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Life Testing Analysis of Failure Censored
Generalized Exponentiated Data

Anwar Hassan Mehraj Ahmad
King Saud University Directorate of Economics and Statistics
Riyadh, Saudi Arabia Jammu & Kashmir, India

A generalized exponential distribution is considered for analyzing lifetime data; such
statistical models are applicable when the observations are available in an ordered manner.
This study examines failure censored data, which consist of testing n items and terminating
the experiment when a pre-assigned number of items, for example r ( < n), have failed.
Due to scale and shape parameters, both have flexibility for analyzing different types of
lifetime data. This distribution has increasing, decreasing and a constant hazard rate
depending on the shape parameter. This study provides maximum likelihood estimation
and uniformly minimum variance unbiased techniques for the estimation of reliability of a
component. Numerical computation was conducted on a data set and a comparison of the
performance of two different techniques is presented.

Keywords: Generalized exponential distribution, lifetime data, censored data,
uniformly minimum variance unbiased estimation

Introduction

Usually observations made on a random variable do not become available in an
ordered manner. If n items are taken from a machine and measured for some
characteristics such as diameter, it would be an anomaly — as well as a cause for
concern — if the first item taken had the smallest diameter; the second item, the
second smallest diameter, etc. However, there exist numerous practical situations,
for example, life testing fatigue and other kinds of destructive test situations, where
the data become available in this way. If n radio tubes are put through a life test,
for example, then the weakest will fail first in time, the second weakest one fails
next, etc. Based on this pattern, it seems clear that observations will naturally occur
in an ordered manner in life test situations, regardless of whether the test is the life
of electric bulbs, life of radio tubes, life of ball bearings, life of various kinds of
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LIFE TESTING ANALYSIS OF FAILURE CENSORED DATA

physical equipment or length of life after some treatment performed on animals or
human beings. There are other situations — for example, testing the current needed
to blow out a fuse, the voltage needed to break down a condenser, the force needed
to rupture some physical material, etc. — where observations become available in
order if the test is arranged in such a way that every item in the sample is subjected
to the same stimulus (current, voltage, stress, dosage, etc.), so that the first weakest
item fails, then the second weakest item fails, and so on.

Put in general terms, if n items drawn at random from some generalized
exponential population are tested, and the data become available in such a way that
the smallest observation comes first, the second smallest second, and so on until
finally the largest observation is last, then it is possible to discontinue
experimentation after observing the first r failures in a life test. The two principal
advantages associated with the possibility of stopping before all n observations are
made stem from the observations occurring in an ordered manner and the ability to
reach a decision in a shorter time or with fewer observations than if utilizing a
procedure that involves observing what happens to all items being tested. Thus, this
study is devoted to failure censored data, which consists of putting n items on test
and terminating the experiment when a pre-assigned number of items, for example
r (< n), have failed. The data obtained from such experimentation is almost
mandatory in dealing with high cost sophisticated items such as televisions.

The Generalized Exponential Distribution (GED), which more accurately
represents time to failure, is used instead of the more commonly used exponential
distribution. Although incorporation of the GED in life testing modeling adds to
the complexity of modeling and estimation, it fits life data more accurately than the
exponential distribution due to its flexibility.

The two parameter GED was proposed and studied extensively by Gupta and
Kundu (1999, 2001a, 2001b, 2002), Ragab (2002), Ragab and Ahsanullah (2001)
and Zheng (2002) and the two parameter GED distribution has: density function

a-1

f(xa,4)=ai(l-e™) e x>0,a>0,1>0, @)
cumulative distribution function (cdf)
F(xa4)=(1-e™)" ,x>0,a>0,1>0, )

survival function
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S(x,a,4)=1-(1-e™)",x>0,&>0,4>0, (3)

and hazard function

ai(l-e™ )CH g

h(x,a,4)= 1_(1_e—lx )a

X>0,aa>0,4>0. 4)

Here o> 0 and 1 > 0 are the shape and scale parameters respectively. For different
values of the shape parameter, the density function can take different shapes.
Hereafter, the GED with shape parameter o and scale parameter 2 will be denoted
by GE(a,A). This article focuses on the maximum likelihood estimate and the
minimum variance unbiased estimate of the shape parameter when the scale
parameter is known.

Estimation Based on MLE

Maximum Likelihood Estimation

Suppose n items are subjected to test without replacement and the test is terminated
after r items have failed. If the failure censored data consist of the lifetimes of the
r items that failed (Xq) < X@) < ... < X(n) and the fact that (n — r) items have
survived beyond X. The likelihood of the ordered sample failure times is given
below if the failure times are generalized exponentially distributed with pdf (1).

