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Hoerl and Kennard (1970) suggested the ridge regression estimator as an alternative to the 
Ordinary Least Squares (OLS) estimator in the presence of multicollinearity. This article 
proposes new methods for estimating the ridge parameter in case of ordinary ridge 

regression. A simulation study evaluates the performance of the proposed estimators based 
on the Mean Squared Error (MSE) criterion and indicates that, under certain conditions, 
the proposed estimators perform well compared to the OLS estimator and another well-
known estimator reviewed. 
 
Keywords: Ordinary Least Squares, ill-condition, ridge regression, simulation. 

 

Introduction 

In regression problems the goal is usually to estimate the parameters in the general 

linear regression model 

 

 Y X e    (1) 

 

where Y is an (n × 1) response vector, X is an (n × p) matrix of n observations of p 

predictors. It is important to note that X is not a square matrix since the number of 

data values n is usually larger than the number of predictors of p. β is an (p × 1) 

vector of unknown regression parameters, and e is an (n × 1) vector of the random 

noise in the observed data vector Y, it is often assumed that they are distributed as 

Gaussian with E(e) = 0 and Var(e) = σ2. 

However, a method is needed to estimate the parameter vector β. The most 

common method is the least squared regression by finding the parameter values 

which minimize the sum of squared residuals, given by 
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2

SSR Y X    (2) 

The solution turns out to be a matrix equation, defined by 

 

 1ˆ ( )X X X Y     (3) 

 

where X' is the transpose of the matrix X and the exponent (−1) indicates the matrix 

inverse of the given quantity. 

It is expected that the true parameters will provide the most likely result, so 

the least squares solutions, by minimizing the sum of squared residuals, gives the 

maximum likelihood values of the parameters vector β. It is known from the Gauss-

Markov theorem that the least squares estimate results the best linear unbiased 

estimator of the parameters; thus, this is one reason why least squares method is 

very popular. The estimates of the least squares are unbiased (i.e., the expected 

values of the parameters are the true values), and of all the unbiased estimators, it 

gives the least variance. 

However, there are cases for which the best linear unbiased estimator is not 

necessarily the best estimator. One pertinent case occurs when the two (or more) of 

the predictor variables are very strongly correlated. In other words, when terms are 

correlated and the columns of the design matrix X have an approximate linear 

dependence, the matrix (X'X)−1 becomes close to singular. As a result, the least 

squares estimate, given by (3), becomes highly sensitive to random errors in the 

observed response Y, producing a large variance. To solve this problem, one 

approach is to use an estimator which is no longer unbiased, but has considerably 

less variance than the least squares estimator. 

Ridge Regression and Multicollinearity 

Ridge Regression is a technique for analyzing multiple regression data that suffer 

from multicollinearity. When multicollinearity occurs, least squares estimates are 

unbiased but their variances are large so they may be far from the true value, deflate 

the partial t-test for the regression coefficients give false non-significant p-values 

and degrade the predictability of the model. Thus, by adding a degree of bias to the 

regression estimates, ridge regression reduces the standard errors and the matrix 

needed to invert no longer has a determinant near zero; therefore, the solution does 

not lead to uncomfortably large variance in the estimated parameters. Now, given 

a response vector Y and a predictor matrix X, the ridge regression coefficients are 

given by 
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    
1ˆ k X X kI X Y


     (4) 

where k is the ridge parameters and I is the identity matrix. When k = 0, the linear 

regression estimate is given by (3), and when k = 1, ˆ( ) 0k  , finally, for k in 

between, two ideas are balanced: fitting a linear model of Y on X’s and shrinking 

the coefficients. Small positive values of k improve the conditioning of the problem 

and reduce the variance of the estimates. While biased, the reduced variance of 

ridge estimates often result in a smaller MSE when compared to least squares 

estimates. 

