2/b2+Q(X2j)}

k Kk k

p(ﬁIKLF)):z 1 2 ’

-1 -1 n-s K +k, B(Al—l,Az)F(al+ml)F(a2+m2)

X -1 1
klz_:;”;”;)( ) {Gl}[l’z 1}[”SJZ{ai/bl+Q(X1J)}(a1+ml)2{a2/b2+Q(X21)}(a2+m2)

kl k2 k3

Where N7 is formulized as

=0k, =0 k50 h-1|n-1|n-s 2{a1/b1+Q(x1j)}(1ml)Z{azlszrQ(xzj)}
k, K, ks

N1=r§§nzsl(l)kl+kz{ J{ }[ J B(A&’Az)zgaﬂrnh)r(az*‘mz) —

A =n-s—k;+s+c and A =s,+k,+d;

Similarly, expressions for Bayes estimators and their posterior risks under the
rest of the priors can be obtained with little modifications.
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Elicitation

In Bayesian analysis the elicitation of opinion is a crucial step. In statistical
inference, the characteristics of a certain predictive distribution proposed by an
expert determine the hyper-parameters of a prior distribution. Focus on a method
of elicitation based on prior predictive distribution. The elicitation of hyper-
parameter from the prior p(4) is a difficult task. The prior predictive distribution

is used for the elicitation of the hyper-parameters which is compared with the
experts' judgment about this distribution and then the hyper-parameters are chosen
in such a way so as to make the judgment agree as closely as possible with the given
distribution. See also Grimshaw et al. (2001), O’Hagan et al. (2006), Jenkinson
(2005) and Leon et al. (2003). According to Aslam (2003), the method of elicitation
is to compare the prior predictive distribution with experts’ assessment about this
distribution and then to choose the hyper-parameters that make the assessment
agree closely with the member of the family. The prior predictive distributions
under all the priors are derived using:

p(y)=[ p(y|©)p(©)dO

Elicitation under Nakagami distribution

The prior predictive distribution using Nakagami prior is:

p(y) =2(ab)* -
(c,+d,)(y* +ap)™”

ya,d,
(c,+d,)(y*+ azbgl)(

(19)

+2(a2b2’1)az

a,+1)

For the elicitation of the six hyper-parameters, six different intervals are considered.
From Equation (19), the experts’ probabilities/assessments are supposed to be 0.10
for each case. The six integrals for equation (19) are considered with the following
limits of the values of random variable ‘Y”: (0, 10), (10, 20), (20, 30), (30, 40), (40,
50) and (50, 60) respectively. For the elicitation of the hyper-parameters az, a, b1,
b2, c1, and di. These six equations are solved simultaneously through computer
program developed in SAS package using the command of PROC SYSLIN. Thus

270



SINDHU ET AL

the values of hyper-parameters obtained by applying this methodology are:
0.000231,0.012109,0.52114, 4.99325, 0.52130, and 0.14790 respectively.

Elicitation under Chi Prior

The prior predictive distribution using Chi prior is:

&

(0.5)2 yec, . (0.5)%2 ye,d,
¢, +d )(y2+050)**" (¢, +d,)(y?+0.50)
2 2 2 2

p(y) = 7, y>0

e,/2+1

Now, elicit four hyper-parameters, so consider the four integrals. The expert
probabilities are assumed to 0.15 for each integral with the following limits of the
values of random variable ‘Y”’: (0, 15), (15, 30), (30, 45) and (45, 60). Using the
similar kind of program, as discussed above, we have the following values of the
hyper-parameters e; = 20.1056, e, = 14.23569, ¢, = 0.09377 and d> = 0.08749.

Elicitation under Rayleigh Prior

The prior predictive distribution using Rayleigh prior is:

Wye (%) v,

P)= (c,+d;)(y* + 2vl"’-)2 (c5+d,)(y* +2v,7%)

=, y>0

Again, elicit four hyper-parameters, so consider the four integrals. The expert
probabilities are assumed to 0.15 for each integral with the following limits of the
values of random variable ‘Y’: (0, 15), (15, 30), (30, 45) and (45, 60). Using the
similar kind of program, as discussed above, we attained the following values of
the hyper-parameters v = 5.052104, v, = 5.03251, ¢3= 0.67213 and d3z = 0.91035.