For given ordered failures times when it is desired to estimate « when 1 is
known:

n

L(a, 2]X) :(:)”1:[0! T e P

i=r+l

L(a,21X)=(")rta 2 T (1-e ) e T (1meae ),

i=1
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The log likelihood function of the observed sample is

L(a)=In(C)+rin(a)+rin(A)
=AY X +(a-1) zi’:lln(l—e‘“i)a(n—r)ln(l—e’“') (5)

where C = (7 )r!

The MLE of «, for example, & for known 4 is

r

>ian (1—e"Xi )+(n —r)ln (1—e‘*Xr )

B r r

B D LT+ (n-n)T, :T’+(n—r)T”

G =-

where T, =In (1—e"Xi )_1 and T.=In (1—e‘*Xr )71

and T' = Zrlln(l—e‘b‘. )fl T :(1_9—% )—1
i=1

Unbiasedness of &

If the n items are tested and observation continues until r units have failed then (T,
T, ..., T() are the transferred failure time from exponential population with mean
life a. Because Xi, X, ..., X; are independently and identically distributed (iid)
GED(a,4), then T, the transformed ordered failures, are iid as Expo(a). In this plan
the number of items exposed at any time is n, the joint distribution of Tq), T(2, ...,
T, that is, the number of failed items out of n items tested is given by

n r a2 it .
g(t(l),t(z),...,t(r)|a)=<,)r!aez 910<Ty <Ty <--<Ty, <0

Using transformation Zi = (n — i+ 1)(Tg — Tip), 1= 1,2,3, ..., r, with Ty = 0,
then
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Z ir=1 Zi = Z ir=1T(i) + (n - r)T(r) (6)

0(2y,Z5-02,) 4 a3l L
(T Teyr Ty () 9l ()r!

This results in the joint distribution of Zy, Zo, ..., Zras 9(Z1, Z2, ..., Zr | @) =
a'e 2R ,thus Z1, Z,, ..., Zrareiidasg(z | @) = ae %z, 0>0

. r
o= p
Z i:lzl
i:;r or r—?l:ozZZi follows Gamma(r)
ra a) ..Z a =)
and Y =% :+ follows inverted gamma density of Raiffa and Schlaifer
ro az i1Zi
(1961) as
1 1 1 r+1
f =—e’|=| ;y20,r>0, 7
V)= [yj y ()
.. . 1 e g\
and the pdfof & is f(a|a)=———=e ¢ |—| ;a=0,r=0. (8)
al (r+1) a

Moments of a

It is necessary to extract the first two moments of & , to find in general the k™"
moment of & as

1 r+1 _
ﬂLZE(Yk)nyk%e V(EJ gy - L(r=K)
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W= 1 Ly = L andy:—l
(r-0"" (r=2)(r-2)" """ (r-1(r-2)

M:E(Y):E('ij:(ril) results in E(o?):rr—fl
4 1 _ ) r2o?
1 :V(Y):V(raj:m resultsmv(a):m

Thus E(&)# a, which clearly shows that the MLE of « is not an unbiased estimate
of a, but instead it is asymptotically unbiased estimate of a.

Sufficiency of a

r

L (X Xpreeen X, |2, A) = (ni!r)!a’/”trn(l—e‘“i )“‘T[e-m (1-e )a<n—r>

i=1 i=1

Using the transformation as in Lemma 1 (see Appendix A) results in,

L(Xi, X2,..., Xr | a, z) — n! larﬂre’a[z{:lti+(n*r)Tr}eZir:1ti f[(l_efti )
i=1

(n—r)!

Using the transformation as in (6) results in,

L(X, X0 X, |2, A) = o ATe b n—!)ez{‘“‘H(l—e“i)

Using a =

results in,

r _ r
D M2

L(X, Xy, X, |, A) nl Ir VLSt s ()
— — 2 1—g i=thi
f(ala) (n—r)tr' 1,:1[( et )e= ()

which is independent of the unknown parameter o, thus @ is a sufficient estimator
for a.
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MLE of Reliability

Because the MLE of a ie a= r T has been calculated

irlei +(n—r)Tr Zirzlzi

using a property of MLE, that function of an MLE is also an MLE, thus the MLE
of reliability of GED is denoted by R(t) and is given as R(t)=1-(1-e™)".

Expectation of Reliability and its Standard Error

To evaluate the expectation of reliability and its standard error, results from Watson
r-1

axsb -
(1952) viz_[:x’e[ dex:z(gjz K,_l(Z\/E) are used where K: () is the

modified Bessels function of the second kind of order r.