The amount of shrinkage is controlled by k, the ridge parameter that multiplies 

the ridge penalty. Large k means more shrinkage, thus, different coefficient 

estimates are obtained for different values of k. In fact, choosing an appropriate 

value of k is important and also difficult, but it can be shown that there exists a 

value of k for which the MSE (the variance plus the bias squared) of the ridge 

estimator is less than that of the least squares estimator. As a result, under the 

condition of multicollinearity, a huge price is paid for the unbiasedness property 

that is achieved by using the OLS estimator. 

Choosing the Ridge Parameter k  

One of the main obstacles in using ridge regression is in choosing an appropriate 

value of k. For selecting the best ridge estimator, several criteria have been 

proposed in the literature (see for example; Hoerl & Kennard, 1970; Hoerl et al., 

1975; Hoerl & Kennard, 1976; Lawless & Wang, 1976; Gibbons, 1981; Saleh & 

Kibria, 1993; Troskie & Chalton, 1996; Kibria, 2003; Khalaf & Shukur, 2005; 

Dorugade & Kashid, 2010; and Khalaf, 2013). Next, some formulas for determining 

the value of k to be used in (4) are discussed. 

Hoerl and Kennard (1970) suggested using a graphic which they called the 

ridge trace. This plot shows the ridge regression coefficients as a function of k. 

When viewing the ridge trace, the value of k is chosen at which the regression 

coefficients have reasonable magnitude, sign and stability, while the MSE is not 

grossly inflated. In fact, letting βmax denote the maximum of the Βi, Hoerl and 

Kennard (1970) showed that choosing 

 

 
2

2

max

ˆˆ
ˆ

k



   (5) 
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implies that 2 1

1

ˆ ˆ ˆ( ( )) ( )
p

i

i

MSE k MSE t   



   , where 2̂  is the usual estimator of 

σ2, defined by 
2

ˆ ˆ( ) ( )
ˆ

1

Y X Y X

n p

 


 


 
. The estimator, given by (5), will be 

denoted by HK. 

Hoerl, Kennard and Baldwin (1975) argued that a reasonable choice of k is 

 

 
2p

k


 



  (6) 

 

if these quantities were known. They suggested using 

 

 
2ˆˆ

ˆ ˆ

p
k



 



 (7) 

 

as an estimate of k in (6). This ridge estimator will be denoted by HKB. 

Hoerl and Kennard (1976) proposed an iterative method for selecting k. This 

method is based on the formula given by (7). To obtain the first value of k, they 

used the least squares coefficients. This produces a value of k. Using this new k, a 

new set of coefficients is found, and so on. In fact, this procedure does not 

necessarily converge. 

Lawless and Wang (1976) concluded that the ridge estimators using (5) and 

(7) performed very well indeed and that they were substantially better than any of 

the other estimators included in their study. Gibbons (1981) conducted a simulation 

study to compare 10 promising algorithms for selecting k. She found too that the 

estimators using the ridge estimator given by (7) performed well. In the light of 

these remarks, which indicate the satisfactory performance and the potential for 

improvement of the estimators HK and HKB, new methods are proposed to 

determine ridge parameter in case of ordinary ridge regression for the ridge 

parameter k as 

 

1) KIa = The Arithmetic Mean of (HK, HKB) 

 
2

2

max

ˆ 1

ˆ ˆ ˆ2

p

  

 
    

   (8) 
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2) KIh = The Harmonic Mean of (HK, HKB) 

 
2

2

max

ˆ2 2

ˆ ˆ1 1
ˆ

HK HKB p



 


 
 

  (9) 

 

3) KIg = The Geometric Mean of (HK, HKB) 

 2

2

max

ˆ.
ˆ ˆ ˆ.

p
HK HKB 

  
 


  (10) 

 

4) KIs 
The sum of ( , ), if 1

The sum of ( , ) / 2, if 1

HK HKB HK HKB

HK HKB HK HKB

 
 

 
. (11) 

 

If the resulting HK+HKB, given by (11), is less than one, then it is used as an 

estimator for the ridge parameter k. However, if the resulting HK+HKB is greater 

than or equal to one then the new value of the ridge parameters equal to the value 

of (HK+HKB) divided by two. 

Simulation Study 

A simulation study was conducted in order to draw conclusions about the 

performance of the proposed estimators relative to HK, HKB and the OLS estimator. 