Simulation Study and Comparisons

A simulation study is carried out in order to investigate the performance of Bayes
estimators under tenfold choice of the parametric values, different sample sizes,
and the different values of the mixing proportion. Take random samples of sizes n
= 20, 40, and 80 from the two component mixture of Rayleigh distributions with
tenfold choice of parameters
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(4, 4,) €{(0.1, 0.12),(1 1.2),(10, 12),(0.1, 12),(10, 0.12)}, p, =0.45 and 0.6.

To generate a mixture data we make use of probabilistic mixing with probabilities
p1 and (1- p1). A uniform number u is generated n times and if u < p; the
observation is taken randomly from F, (the Rayleigh distribution with parameter

4,) otherwise from F, (from the Rayleigh distribution with parameter 4, ). The

choice of the censoring time is made in such a way that the censoring rate in the
resultant sample is approximately 20%. To implement censored samplings, we

considered that the x,, ,...,x, and x,, ,..,x,  failed items come from first and

second subpopulations respectively. The rest of the observations which are less than
x, and greater than x have been assumed to be censored from each component.

Where X, = max(xlysl,xzysz)and X, = min(xlyrl,xzyr2 ) The simulated data sets have

been obtained using following steps:

Step 1: Draw samples of size ‘n’ from the mixture model

Step 2: Generate a uniform random no. u for each observation

Step 3: If u<xz, the take the observation from first subpopulation
otherwise from the second subpopulation

Step 4: Determine the test termination points on left and right, that is,
determine the values of x.and x,

Step 5: The observations which are less than x, and greater than x, have

been considered to be censored from each component
Step 6: Use the remaining observations from each component for the
analysis

To avoid an extreme sample, we simulate 10, 000 data sets each of size n. The
Bayes estimates and posterior risks (in parenthesis) are computed using
Mathematica 8.0. The average of these estimates and corresponding risks are
reported in tables 1- 15. The abbreviations used in the tables are: B.Es: Bayes
estimators; P.Rs: Posterior risks; NP: Nakagami prior; CP: Chi prior; RP: Rayleigh
prior.
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Table 1: B.Es and P.Rs under NP using (11,/12, pl) =(0.1, 0.12, 0.45) and (0.1, 0.12, 0.6p

A

A

A

A

A

n A A, b, A Ay b,
squared error loss function

0.104076 0.127713 0.498425 0.099628 0.135951 0.665779
20 (0.000479)  (0.000558)  (0.013229)  (0.000285)  (0.000904)  (0.011667)

0.099427 0.12652 0.48622 0.094406 0.131125 0.659375
40 (0.000223)  (0.000306)  (0.007231)  (0.000127)  (0.000431)  (0.006346)

0.099036 0.125807 0.478841 0.092618 0.13063 0.61648
80 (0.000114)  (0.000161)  (0.003865)  (0.000057)  (0.000230)  (0.003218)
k-loss function

0.101884 0.123181 0.480102 0.095373 0.136428 0.655312
20 (0.086648)  (0.069120)  (0.129905)  (0.056005)  (0.104087)  (0.061058)

0.101669 0.123008 0.471869 0.096164 0.131118 0.645074
40 (0.045012)  (0.037679)  (0.070063)  (0.027334)  (0.053150)  (0.031642)

0.090768 0.121778 0.470942 0.097312 0.125869 0.640866
80 (0.021446)  (0.019760)  (0.034345)  (0.014017)  (0.028207)  (0.016573)

Table 2: B.Es and P.Rs under NP using (4, 4,, p,)=(, 1.2, 0.45) and (1, 1.2, 0.60)

A

A

A

n ) A, b, ) A, b,
squared error loss function

1.03790 1.26375 0.498181 0.978002 1.35085 0.665995
20 (0.046897)  (0.054602)  (0.013210)  (0.027554)  (0.087625)  (0.011594)

1.00642 1.25934 0.482283 0.979230 1.31290 0.657711
40 (0.022787)  (0.028565)  (0.007234)  (0.013363)  (0.045048)  (0.005650)

0.996073 1.25518 0.478649 0.989340 1.307418 0.616586
80 (0.011180)  (0.015747)  (0.003863)  (0.006855)  (0.023781)  (0.003222)
k-loss function

1.02547 1.297250 0.484873 10.11040 12.737600 0.481255
20 (0.085012)  (0.069721)  (0.126936)  (0.083902)  (0.068839)  (0.129790)