E(R(Y)) :1—%(In A )5 K., (2,/|n A))

and

E(R(t)) = 2E(F§(t))+%(ln ATYK, (2yInA,7)-1.

Estimation Based on Minimum Variance Unbiased Estimate

Minimum Variance Unbiased Estimate

The Minimum Variance Unbiased Estimate (MVVUE) approach is now considered.
Note that & is biased, but the bias can be easily corrected as

. or=1. r-1 r  r-1
YT Z;:lzi_z,;lz,

this implies, ’ = !
(r_l)a “Z irzlzl
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Recall the proven result that azi;lzi follows Gamma(r) and

Y

- ¢ - 1r follows the inverted gamma density of Raiffa and
(r-Da a) i,z

Schlaifer (1961) as

11
#h (r—l)"u2 (r-1)(r-2)

and u, =

_
(r-1°(r-2)

(r-1)

M’=E(Y)=E(( a J: L resultsinE(@)=a

a 1 - o
1, :V(Y):V((r—l)aJ:(r—1)2(r—2) results InV(a)=(r_2)

Clearly V(&) =V (&). However, equality holds for r = % which is not an integer,
thus it implies that this inequality never holds for integral value of n.
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Sufficiency of &

L(Xy, Xy0eenn X, |2, A) = (n?!r)ﬂ%rﬁ(l_em )Hﬁe’“i (1-e )a(n,r)
; i=1 i=1

Using the transformation in Lemma 1 results in

! rara—al 2 it (=0T iat : -
L (%, %y, 0 X, |a,}t):(nir)la PIPSSPYERIRE'SY H(l—e )
: i=1

Using the transformation in (6) results in

rara=ap iaZ n! it : -t
L(Xl,XZ,...,Xrla,i):Olie z Zmez tH(l—e t')
: A

. X 1 :
Using ¢ __ results in

(r-1) 2z

L(xi,xz,...,xrla,/l): n! T T
f(ala) (n—r)!(r_l)rﬂl;[(l Je="" (@)

which is independent of the unknown parameter a and, thus, & is a sufficient
estimator for a.

Completeness

A family of density functions f(X,a),ae H (Parametric Space) is called

complete if E (u(x)) = 0 for all &« € H implies u(x) = 0 with probability 1, for all
acH.

That is, there are no two different functions of X which have the same
expected value for all @ € H . Thus, for example, if a sufficient statistic is complete,
there will be only one unbiased estimator of o which is a function of the sufficient
statistic.
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where " (&) includes all other terms.

Now using Laplas transformation that _[: h(x)e™dx=0=h(x)=0

E,(v(@))=0=y"(a)=0=y(a)=0,a=0,r>0

Thus & is also a complete estimate of o because E(& ) = «, it follows that & is a
uniformly minimum variance unbiased estimate (UMVUE) of a.

UMVUE of Reliability

i%l, which is an UMVUE was estimated, the UMVUE of
i:lZi

reliability Ii(t) is derived next. The general method of finding the UMVUE is to

search for any unbiased statistics T (X, X,,...,X,) and a complete and sufficient

Previously a =

statistic if one exists. Consider a function T (X,,X,,...,X,) such that T(x )=1 if

X, >t and = 0 otherwise. Thus, T is a function of x; alone, denoted by T (X, ).

E{T(x)}=1P(X, 2t)+0.P(X, <t)=P(X, >t)=R(t| )

For its derivation it is necessary to derive the conditional distribution of T
given a and split the random sample (T(l),T(z),...,T(r)) into two independent

components T =T, of sample size one and (T(Z),T(S),...,T(r)) of sample size

(r—l). Because T(i) are iid as exponential with parameter « as proved in Lemma
1, then

— o %0 .
f(t(i)la)—ae ,0520,t(i >0

)
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S
and define Y = r_—lz 22

(r-1)Y +Ty = ;T(i) =rT

This yields (r—1)y follows Gamma (e, r —1) because
2Ty =112 ~ Gamma(a,r) and assumes (r—1)y =S ~ Gamma(a, r 1)

f(y)= F(O;r__ll) e ()Y ((r -1) y)' 2 (r-1)
a r—1)Y L

and then the joint distribution of Ty and Y is given by

_ —at, at(r-1)"" (e} £
f(ty Vla)=ae™ F((r—l)) e " (y)”
_a”(r—l)(r_l) ~al(r)yety) -2
“Tr(ry) ¢ )

Because tqyand ¥ are independently distributed, the joint distribution of T and
T can be obtained by using the transformation

(r=2)Y +T, _ZT =1T, resulting in |J|——¥—rL1

a'r (r —1)(“2) “ort t(l) i _
Therefore, f( t|a)= e " - 0<t. <rt
r-1 r-1 ®

and f (T | ) = (rrar) (T) e
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The conditional distribution of ) is then obtained as f (t(l) |t_,a) =

r-2
_ r-1 t(l) ) _
f(t(1)|t,a):—{l—ﬁ ,O<t(l)<l’t
r-1

24T

Using a =

o= r-1 : : :
resultsin t = o and using this value in the above pdf of t.)

