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Three re-sampling techniques are used to estimate the survival probabilities from an 
exponential life-time distribution. The aim is to employ a technique to obtain a parameter 
estimate for a two-parameter exponential distribution. The re-sampling methods 
considered are: Bootstrap estimation method (BE), Jackknife estimation method (JE) and 
the k-repeated Jackknife estimation method (KJE). The methods were computed to obtain 
the mean square error (MSE) and mean percentage error (MPE) based on simulated data. 
The estimates of the two-parameter exponential distribution were substituted to estimate 

survival probabilities. Results show that the MSE value is reduced when the K–repeated 
jackknife method is used. 

 

Introduction 

Modern statistics is anchored in the use of statistics and hypothesis tests that only 

have desirable and well-known properties when computed from populations that 

are normally distributed. While it is claimed that many such statistics and 

hypothesis tests are generally robust with respect to non-normality, other 

approaches that require an empirical investigation of the underlying population 

distribution or of the distribution of the statistic are possible and in some instances 

preferable. In instances when the distribution of a statistic, conceivably a very 

complicated statistic, is unknown, no recourse to a normal theory approach is 

available and alternative approaches are required. Statistical models and methods 

for estimating survival data and other time-to-event data are extensively used in 

many fields, including the biomedical sciences, engineering, the environmental 

sciences, economics, actuarial sciences, management, and the social sciences. 

mailto:jadewara@unilag.edu.ng
mailto:mmbataugochukwu@yahoo.com
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Survival analysis refers to techniques for studying the occurrence and timing of 

events. It is concerned with studying the random variable T, representing the time 

between entry to a study and some event of interest, such as: death, the onset of 

disease, time until equipment failures, earthquakes, automobile accidents, time-to-

promotions, time until stock market crashes, revolutions, job terminations, births, 

marriages, divorces, retirements or arrests. There are many different models for 

survival data, and what often distinguishes one model from another is the 

probability distribution for T. Resampling statistics refer to the use of the observed 

data or of a data generating mechanism (such as a die) to produce new hypothetical 

samples (resamples) that mimic an underlying population, the results of which can 

then be analyzed. With numerous cross-disciplinary applications especially in the 

sub-disciplines of the life science, resampling methods are widely used because 

they are options when parametric approaches are difficult to employ or otherwise 

do not apply. 

Resampled data is derived using a manual mechanism to simulate many 

pseudo-trials. These approaches were difficult to utilize prior to 1980s because 

these methods require many repetitions. With the incorporation of computers, the 

trials can be simulated in a few minutes and is why these methods have become 

widely used. The methods that will be discussed are used to make many statistical 

inferences about the underlying population. The most practical use of resampling 

methods is to derive confidence intervals and test hypotheses. This is accomplished 

by drawing simulated samples from the data themselves (resamples) or from a 

reference distribution based on the data; afterwards, you are able to observe how 

the statistic of interest in these resamples behaves. Resampling approaches can be 

used to substitute for traditional statistical (formulaic) approaches or when a 

traditional approach is difficult to apply. These methods are widely used because 

their ease of use. They generally require minimal mathematical formulas, needing 

a small amount of mathematical (algebraic) knowledge. These methods are easy to 

understand and stray away from choosing an incorrect formula in your diagnostics. 

Two general approaches considered here are: Jackknife approach and 

Bootstrap approach. The aim of this study is to employ a technique to obtain an 

estimate of the parameter of the two-parameter exponential distribution. The 

methods considered in this paper are: Bootstrap estimation method (BE), Jackknife 

estimation method (JE) and the k-repeated Jackknife estimation method (KJE). The 

estimates of the two-parameter exponential distributions are used to estimate the 

survival probability. Methodology under Bootstrap, Jackknife and the proposed K-

repeated Jackknife is presented, followed by data analysis, results, discussion and 

a conclusion. 
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Two-Parameter Exponential Distribution 