0.972684 1.24985 0.477066 9.85076 12.45580 0.474996
40 (0.043184) (0.037322) (0.068486) (0.043278) (0.037003) (0.069297)

0.994972 1.22715 0.469378 9.91883 12.11990 0.468498
80 (0.024387)  (0.021374)  (0.037459)  (0.022678)  (0.019891)  (0.036650)
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Table 3: B.Es and P.Rs under NP using (4, 4,, p,) = (10, 12, 0.45) and (10, 12, 0.60)

A

A

A

A

A

n A A, b, A Ay b,
squared error loss function

10.82959 12.9605 0.497084 9.58255 13.61630 0.663355
20 (4.256710) (4.8388) (0.013244)  (2.66321) (7.85146) (0.01170)

10.12890 12.88640 0.479166 9.77352 13.49536 0.656693
40 (2.39442) (2.71684)  (0.007305)  (1.40887) (4.29918)  (0.006435)

9.61493 12.67810 0.462094 9.88275 13.45520 0.616606
80 (1.05203) (1.58376)  (0.003820)  (0.58717) (2.30094)  (0.003233)
k-loss function

10.11040 12.73760 0.481255 9.84880 12.80650 0.653839
20 (0.083902)  (0.068839)  (0.12979)  (0.056169)  (0.104837)  (0.061849)

9.85076 12.45580 0.474996 9.94419 12.63070 0.651788
40 (0.043278)  (0.037003)  (0.069297)  (0.027645)  (0.054150)  (0.031611)

9.91883 12.11990 0.468498 9.95821 12.58110 0.640724
80 (0.022678)  (0.019891)  (0.036650)  (0.013426)  (0.028228)  (0.015684)

Table 4: B.Es and P.Rs under NP using (ll, Ay pl) =(0.10, 12, 0.45) and (0.10, 12, 0.60)

A

~n

A

n ) A, b, ) A, b,
squared error loss function

0.095619 13.67980 0.534912 0.092487 13.81620 0.687435
20 (0.000301)  (4.868910)  (0.012036)  (0.000201)  (7.189420)  (0.010396)

0.090655 13.54530 0.51823 0.091992 13.63860 0.677511
40 (0.000131)  (2.343030)  (0.006457)  (0.000096)  (3.41382)  (0.005650)

0.090905 13.48370 0.509322 0.091260 13.5980 0.672210
80 (0.000065)  (1.148460)  (0.003346)  (0.000048)  (1.767790)  (0.002953)
k-loss function

0.0914225 12.87110 0.522308 0.093144 13.86210 0.679012
20 (0.067737)  (0.053268)  (0.097694)  (0.048171)  (0.078296)  (0.049925)

0.092511 12.72830 0.511618 0.0951075 13.70450 0.673099
40 (0.032515) (0.025796) (0.052023) (0.023389) (0.037372) (0.026303)

0.09455 12.37891 0.505934 0.096113 12.96763 0.669953
80 (0.015937)  (0.012696)  (0.026871)  (0.011527)  (0.018268)  (0.013511)
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Table 5: B.Es and P.Rs under NP using (4, 4,, p,) = (10, 0.12, 0.45) and (10, 0.12, 0.60)

A

A

A

A

A

n A A, b, A Ay b,
squared error loss function

11.92930 0.112064 0.403231 11.53870 0.113048 0.585750
20 (4.278770)  (0.000325)  (0.011879)  (3.16833)  (0.000483)  (0.011740)

11.5720 0.114125 0.412042 11.46580 0.11513 0.586132
40 (2.13578)  (0.000155)  (0.006265)  (1.51987)  (0.000219)  (0.006334)

11.17240 0.118567 0.42970 11.40931 0.116862 0.589618
80 (1.08183)  (0.000075)  (0.003216)  (0.756977)  (0.000103)  (0.003294)
k-loss function

11.64350 0.10762 0.417776 10.98420 0.106840 0.574552
20 (0.067737)  (0.053254)  (0.15071)  (0.048171)  (0.078242)  (0.078744)

11.44770 0.118174 0.423946 10.87421 0.108845 0.586549
40 (0.032519)  (0.025790)  (0.080978)  (0.023391)  (0.037356)  (0.041779)

11.15780 0.119735 0.438659 10.74670 0.109872 0.596061
80 (0.015944)  (0.012698)  (0.042023)  (0.011528)  (0.018256)  (0.021540)