Thus UMVUE of reliability R(t) is obtained as
R(t)=P(X,2t,|&)= P{—In(l—e‘“)<—In(l—e‘“o)|&}

~r-2
=P{T, <-In(1-e")|a} = jo""(”%) é {1— t‘i_ﬂ dt,,

Expectation of MVUE Reliability and Its Standard Error

E(R(t)) :1—5:(“')1

j=0 J!
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Data Analysis

Sixty items were tested and the test was terminated after the first 10 items failed.
The failure times (in months) were recorded as 0.12, 0.21, 0.39, 0.52, 0.68, 0.72,
0.87, 0.99, 1.14, 1.27. Assume that failure times are distributed as generalized
exponentially distributed.

The mean value of failure times is 0.69 months. The parameter « and
reliability was estimated using the MLE and MVVUE for various known values of 1
and the behavior of two different estimations on the estimation of reliability and
parameter estimation was studied; results are shown in Tables 1 and 2 (see
Appendix A).

Acknowledgements

The project was supported by the Research Center, College of Science, King Saud
University, Saudi Arabia.

319



LIFE TESTING ANALYSIS OF FAILURE CENSORED DATA

References

Gupta, R. D., & Kundu, D. (1999). Generalized exponential distributions.
Australian and New Zealand Journal of Statistics, 41(2), 173-188.

Gupta, R. D., & Kundu, D. (2001a). Generalized exponential distribution:
Different methods of estimation. Journal of Statistical Computation and
Simulation, 69, 315-338.

Gupta, R. D., & Kundu, D. (2001b). Generalized exponential distribution:
An alternative to gamma or Weibull distribution. Biometrical Journal, 43, 117-
130.

Gupta, R. D., & Kundu, D. (2002). Generalized exponential distribution:
Statistical inferences. Journal of Statistical Theory and Applications, 1, 101-118.

Johnson, N. L., Kotz, S., & Balakrishnan, N. (1994). Continuous univariate
distribution, Vol. 1 (2nd ed.). New York: John Wiley and Sons.

Johnson, N. L., Kotz, S., & Balakrishnan, N. (1995). Continuous univariate
distribution, Vol. 2 (2nd ed.). New York: John Wiley and Sons.

Mann, N. R., Schafer, R. E., & Singpurwalla, N. D. (1974). Methods for
statistical analysis of reliability and life time data. New York: John Wiley and
Sons.

Raiffa, H. & Schlaifer, R. (1961). Applied statistical decision theory.
Cambridge, MA: Harvard University Press.

Ragab, M. Z. (2002). Inference for generalized exponential distribution
based on record statistics. Journal of Statistical Planning and Inference, 104, 339-
350.

Ragab, M. Z., & Ahsanullah, M. (2001). Estimation of the location and scale
parameters of the generalized exponential distribution based on order statistics.
Journal of Statistical Computation and Simulation, 69, 109-124.

Watson, G. N. (1952). Treatise on the Theory of Bessel Functions (2nd ed.).
Cambridge, UK: Cambridge University Press.

Zheng, G. (2002). On the Fishers information matrix in type-11 censored
data from the exponentiated family. Biometrical Journal, 44, 353-357.

320



HASSAN & AHMAD

Appendix A
Lemmal
Part 1 If Xi are random variables independently and identically generalized

exponentially distributed GED(a,4), with A known, then
T, =-In(l-e™)=In(1-e™ )71 follows Expo(a).

1 . N .
Part 2 Prove that - follows the inverted gamma distribution, that is

_% =y follows inverted gamma density (Raiffa & Schlaifer, 1961) as

a r+1
f(y):iey(%j ;y>0,0,r>0 9)

=5 )75 a“”(#fiﬁ“”v(%}m

where T'==3"1,In(1—e*)=>"1,In(1-e™ )fl.
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Tables 1 and 2

Table 1. Estimate of parameter a and reliability using the MLE for various known values
of A