Re-sampling methods are becoming increasingly popular as statistical tools. These 

methods involve sampling or scrambling the original data numerous times. Two 

general approaches are considered here. They are: Jackknife approach and 

Bootstrap approach. The two-parameter exponential distribution is adopted when 

failure will never occur prior to some specified time, t0. The parameter t0 is a 

location parameter that shifts the distribution an amount equal to t0 towards the right 

on the time line. When t   t0, the probability density function of exponential 

distribution becomes: 

 

    0 0

1 1
; , 0, 0,f t exp t t t t t 

 

 
      

 
  (1) 

 

and the survival function is given by:  

 

    ;
t

S t f t dt


    (2) 

where 
1




  . 

Bootstrap Estimation Method 

Bootstrapping is a modern, computer-intensive, general purpose approach to 

statistical inference, falling within a broader class of re-sampling methods to 

simplify the often intricate calculations of traditional statistical theory. A 

parametric bootstrap method is considered in this article. 

The general theory (see Rizzo, 2008) is as follows. Suppose 1 2, , , nt t t  is a 

random sample from the distribution of T. An estimator ̂  for a parameter   is an 

n variate function  1 2, ,ˆ ˆ , nt t t    of the sample. Functions of the estimator ̂  

are therefore n–variate functions of the data, also. For simplicity, let 

 1 2, , , ,
T n

nt t t t R   and    1 2
, ,t t denote a sequence of independent random 

samples generated from the distribution of T. Random variables from the sampling 

distribution of ̂  can be generated by repeatedly drawing independent random 

samples 
 j

t and computing         1 2,ˆ , ,ˆj j j j

nt t t    for each sample. The mean of 

the replicates is given as  

http://en.wikipedia.org/wiki/Statistical_inference
http://en.wikipedia.org/wiki/Resampling_(statistics)
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  

1

1ˆ ˆ
m

j

B

im
 



  .  (3) 

 

The mean squared error (MSE) is defined by    
2

ˆ ˆMSE E    
  

. If m 

random samples      1 2
, , ,

m
t t t  are generated from the distribution of T then 

estimate of the MSE of  1 2, ,ˆ ˆ , nt t t    is 

 

     
2

1

ˆ ˆ1

1

m
j

B

j

MSE
m

  


 

   (4) 

 

where         1 2,ˆ , ,ˆj j j j

nt t t   . 

Estimate of the standard error of the bootstrap estimate, ˆ
B  is given by 

 

     
2

1

ˆ 1

1
ˆ

m
j

B

j

SE
m

  


 

   (5) 

 

100(1− )% confidence interval for   is given by 

 

  
2

ˆ ˆ
B BZ SE    (6) 

 

The mean percentage error (MPE) is  

 

  

 

1

.

ˆ

ˆ

j

m

j

BMPE
m

 






 
 
 
 


  (7) 

 

If the bootstrap estimator ˆ
B  is known from (3) then the estimate of survival 

function is given as 

 

   0ˆ
ˆ

i
B

B

t t
S t exp



 
   

 
  (8) 
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Jackknife Estimation  

The jackknife is a more orderly version of the bootstrap. As opposed to re-sampling 

randomly from the entire sample like the bootstrap does, the jackknife takes the 

entire sample except for 1 value, and then calculates the test statistic of interest. It 

repeats the process, each time leaving out a different value, and each time 

recalculating the test statistic. This method was introduced by Quenouille (1949) 

and further modification in Quenouille (1956). The theory is as follows: 

Let ̂  be an estimator of the parameter θ based on the complete sample of 

size n with g subgroups. Let ˆ
i
 be the corresponding estimator based on the 

sample at the ith deletion. Define 

 

    ˆ 1 1,2ˆ , ,i ig g i g         (9) 

 

The ith deletion of the total could be one individual observation or several 

observation. The latter case is called group- or block-based jackknife if one 

replication or one block observations are deleted. In equation (1) estimation 
i  is 

called the ith pseudo value and the estimator in equation (2) is the jackknife 

estimator for the parameter θ, where θ can be a variance component, covariance 

component, correlation coefficient, or any other parameter of interest. 