Table 6: B.Es and P.Rs under CP using (ll, Ay pl) =(0.1,0.12, 0.45) and (0.1, 0.12, 0.60)

A

~n

A

n ) A, b, ) A, b,
squared error loss function

0.160528 0.169018 0.479278 0.134094 0.195013 0.664322
20 (0.000519)  (0.000592)  (0.013082)  (0.000277)  (0.000893)  (0.0116345)

0.133714 0.147046 0.468172 0.11004 0.172682 0.663936
40 (0.000286)  (0.000329)  (0.007333)  (0.000116)  (0.000448)  (0.006115)

0.111222 0.139219 0.448705 0.103352 0.151533 0.66273
80 (0.000147)  (0.000196)  (0.004006)  (0.000058)  (0.000223)  (0.003196)
k-loss function

0.161522 0.158551 0.465088 0.13577 0.198858 0.653999
20 (0.04053)  (0.043568)  (0.145568)  (0.029991)  (0.049799)  (0.061370)

0.122886 0.14806 0.464529 0.112829 0.167765 0.652043
40 (0.030112)  (0.031199)  (0.072191)  (0.019077)  (0.034061)  (0.030841)

0.104790 0.132506 0.463772 0.101234 0.143011 0.650817
80 (0.02132)  (0.020869)  (0.038239)  (0.010604)  (0.020665)  (0.015416)
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Table 7: B.Es and P.Rs under CP using (4, 4,, p,) = (1, 1.2, 0.45) and (1, 1.2, 0.60)

A A A A A

n A A, b, A A b,
squared error loss function
1.52970 1.57752 0.476725 1.35361 1.88630 0.663527
(0.046080) (0.051958) (0.013179) (0.027818) (0.080777) (0.011650)
1.26130 1.41822 0.469789 1.16501 1.66429 0.659758
(0.026077) (0.031378) (0.007406) (0.013935) (0.044256) (0.006292)
1.14492 1.25617 0.45906 1.05707 1.42491 0.656866

(0.014751) (0.015752) (0.004146) (0.006667) (0.021669) (0.003355)
k-loss function

1.53236 1.49543 0.454182 1.32818 1.84131 0.654349
(0.041669)  (0.045185)  (0.147876)  (0.028990)  (0.048999)  (0.0615537)
1.25475 1.43835 0.452576 1.13137 1.63107 0.654126
(0.028827)  (0.028914)  (0.073808)  (0.019386)  (0.034167)  (0.031362)
1.06717 1.33081 0.450778 1.04654 1.43309 0.653583

(0.018469) (0.018471) (0.036839) (0.0119729) (0.024099) (0.016246)

Table 8: B.Es and P.Rs under CP using (ll, Ay pl) = (10, 12, 0.45) and (10, 12, 0.60)

A ~n A

n ) A, b, ) A, b,
squared error loss function
5.53623 5.39552 0.470341 5.58208 5.00538 0.640696
20 (0.433161)  (0.43394)  (0.013715)  (0.415167) (0.452878)  (0.012735)
6.27422 6.44220 0.456349 6.62719 5.85830 0.629771
40 (0.39050)  (0.396637)  (0.0072919) (0.356135)  (0.422084)  (0.006889)
80 7.34364 7.76371 0.45011 7.60293 7.02488 0.625043

(0.339835)  (0.337258)  (0.003809)  (0.287163)  (0.384135)  (0.003610)
k-loss function

5.52495 5.37683 0.453655 5.8203 4.95789 0.629618
20 (0.029004)  (0.030637)  (0.14971)  (0.024786)  (0.037429)  (0.072137)

6.24029 6.40839 0.447779 6.59809 5.99867 0.623712
40 (0.020289)  (0.019526)  (0.077333)  (0.016483)  (0.025214)  (0.037649)
80 7.05432 7.72934 0.448146 7.46259 6.96302 0.622423

(0.012209)  (0.010219) (0.040194)  (0.010121) (0.015946) (0.019236)
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Table 9: B.Es and P.Rs under CP using (4, 4,, p,) = (0.10, 12, 0.45) and (0.10, 12, 0.60)

A

A

A

A

n A A, b, A Ay b,
squared error loss function

0.135859 5.51759 0.526231 0.13051 5.08452 0.682633
20 (0.000265)  (0.447943)  (0.012354)  (0.000208)  (0.461858)  (0.010735)