A a S.E(a) R(t) E(R(t)) S.E(R(t))
0.01 0.03697 0.01452 0.68107 0.82608 0.08094
0.02 0.04362 0.01714 0.70618 0.82435 0.08484
0.03 0.04872 0.01914 0.72496 0.82303 0.08778
0.04 0.05309 0.02086 0.74074 0.82192 0.09027
0.05 0.05704 0.02241 0.75471 0.82091 0.09248
0.06 0.06071 0.02385 0.76745 0.81999 0.07015
0.07 0.06418 0.02521 0.77928 0.81912 0.07197
0.08 0.06750 0.02652 0.79041 0.81830 0.07369
0.09 0.07070 0.02778 0.80099 0.81751 0.07533
0.10 0.07382 0.02900 0.81111 0.81675 0.07690
0.12 0.07987 0.03137 0.83027 0.81530 0.07989
0.14 0.08573 0.03368 0.84830 0.81391 0.08273
0.15 0.08862 0.03481 0.85697 0.81324 0.08409
0.18 0.09716 0.03817 0.88194 0.81127 0.08805
0.20 0.10279 0.04038 0.89786 0.80999 0.09059
0.30 0.13107 0.05149 0.90123 0.80388 0.06835
0.40 0.16051 0.06305 0.90110 0.79796 0.07581
0.50 0.19190 0.07539 0.85735 0.79209 0.08300
0.60 0.22575 0.08868 0.85331 0.78618 0.09004
0.70 0.26245 0.10310 0.84784 0.78022 0.09695
0.80 0.30232 0.11876 0.84001 0.77419 0.07782
0.90 0.34569 0.13580 0.82882 0.76812 0.08284
1.00 0.39284 0.15432 0.80001 0.76201 0.08778
2.00 1.12735 0.44286 0.71003 0.70934 0.01114
3.00 2.42090 0.95102 0.63922 0.70982 0.00853
4.00 4.15967 1.63407 0.60843 0.59425 0.10358
5.00 6.12946 2.40788 0.45982 0.63671 0.23600
10.00 19.33348 7.59491 0.24577 0.39212 0.20864
20.00 90.37409 35.50230 0.24575 0.35531 0.28917
30.00 338.40470 132.93700 0.24565 0.29058 0.29601
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Table 2. Estimate of parameter a and reliability using the UMVUE for various known

values of A

A a S.E(a) R(t) E(R(t)) S.E(R(t))
0.01 0.03327 0.01176 0.53961 0.52654 0.08460
0.02 0.03926 0.01388 0.56303 0.54956 0.08372
0.03 0.04385 0.01550 0.58055 0.56679 0.08306
0.04 0.04778 0.01689 0.59529 0.58126 0.08251
0.05 0.05134 0.01815 0.60834 0.59408 0.08202
0.06 0.05464 0.01932 0.62023 0.60577 0.08157
0.07 0.05776 0.02042 0.63129 0.61662 0.08115
0.08 0.06075 0.02148 0.64169 0.62684 0.08076
0.09 0.06363 0.02250 0.65158 0.63655 0.08039
0.10 0.06644 0.02349 0.66104 0.64584 0.08004
0.12 0.07188 0.02541 0.67896 0.66344 0.07936
0.14 0.07716 0.02728 0.69583 0.68000 0.07873
0.15 0.07975 0.02820 0.70396 0.68797 0.07842
0.18 0.08744 0.03091 0.72733 0.71091 0.07755
0.20 0.09251 0.03271 0.74224 0.72553 0.07699
0.30 0.11796 0.04171 0.81143 0.79338 0.07439
0.40 0.14446 0.05107 0.87503 0.85569 0.07200
0.50 0.17271 0.06106 0.93523 0.91465 0.06974
0.60 0.20318 0.07183 0.94094 0.97121 0.06757
0.70 0.23620 0.08351 0.94992 0.90141 0.06548
0.80 0.27209 0.09620 0.95738 0.89999 0.06345
0.90 0.31112 0.11000 0.96834 0.89320 0.02318
1.00 0.35356 0.12500 0.95637 0.81830 0.02318
2.00 1.01461 0.35872 0.82882 0.79209 0.02318
3.00 2.17881 0.77033 0.80001 0.78618 0.02318
4.00 3.74370 1.32360 0.61843 0.78022 0.02318
5.00 5.51652 1.95038 0.49867 0.43011 0.02318
10.00 17.40010 6.15188 0.36759 0.42673 0.02318
20.00 81.33660 28.75680 0.32793 0.33867 0.02318
30.00 304.56400 107.67900 0.27546 0.31526 0.02318

323



	Journal of Modern Applied Statistical Methods
	11-2014

	Life Testing Analysis of Failure Censored Generalized Exponentiated Data
	Anwar Hassan
	Mehraj Ahmad
	Recommended Citation


	Life Testing Analysis of Failure Censored Generalized Exponentiated Data