 

  
1 1

1ˆ1
1 ˆ

g g

i i

j j

g g
g g

   

 

       (10) 

 

In equation (10),   is called a pseudo jackknife estimate. A t-test can then be 

used to test significant deviation from a given parameter value, 0 with degrees of 

freedom 1g 
 (Miller, 1974a, b). The equation (9) can be rewritten as 

 

      1 1 1,ˆ ˆ 2ˆ ˆ , ,ˆ
i i ig g g i g               .  (11) 

 

Thus, it is obvious that pseudo value 
i  in equation (11) is related to choices 

for g . When g  is large, a slight difference between ̂  and ˆ
i

will cause 

unfavorable values. More importantly, it will potentially cause a large standard 

error for an estimate and thus decrease the power for the parameter being tested. If 

it is assumed that the estimate ˆ
i
 in equation (9) for the ith deletion is unbiased, 
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then it is easy to prove that ̂  in equation (12) is unbiased too. It is often true if ̂  

is an unbiased estimate of θ, then ˆ
i
 will be unbiased after a few individuals in the 

original data are deleted. 

 

 1

ˆ
ˆ

g

ii
jack

g







.  (12) 

 

In equation (12), ̂  is called a non-pseudo jackknife estimate of the parameter 

θ. For each non-normally distributed variable, based on the Central Limit Theorem, 

̂  is approximately normally distributed when g  is large. Thus, an approximate z-

test can be used when g  is large or t-test can be used to test significant deviation 

from a given parameter value, 
0 , with the degrees of freedom 1g  . An estimate 

of the mean square error (MSE) of the jackknife estimate, ˆ
jack  is given by 

 

    
2

11
ˆ ˆ ˆ

g

jack i

i

g
MSE

g
  



 

   (13) 

 

Estimate of the standard error of the jackknife estimate, ˆ
jack   is given by 

 

    
2

1

ˆ ˆ ˆ
1

g

jack i

i

g
SE

g
  



 

   (14) 

 

100(1− )% confidence interval for  is given by 

 

 
2, 1

ˆ ˆ
jack jack

g

t SE 


  

The mean percentage error (MPE) is  

 

  

1

ˆ ˆ

ˆ

ˆ

ig

i

jackMPE
g

 









 
 
 
 
 



.  (15) 

 



ADEWARA & MBATA 

293 

If the jackknife estimator ˆ
jack  is known from (12) then the estimate of survival 

function is given as  

 

   0

jack

ˆ
ˆ

i
jack

t t
S t exp



 
  

 
 

.  (16) 

K – Repeated Jackknife Estimation Method 

The K – Repeated jackknife procedure is a re-sampling iterative scheme for mean 

square error (MSE) reduction. This involves jackknifing the observed data k-time, 

where k equals the sample size of the observed data. The procedure is conveniently 

applied when the sample size is small. The stopping rule for the repeated jackknife 

replications depends on the sample size of the original data. The procedure 

converges before or at kth time, where the estimate from the jackknife replications 

is the same as estimator of the parameter θ based on the complete sample of size n. 

At the Kth time, the kth – repeated jackknife estimate of bias is highly negligible.   

The method involves the following steps from the usual jackknife procedure: 

 

Step 1.  Observe a random sample T = (t1, t2, . . . ,tn) 

 

Step 2.  Compute  ˆ t  a function of the data which estimates the parameter 

  of the model. 

 

 
1

ˆ                      
1

1,2, ,
n

i

i

t i n
n




     (17) 

 
Step 3.  For i up to n 
 

 generate a jackknife sample  1 1 1, , , ,i i i nT t t t t     by leaving out the 

ith observation 

 calculate ˆ
i
 from each of the Jackknife sample iT  by  

 

 
1

11
ˆ 1 n

i i

i

T
n




 





   (18) 

 



SURVIVAL ESTIMATION USING THREE METHODS 

294 

Step 4.  Repeat step 3 using the estimates from ˆ
i
 to form pseudo samples. 