0.115993 6.65447 0.513532 0.112149 6.04774 0.674904
40 (0.000132)  (0.40904)  (0.006542)  (0.000099)  (0.435674)  (0.005747)

0.099126 8.88344 0.506878 0.102298 7.33437 0.670852
80 (0.000059)  (0.346268)  (0.003368)  (0.000048)  (0.384372)  (0.002976)
k-loss function

0.142139 5.48345 0.513036 0.129112 5.04152 0.673849
20 (0.028685)  (0.030311)  (0.104196)  (0.024474)  (0.037048)  (0.052484)

0.115279 6.60253 0.506765 0.110234 6.371890 0.670396
40 (0.019664)  (0.018872)  (0.053772)  (0.015909)  (0.024397)  (0.026986)

0.105346 8.09129 0.503448 0.104518 7.380910 0.668463
80 (0.012065)  (0.010753)  (0.027325)  (0.009303)  (0.015178)  (0.0141179)

Table 10: B.Es and P.Rs under CP using (ﬂl,/lz, pl) = (10, 0.12, 0.45) and (10, 0.12, 0.60)

A

~n

A

n ) A, b, ) A, b,
squared error loss function

5.62845 0.146896 0.421965 5.96024 0.151952 0.578365
20 (0.441878)  (0.000328)  (0.012086)  (0.424476)  (0.000431)  (0.012083)

6.44104 0.127722 0.43595 6.85842 0.136448 0.578932
40 (0.400232)  (0.000153)  (0.006316)  (0.368546)  (0.000225)  (0.006429)

7.58808 0.117307 0.45587 8.06977 0.120046 0.5886153
80 (0.343598)  (0.000074)  (0.0032287) (0.302239)  (0.000104)  (0.003318)
k-loss function

5.58490 0.14275 0.405755 5.89857 0.159564 0.566651
20 (0.028685)  (0.030323)  (0.162971)  (0.024474) (0.037102)  (0.083544)

6.40615 0.126893 0.417657 6.84141 0.132547 0.561311
40 (0.019662)  (0.018875)  (0.084299)  (0.015908)  (0.024410)  (0.043066)

7.44424 0.117069 0.439330 7.71344 0.121066 0.558488
80 (0.01207)  (0.010756)  (0.042888)  (0.009358)  (0.014498)  (0.021872)
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Table 11: B.Es and P.Rs under RP using (4, 4,, p,) = (0.1, 0.12, 0.45) and (0.1, 0.12, 0.60)

A A A A A

n A A, P A Ay P,
squared error loss function
0.105782 0.135123 0.434012 0.103079 0.138375 0.645401

20 (0.000427)  (0.000581)  (0.012329)  (0.000282)  (0.000938)  (0.003282)
0.10453 0.131766 0.474736 0.096193 0.138033 0.641649

40 (0.000233)  (0.000296)  (0.007004)  (0.000128)  (0.000453)  (0.006242)

80 0.096183 0.129324 0.468102 0.093818 0.130254 0.64095

(0.000103)  (0.0001600) (0.003756)  (0.000058)  (0.000234)  (0.003206)
k-loss function
0.101651 0.123051 0.485036 0.093688 0.114119 0.630198

20 (0.0687089)  (0.066684)  (0.119068)  (0.049411)  (0.088853)  (0.06578)

0.101989 0.112941 0.467163  0.0975664  0.129533 0.624327
40 (0.042361)  (0.036825)  (0.069873)  (0.026666)  (0.049849)  (0.031978)
80 0.100056 0.118725 0.46499  0.0978534  0.124279 0.623173

(0.022779)  (0.020242)  (0.037457)  (0.0121946) (0.023696)  (0.014910)

Table 12: B.Es and P.Rs under RP using (ﬂl,lz, pl) =(1,1.2,0.45)and (1, 1.2, 0.60)

A ~n A

n ) A, b, ) A, b,
squared error loss function
1.05922 1.33314 0.433188 1.03293 1.51575 0.644157
20 (0.042667)  (0.056026)  (0.012338)  (0.027869)  (0.098507)  (0.011345)
1.00664 1.29054 0.476983 0.970745 1.39351 0.642962
40 (0.021771)  (0.029663)  (0.007093)  (0.012762)  (0.045143)  (0.006225)
80 0.983895 1.289237 0.475851 0.983541 1.37069 0.62145

(0.011111)  (0.016032)  (0.003774)  (0.011043)  (0.019325)  (0.003245)
k-loss function

1.16454 1.28713 0.468544  0.996425 1.09914 0.62148
20 (0.072345)  (0.063822)  (0.131557)  (0.064813)  (0.119828)  (0.070912)

1.00749 1.12108 0.466946  0.985194 1.35608 0.620150
40 (0.041506)  (0.035513)  (0.069635)  (0.027093)  (0.050711)  (0.032581)
80 0.954177 1.11020 0.457543  0.995916 1.34535 0.618873

(0.020998)  (0.019217)  (0.034475)  (0.013199)  (0.025414)  (0.015959)
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Table 13: B.Es and P.Rs under RP using (4, 4,, p, ) = (10, 12, 0.45) and (10, 12, 0.60)

A

A

A

A

A

n A A, b, A Ay b,
squared error loss function

9.58324 11.43070 0.427949 9.58708 10.9565 0.634954
20 (3.169330)  (3.83663)  (0.012469)  (2.322100)  (5.00616)  (0.011817)

9.67622 11.78300 0.47243 9.599110 11.9233 0.630872
40 (1.924840)  (2.34378)  (0.007076)  (1.29289) (3.42684)  (0.006453)

9.68654 12.34210 0.470593 9.73014 12.86730 0.615151
80 (0.947672)  (1.416400)  (0.003749)  (0.586285)  (2.08719)  (0.003283)
k-loss function

8.12011 11.32660 0.464824 10.09989 12.1777 0.629444
20 (0.068480)  (0.058682)  (0.133263)  (0.0493049) (0.088018)  (0.066076)

9.37871 11.84870 0.461711 9.41742 11.96030 0.616346
40 (0.038674)  (0.034311)  (0.069343)  (0.027143)  (0.051405)  (0.034086)

9.42150 11.9648 0.460929 9.571406 12.45630 0.610353
80 (0.021294)  (0.019479)  (0.036338)  (0.012793)  (0.025410)  (0.015892)

Table 14: B.Es and P.Rs under RP using (4, 4,, p, ) = (0.10, 12, 0.45) and (0.10, 12, 0.60)

A

A

A

n A A, b, A A, b,
squared error loss function

0.094884 11.89990 0.469921 0.098341 11.96510 0.664261
20 (0.000263)  (3.293650)  (0.011542)  (0.000209)  (4.61595)  (0.010333)

0.095518 12.63033 0.509872 0.098953 12.78527 0.656383
40 (0.000137)  (1.93028)  (0.006313)  (0.000098)  (2.78527)  (0.005624)

0.091143 12.39790 0.495107 0.099681 12.49280 0.646003
80 (0.000063)  (1.10531)  (0.003307)  (0.000047)  (1.58923)  (0.002943)
k-loss function

0.114775 12.94880 0.506062 0.107666 13.3107 0.655632
20 (0.059662)  (0.048205)  (0.099563)  (0.043940)  (0.067830)  (0.052989)

0.094401 12.89850 0.503309 0.091838 12.75870 0.646092
40 (0.030531)  (0.024543)  (0.052498)  (0.022345)  (0.034796)  (0.027125)

0.091618 12.72390 0.501733 0.0904158 12.41740 0.636729
80 (0.015444)  (0.012387)  (0.026989)  (0.011268)  (0.017632)  (0.013727)
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Table 15: B.Es and P.Rs under RP using (/11,/12, pl) = (10, 0.12, 0.45) and (10, 0.12, 0.60)

A A A A A

n A A, b, A Ay b,
squared error loss function

10.7884 0.11846 0.372751 10.50830 0.119567 0.567091
20 (3.33464) (0.000331)  (0.010833) (2.35803) (0.000474)  (0.0113719)
40 10.3168 0.11824 0.406198 10.41890 0.116756 0.567909

(1.92637)  (0.000153)  (0.006094)  (1.30849) (0.000221)  (0.006219)
10.30871 0.119613 0.427844 10.39070 0.1198576 0.585739
(0.992713)  (0.000074)  (0.003169)  (0.686735)  (0.0001029) (0.003262)

k-loss function
9.81163 0.152163 0.406292 9.22044 0.127570 0.555927

80

20 (0.059662)  (0.048174)  (0.150848)  (0.043940)  (0.067755)  (0.081129)
10.94770  0.111752 0.419822 10.64808 0.12357 0.55487