The new pseudo samples are used to generate another set of jackknife estimates; 

this is continued until the kth time. This implies that the process is repeated k times, 

and at any given stage the preceding jackknife estimates are used as new samples 

in the next stage until the kth time.  

 

Step 5.  At the kth time the K-repeated Jackknife estimate is calculated as 

 

 
1

1

ˆ ˆ1 nK
K

i

ik
  



    (19) 

 

The K – repeated jackknife estimate of mean square error (MSE) is given by  

 

 
 

2

1

1

ˆ ˆ( )
1

ˆ1 nK K
K

i

i

MSE
k k

  



 
  

  
   (20) 

 

The K – repeated jackknife estimate of standard error is given by 

 

 
 

2

1

1

1ˆ ˆ ˆ
1

nK K
K

i

i

SE
k k

  



   
    

   
   (21) 

 

An approximate (1– )% confidence interval for   is given by 

 

 
, 1

2

ˆ ˆ
K K

K
t SE 



 
  

 
  (22) 

 
The mean percentage error (MPE) is  

 

 

1

1

ˆ ˆ

ˆ

ˆ

K
K

i
n

Ki

K

MPE
k

 









 
 

 
 
     

 



.  (23) 
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If the K – repeated jackknife estimator ˆ
K

  is known from (19), then the estimate 

of survival function is 

 

   0ˆ

ˆ

K i

K

t t
S t exp



 
  
 
 

.  (24) 

 

The general iterative scheme is as follows: from a random sample  1 2, , , nT t t t   

 

 

1
1

1

1

1
1. ˆ  

1

n

i

i

T
n










  

 

1
2 1

11

1

1
2.  

1
ˆ ˆ

n

in
 









  

 

1
3 2

11

1

1
3.  

1
ˆ ˆ

n

in
 









  

. . . . 

. . . . 

 

1
1

11

1

1
. 

1
ˆ ˆ

n
K K

i

K
n

 










  

   

Thus, 

1

1

ˆ ˆ1 nK
K

i

in
  



    

 

where K = n (sample size) indicates the stopping rule. Other estimators such as 

variance, standard error and confidence interval can be estimated as in (20), (21), 

(22) and (23). 

This study described three types of parameter estimation methods based on 

re-sampling technique: the bootstrap method, the jackknife method and the k-

repeated jackknife method. However, the intention of this study is to use Monte 

Carlo simulated data to compare the three methods based on mean squared error 

(MSE) and mean percentage error (MPE), hence survival estimation. 
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Data and Analysis 

Exploratory data analysis approach using simulated data generated by R-statistical 

program is adopted in this research work. This is to validate the statistical 

assumptions of an exponential distribution. In statistics, every statistical model has 

its own assumptions that have to be verified and met, to provide valid results. In 

the case of exponential distribution, the confidence interval for the mean life of an 

event requires two major assumptions: the time-to-occurrence of events of interest 

are independent, and the time for occurrence of event is exponentially distributed. 

These two statistical assumptions must be satisfied for the corresponding 

confidence interval to cover the true mean with the prescribed probability. The 

simulated data is based on random generation of values which satisfies both the 

assumption of independence and exponentially identical distribution. Some 

properties of the exponential distribution are as follows: the theoretical mean and 

standard deviation are equal. Hence, (1) the sample values of mean and standard 

deviation should be close. (2) Histogram should show that the distribution is right 

skewed (Median < Mean). (3) A plot of Cumulative-Failure vs. Cumulative-Time 

should be close to linear. (4) The regression slope of Cum-Failure vs. Cum-Time is 

close to the failure rate. (5) A plot of Cum-Rate vs. Cum-Failure should 

decrease/stabilize at the failure rate level. (6) Plots of the Exponential probability 

and its scores should also be close to linear. Some of these properties are explained 

by the exploratory data analysis displayed in Figures 1, i - xii. 
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Table 1. Generation Parameters 

 

Sample 1 (Sample size = 10,   = 0.5) Sample 7 (Sample size = 20,   = 1.5) 

Sample 2 (Sample size = 10,   = 1.0) Sample 8 (Sample size = 20,   = 2.0) 

Sample 3 (Sample size = 10,   = 1.5) Sample 9 (Sample size = 30,   = 0.5) 

Sample 4 (Sample size = 10,   = 2.0) Sample 10 (Sample size = 30,   = 1.0) 

Sample 5 (Sample size = 20,   = 0.5) Sample 11 (Sample size = 30,   = 1.5) 

Sample 6 (Sample size = 20,   = 1.0) Sample 12 (Sample size = 30,   = 2.0) 

 
 

 
 
Figure 1. Histogram for each of the Randomly Generated Sample (i – xii) 
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Table 2. Descriptive Statistics of samples 1 to 12 

 

Sample (i) N λ  Mean Median Std.Dev. 

Sample 1 10 0.5 2.6006960 1.4973290 3.7961510 

Sample 2 10 1.0 0.9211933 0.7875227 0.7792381 

Sample 3 10 1.5 0.7320056 0.5990053 0.5961606 

Sample 4 10 2.0 0.8510537 0.7067248 0.8785794 

Sample 5 20 0.5 1.8608660 1.1843510 1.8059580 

Sample 6 20 1.0 1.2379810 0.9922479 1.0967930 

Sample 7 20 1.5 0.5363318 0.2470020 0.6540290 

Sample 8 20 2.0 0.7281072 0.2824484 1.0112260 

Sample 9 30 0.5 1.5960620 1.0194960 1.6278560 

Sample 10 30 1.0 0.8559385 0.5422463 0.8296031 

Sample 11 30 1.5 0.6353941 0.3864003 0.5880883 

Sample 12 30 2.0 0.4639596 0.2700518 0.5150784 

Results 

The results of descriptive statistics show that as the sample sizes 10, 20 and 30 

increase the mean and standard deviation are decreasing which satisfied one of the 

properties of that the theoretical mean and standard deviation are equal. The sample 

mean and standard deviation obtained are very close also as the value of λ increases 

the median values obtained get smaller. Figure 1 above shows that the observed 

distribution agrees with the exponential distribution property 1 and property 2 

described in the data above. Figures 1, i–xii show right-skewness, which supported 

the attribute of an exponential distribution.   

Table 3 shows the parameter estimation of the three methods. The results 

reveal that the estimation of the bootstrap approach is better than the other two 

methods that is the jackknifing and K repeated jackknifing. Table 4 is the result of 

the mean square error (MSE) of the analysis which is about the variance of the three 

methods. Results reveal that, as λ values increase, the results of jackknifing and K 

repeated jackknifing are better than the bootstrapped approach. Table 5 is the 

computation of the mean percentage error (MPE) the result shows that estimation 

of the bootstrap approach is better than the other two methods.  
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Table 3. Estimation Using the Three Methods Bootstrap, Jackknifing and K repeated 

jackknifing 
 

    ˆ
BS t   ˆ

jackS t   ˆKS t  

10 

0.5 0.568858094 0.568879887 0.568879887 

1 0.476453626 0.476456925 0.476456925 

1.5 0.461343936 0.461328523 0.461328523 

2.0 0.529933691 0.529937819 0.529937819 

     

20 

0.5 0.491722891 0.491777729 0.491777729 

1 0.490229963 0.490240047 0.490240047 

1.5 0.544947075 0.544930402 0.544930402 

2.0 0.553586925 0.553580134 0.553580134 

     