40 (0.030533)  (0.024540)  (0.080943)  (0.022345)  (0.034789)  (0.042404)

80 10.57770  0.112851 0.429373 10.41660 0.123356 0.550732

(0.015446)  (0.012385)  (0.042003)  (0.011269)  (0.017625)  (0.021699)

Numerical results of the simulation study, presented in tables 1-15, reveal
interesting properties of the proposed Bayes estimators. The estimated values of the
parameters converge to the true values, and amounts of posterior risks tend to
decrease for lager choice of sample size. Another interesting point concerning the
posterior risks of the estimates of 4,4, is that increasing (decreasing) the

proportion of the component in mixture reduces (increases) the amount of the
posterior risk for the estimates of A1. In addition, when SELF is assumed and values
of A are relatively smaller i.e. for (A1, A2) = (0.1, 0.12) and (1, 1.2), the Bayes
estimates assuming Rayleigh prior are more precise than the rest of the informative
priors, as the averaged posterior risks of the mixture components are smaller as
compared to those under other priors. On the other hand, for quite larger values of
parameters, i.e. for (A1, A2) = (10, 12), and for significantly different values of the
parameters, i.e. for (A1, A2) = (0.1, 12), the estimates under chi prior (with few
exceptions) perform better than those under Nakagami and Rayleigh priors.
However, the estimates for the mixing parameter (p1), under Rayleigh prior, are
associated with the minimum amounts of posterior risks irrespective of choice of
true parametric values. When KLF is assumed, the estimates under chi prior are
found to be the most efficient for all combinations of the values of the parameters,
with an exception in case of (A1, A2) = (0.1, 0.12), where the estimates under the
assumption of Nakagami prior are better than those under other priors. However,
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the estimates for the mixing parameter (p:) are having mixed behavior, as for
various choices of the true parametric values indicate the preference of different
priors.

The Bayes estimates of the lifetime parameters are over/under-estimated but
the size of over/under-estimation is greater under squared error loss function. On
the other hand, estimates of the mixing proportion parameter have mixed behavior
sometimes over-estimated and sometimes under-estimated, but the Bayes estimates
under Rayleigh prior are much closer to the true parametric value. In comparison
of loss functions it has been assessed that the magnitudes of posterior risks under
squared error loss function are smaller than those under k-loss function for smaller
choice of true parametric values i.e. for (A1, A2) = (0.1, 0.12) and (1, 1.2). On the
other hand, for quite larger values of parameters, i.e. for (A1, A2) = (10, 12), and for
significantly different values of the parameters, i.e. for (A1, A2) = (0.1, 12) and (10,
0.12), the k-loss function produces the better results. It should also be mentioned
here that the squared error loss function produces better convergence than k-loss
function.

Real Data Analysis

In this section, real datasets are analyzed to illustrate the methodology discussed in
the previous sections. In order to show the usefulness of the proposed mixture
model, we applied the findings of the paper to the survival times (in years) of a
group of patients given chemotherapy treatment. The data has been reported by
Bekker et al. (2000). We have used the Kolmogorov-Smirnov and chi square
tests to see whether the data follow the Rayleigh distribution. These tests say that
the data follow the Rayleigh distribution at 5% level of significance with p-values
0.2170 and 0.2681 respectively. The data consisting of 46 survival times (in years)
for 46 patients are:

Table 16: Survival times (in years) of patients given chemotherapy treatment

0.047,0.115, 0.121, 0.132, 0.164, 0.197, 0.203, 0.260, 0.282, 0.296, 0.334, 0.395,
0.458, 0.466, 0.501, 0.507, 0.529, 0.534, 0.540, 0.570, 0.641, 0.644, 0.696, 0.841,
0.863, 1.099, 1.219, 1.271, 1.326, 1.447, 1.485, 1.553, 1.581, 1.589, 2.178, 2.343,
2.416, 2.444, 2.825, 2.830, 3.578, 3.658, 3.743, 3.978, 4.003, 4.033.
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Consider the case when the data are doubly type Il censored. Data are
randomly grouped into two sets using probabilistic mixing for p1 = 0.60.