30 

0.5 0.527441921 0.527445588 0.527445588 

1 0.491819455 0.491882638 0.491882638 

1.5 0.491085203 0.491099760 0.491099760 

2.0 0.528125037 0.528118624 0.528118624 

 
 
Table 4. Estimation to the Bootstrap, Jackknifing and K repeated jackknifing using MSE 

methods 
 

    ˆ
BS t   ˆ

jackS t   ˆKS t  

10 

0.5 0.004741437 0.004744439 0.004744439 

1 0.000554432 0.000554276 0.000554276 

1.5 0.001494291 0.001495483 0.001495483 

2.0 0.000896026 0.000896273 0.000896273 

     

20 

0.5 0.000068511 0.000067606 0.000067606 

1 0.000095454 0.000095257 0.000095257 

1.5 0.002020240 0.002018741 0.002018741 

2.0 0.002871559 0.002870831 0.002870831 

     

30 

0.5 0.000753059 0.000753260 0.000753260 

1 0.000066921 0.000065892 0.000065892 

1.5 0.000079474 0.000079214 0.000079214 

2.0 0.000791018 0.000790657 0.000790657 
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Table 5. Bootstrap, Jackknifing and K-repeated jackknifing using MPE methods 

 

    ˆ
BS t   ˆ

jackS t   ˆKS t  

10 

0.5 0.137716188 0.137759774 0.137759774 

1 0.047092748 0.047086150 0.047086150 

1.5 0.077312128 0.077342954 0.077342954 

2.0 0.059867382 0.059875638 0.059875638 

     

20 

0.5 0.016554218 0.016444542 0.016444542 

1 0.019540074 0.019519906 0.019519906 

1.5 0.089894150 0.089860804 0.089860804 

2.0 0.107173850 0.107160268 0.107160268 

     

30 

0.5 0.054883842 0.054891176 0.054891176 

1 0.016361090 0.016234724 0.016234724 

1.5 0.017829594 0.017800480 0.017800480 

2.0 0.056250074 0.056237248 0.056237248 

 
 
Table 6. Survival Estimation Using the Three Methods with Respect to MSE and MPE 

 

  BOOTSTRAP METHOD (1)  

Size    ˆ
BS t  MSE MPE REMARK 

10 

0.5 0.568858094 0.004741437 0.137716188 1 

1 0.476453626 0.000554432 0.047092748 2,3 

1.5 0.461343936 0.001494291 0.077312128 1 

2.0 0.529933691 0.000896026 0.059867382 1 

      

20 

0.5 0.491722891 0.000068511 0.016554218 2,3 

1 0.490229963 0.000095454 0.019540074 2,3 

1.5 0.544947075 0.002020240 0.089894150 2,3 

2.0 0.553586925 0.002871559 0.107173850 2,3 

      

30 

0.5 0.527441921 0.000753059 0.054883842 1 

1 0.491819455 0.000066921 0.016361090 2,3 

1.5 0.491085203 0.000079474 0.017829594 2,3 

2.0 0.528125037 0.000791018 0.056250074 2,3 
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Table 6, cont’d. Survival Estimation Using the Three Methods with Respect to MSE and 

MPE 

 

  
 

JACKKNIFE METHOD (2) 
 

Size    ˆ
jackS t  MSE MPE REMARK 

10 

0.5 0.568858094 0.004741437 0.137716188 1 

1 0.476453626 0.000554432 0.047092748 2,3 

1.5 0.461343936 0.001494291 0.077312128 1 

2.0 0.529933691 0.000896026 0.059867382 1 

      

20 

0.5 0.491722891 0.000068511 0.016554218 2,3 

1 0.490229963 0.000095454 0.019540074 2,3 

1.5 0.544947075 0.002020240 0.089894150 2,3 

2.0 0.553586925 0.002871559 0.107173850 2,3 

      

30 

0.5 0.527441921 0.000753059 0.054883842 1 

1 0.491819455 0.000066921 0.016361090 2,3 

1.5 0.491085203 0.000079474 0.017829594 2,3 

2.0 0.528125037 0.000791018 0.056250074 2,3 

 
  K-REPEATED JACKKNIFE METHOD (3)  

Size      ˆKS t  MSE MPE REMARK 

10 

0.5 0.568858094 0.004741437 0.137716188 1 

1 0.476453626 0.000554432 0.047092748 2,3 

1.5 0.461343936 0.001494291 0.077312128 1 

2.0 0.529933691 0.000896026 0.059867382 1 

      

20 

0.5 0.491722891 0.000068511 0.016554218 2,3 

1 0.490229963 0.000095454 0.019540074 2,3 

1.5 0.544947075 0.002020240 0.089894150 2,3 

2.0 0.553586925 0.002871559 0.107173850 2,3 

      

30 

0.5 0.527441921 0.000753059 0.054883842 1 

1 0.491819455 0.000066921 0.016361090 2,3 

1.5 0.491085203 0.000079474 0.017829594 2,3 

2.0 0.528125037 0.000791018 0.056250074 2,3 
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Discussion 

The comparison of parametric estimators of exponential distribution using 

Bootstrap, Jackknife, and K-Repeated Jackknife methods indicates that the 

estimates of the population parameter are very close which implies that the 

estimators are unbiased. A comparison of the mean square error (MSE) and mean 

percentage error (MPE) of the estimators shows that K-Repeated Jackknife method 

has a minimum variance unbiased estimator (MVUE); irrespective of the sample 

size whether it is small or large at any given values of lambda (λ).  The three 

methods are used to estimate the survival function for exponential distribution and 

its mean square error (MSE) and mean percentage error (MPE). The results can be 

deduced that the performance of the two jackknife procedures over the bootstrap 

procedure is 66.67% to 33.33%. This result has been able to show the effect or 

influence of jackknife method, especially the k-repeated procedure on error 

reduction in estimating population parameter. 

Conclusion 

This study demonstrates that both methods of re-sampling technique are very 

efficient in estimating the population parameters and their mean square errors 

(MSE), as viewed by Efron (1998). These methods were used to find the best 

minimum variance unbiased estimator, using mean square error (MSE) and mean 

percentage error (MPE). The estimates of the two-parameter exponential 

distribution are used to estimate the survival probability. The attractiveness of 

jackknifing and bootstrapping is that they provide investigators with an important 

and unattainable type of information. Jackknifing and bootstrapping have their 

limitations and inherent assumptions as all statistical procedures do. The three 

methods are computationally intensive. However, these techniques represent an 

important step in refining the process of data analysis more especially the k-

repeated procedure. Hence, it can be deduced that bootstrapping is a method for 

evaluating the variance of an estimator while jackknife is a method for reducing the 

bias of an estimator, and evaluating the variance of an estimator. This is clearly 

shown in the MSE results. The MSE value is reduced using the K–repeated 

jackknife method.  
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Appendix 

Simulated Data 

Table A1. Sample Size = 10 

 

S/N Sample 1(λ= 0.5) Sample 2(λ= 1.0) Sample 3(λ= 1.5) Sample 4(λ= 2.0) 

1 0.38672500 2.27994293 0.20192160 0.01058359 

2 0.11665480 0.71411938 0.48301090 2.51951031 

3 0.12661390 0.75298901 0.12473380 1.94495769 

4 4.42286640 2.19289233 1.99662440 0.67531853 

5 2.00704600 0.04442099 0.67780240 1.05647689 

6 2.34689070 0.35021824 0.75981590 0.01373747 

7 0.86211020 1.01674933 0.87373650 0.08979746 

8 1.03118540 0.82205630 0.21055390 0.73813115 

9 12.74339800 0.02251542 1.47164790 0.07333057 

10 1.96347260 1.01602885 0.52020820 1.38869338 

 
 