Table 17: Doubly censored mixture real life data regarding survival times of patients
given chemotherapy treatment

Population-| Population-I

0.197, 0.534, 0.115, 0.296, 0.121, 0.466, 0.529, 0.260, 1.099, 0.501, 0.458, 0.641,
1.447,0.863, 0.132, 0.395, 0.696, 2.825, 3.658, 0.334, 0.570, 0.164, 0.203, 0.282,
3.978, 3.743, 2.343,2.178, 0.540, 4.003, 1.553, 0.047,1.271, 1.589, 1.326, 0.841,
1.485, 2.83, 2.416 2.444

The following characteristics are extracted from censored data for the analysis
of mixture model:

p1=0.6,n=40,r=5r1=2,r,=3,n-r=9,s=36,51=22,%=14,n1 =24, n
= 16, X, =0.121, X =3.978, X, =0.203, and X, =2.444,

33, =84.6037 and 3 %2

i=n i=r,

. =15.2833.

The similar methodology has been employed when p; = 0.45.

p1=0.45n=40,r=5nr=2,r,=3,n—-r=9,s=36,51 = 16,52 =20, n1 = 18, n,
= 22, x, =0.121, x, =3.638, x, =0.164, and X, =3.978,

S S
D X%, =48.704 and > x?, =37.1999.

i=n i=r,

Bayes estimates are obtained assuming informative priors under squared error
loss function, and k-loss function.
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Table 18: B.Es and P.Rs in parentheses under squared error loss function, and k-loss
function for real data set.

Priors squared error loss function k-loss function
p1=0.6 ) A, o A 4 Py
Nakagami 0.383514 0.947312 0.677477 0.38129 0.938511 0.673064
Prior (0.001682)  (0.016257) (0.005652) (0.023399) (0.037685) (0.026312)
Chi Prior 0.462925 1.148390 0.674903 0.461094 1.141450 0.670395
(0.001678)  (0.015708) (0.005747) (0.015909) (0.024405) (0.026986)
Rayleigh 0.392190 0.980312 0.665364 0.390017 0.971852  0.6608996
Prior (0.001681) (0.016213) (0.005626) (0.022350) (0.034973) (0.027130)
p1=0.45 A A, ] A A Py
Nakagami 0.377204 0.722023 0.516536 0.373998 0.716491 0.509802
Prior (0.0024201) (0.007572) (0.006537) (0.034429) (0.030999) (0.053186)
Chi Prior 0.482646 0.837202 0.511665 0.479778 0.831775 0.504667
(0.002974)  (0.008188) (0.006693) (0.023980) (0.026185) (0.055851)
Rayleigh 0.388672 0.740606 0.508438 0.385574 0.735272 0.50177
Prior (0.002412)  (0.007504) (0.006381) (0.032264) (0.029121) (0.053512)

The findings from the real life analysis are in close accordance with those of
simulation study. It can be assessed that the chi prior produces better results for
parameters Mand A2, while in case of mixing parameter the Rayleigh prior provides
comparatively better results than other priors. It should further be noted that the
estimates under squared error loss function are associated with smaller amounts of
posterior risks.

Conclusion

The Bayesian inference of the mixture of Rayleigh model under doubly type Il
censoring has been considered assuming informative priors. The simulation study
has displayed some interesting properties of the Bayes estimates. It is noted in each
case that the posterior risks of estimates of lifetime parameters are reduced as the
sample size increases. The results indicated that by using SELF and relatively
smaller values of A; i.e. for (A1, A2) = (0.1, 0.12) and (1, 1.2), the Bayes estimates
assuming Rayleigh prior are more precise than the rest of the informative priors.
While, for quite larger values of parameters, i.e. for (A1, A2) = (10, 12), and for
significantly different values of the parameters, i.e. for (A1, A2) = (0.1, 12) and (10,
0.12), the estimates under chi prior perform better than other priors. Similarly, when
KLF is considered, the estimates under chi prior are found to be the most efficient
for most of the combinations of the values of the parameters. The performance of
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the squared error loss function is better than k-loss function for (A1, A2) = (0.1, 0.12)
and (1, 1.2). However, for (A1, X2) = (10, 12), (0.1, 12) and (10, 0.12), the k-loss
function produces the better results. It should also be mentioned here that the
squared error loss function produces better convergence than k-loss function for
almost all the cases. The real life example further strengthened the findings from
the simulation study. The study can further be extended by considering some other
censoring techniques, and using some more flexible probability distribution.
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