Table A2. Sample Size = 20 

 

S/N Sample 5(λ= 0.5) Sample 6(λ= 1.0) Sample 7(λ= 1.5) Sample 8(λ= 2.0) 

1 2.62129072 0.13858938 0.61025422 0.20816883 

2 3.66009415 0.23677409 1.39562321 0.10508682 

3 0.28671927 0.65882621 1.64585069 0.16343073 

4 0.53614812 2.03913598 1.11779841 4.47429656 

5 1.67262059 3.07310425 0.64918675 0.31910786 

6 0.08521250 0.85047816 0.05778008 0.21707275 

7 0.84341716 0.93587816 0.04898416 0.04360368 

8 1.87988871 3.97283307 0.12098188 0.11505109 

9 3.13213741 1.91406287 0.55509004 0.24578897 

10 6.82508233 1.04861761 0.19238185 1.05875641 

11 0.02900937 0.03350444 0.26953211 0.00355591 

12 1.74900498 1.30175357 0.01133644 0.05922794 

13 1.24431388 1.52538027 0.28231025 0.20815442 

14 1.12438751 0.06504098 2.50193518 1.48214568 

15 1.02901637 1.90192968 0.52524965 0.89694421 

16 2.19818977 0.71117769 0.20890800 1.53327300 

17 5.75705560 2.66119925 0.12742349 1.11055824 

18 0.67605113 1.38839741 0.09933566 0.81368075 

19 0.79778248 0.30239189 0.08220231 0.46919296 

20 1.06989471 0.00054309 0.22447181 1.03504680 

  



SURVIVAL ESTIMATION USING THREE METHODS 

306 

Table A3. Sample Size = 30 

 

S/N Sample 9(λ= 0.5) Sample 10(λ= 1.0) Sample 11(λ= 1.5) Sample 12(λ= 2.0) 

1 1.09871091 0.17085314 0.24591320 0.03006484 

2 1.30597223 0.31266839 0.78554402 0.01316790 

3 0.43742079 0.21960578 0.26193004 0.08580695 

4 0.57034193 1.09603105 0.07651001 0.06684230 

5 1.02475744 0.54796524 0.29620540 0.75349995 

6 1.53172531 0.13561858 0.58560088 0.56383185 

7 0.57173448 0.46805576 0.56401687 0.10014385 

8 3.18835121 0.58675535 0.41054238 0.39468972 

9 1.01423546 0.41116558 1.42498655 0.26076246 

10 0.05104055 3.42353290 0.03212381 0.38563026 

11 2.99399940 1.09817464 0.19768464 0.96558979 

12 2.95112802 0.35962685 0.24295821 0.27934118 

13 4.74244122 1.98862082 0.16056365 0.01547041 

14 0.04628853 1.11964839 0.24140637 0.34343548 

15 5.35809191 0.48539163 0.06956623 0.80092480 

16 4.26185504 1.09365222 1.49188159 1.49780414 

17 0.04367701 0.73949713 0.22345808 0.90349970 

18 0.05851474 0.34345758 1.56937093 0.18701462 

19 0.46455153 0.29243694 0.59195204 0.00288255 

20 0.09371455 0.25904558 0.42176436 0.74330912 

21 2.96970220 1.79180600 1.11983745 0.25455636 

22 0.54133977 0.01809066 0.28416911 0.81341579 

23 1.29204462 2.94010580 0.65638599 0.10230827 

24 0.02923826 0.79327459 0.12515747 2.24807427 

25 2.28724168 1.13577062 2.26479793 0.08718112 

26 3.62406597 0.05051664 1.73361763 1.15865739 

27 0.55831489 0.53652729 0.36225826 0.02484439 

28 4.24494133 1.08361205 1.41035274 0.48756216 

29 0.13192788 0.25488727 0.93471466 0.25596331 

30 0.39449119 1.92176066 0.27655395 0.09251206 
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