To achieve different degrees of collinearity, following Kibria (2003), the 

independent variables were generated by using the following equation 

 

  
1

2 21 , 1,2,..., 1,2,...,ij ij ipx z z i n j p       (12) 

 

where zij are independent standard normal distribution, p is the number of the 

explanatory variables and ρ is specified so that the correlation between any two 

independent variables is given by ρ2. Four different sets of correlation were 

considered according to the value of ρ = 0.7, 0.9, 0.95 and 0.99. 

The other factors varied were sample size (n) and the number of regressors 

(p). Models consisting of 15, 25, 50 and 100 observations and with 5 and 9 

explanatory variables were generated. 

The criterion proposed for measuring the goodness of an estimator is the MSE 

using the following formula 
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    
1

1 ˆ ˆ ,
2000

p

i i

i

MSE    



     (13) 

 

where ˆ
i  is the estimator of β obtained from the OLS estimator or from the ridge 

estimator for different estimated value of k considered for comparison reasons and, 

finally, 2000 is the number of replications used in the simulation. In this study the 

error was forced to have variances equal to 0.5 and 1. 

Simulation results show that increasing the number of regressors leads to a 

higher estimated MSE, while increasing the sample size leads to a lower estimated 

MSE (see Khalaf & Shukur, 2005; Alkhamisi & Shukur, 2008; Khalaf, 2011). 

Results 

Tables 1 and 2 present the output of the simulation concerning properties of the 

different methods that used to choose the ridge parameter k. 

Results show that the estimated MSE is affected by all factors that were varied. 

It is also noted that the higher the degree of correlation the higher estimated MSE, 

but this increase is much greater for the OLS than the ridge regression estimator. 

The sample size and the number of explanatory variables having a different impact 

of the estimators.  

In Tables 1 and 2 when ρ = 0.7 and n is large, note that the estimated MSE 

decreases substantially and the performance of KIs is much better than the other 

ridge estimators from the MSE point of view. Finally, the OLS estimator is defeated 

by all of estimators. 

Conclusion 

Ridge regression is one of the more popular estimation procedures for addressing 

issues of multicollinearity. The procedures discussed herein fall into the category 

of biased estimation techniques. They are based on this notion: though the OLS 

gives unbiased estimates and indeed enjoy the minimum variance of all linear 

unbiased estimators, there is no upper bound on the variance of the estimators and 

the presence of multicollinearity may produce large variance. Biased estimation is 

used to attain a substantial reduction in variance with an accompanied increase in 

stability of the regression coefficients. The coefficients become biased, but the 

reduction in variance is of greater magnitude than the bias induced in the estimators. 
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New methods were proposed for estimating the ridge parameters in the 

presence of multicollinearity. The performance of the proposed ridge parameter 

was evaluated through the simulation, for different combinations of correlation 

between predictors (ρ), the number of explanatory variables (p), sample size (n) and 

variance of the error variable (σ2). The evaluation of the estimators was done by 

comparing the MSE of the OLS estimator with the proposed estimators and the 

other estimators reviewed in this study. Finally, it was found that the performance 

of the proposed estimators is satisfactory over the others and KIs has the least MSE. 
 
 
Table 1. Estimated MSE when p = 5 

 
ρ σ2 n   OLS HK HKB KIa KIg KIh KIs 

0.7 

0.05 

15  4.53 2.75 1.92 2.23 2.34 2.44 1.68 

25  2.13 1.63 1.19 1.37 1.43 1.48 1.14 

50  0.95 0.84 0.67 0.74 0.77 0.79 0.68 

100  0.42 0.40 0.36 0.38 0.38 0.39 0.36 

1 

15  1.16 0.95 0.73 0.82 0.85 0.88 0.73 

25  0.54 0.50 0.42 0.45 0.47 0.48 0.43 

50  0.23 0.22 0.20 0.21 0.21 0.22 0.21 

100  0.1025 0.1013 0.0981 0.0995 0.1009 0.1001 0.0991 

0.9 

0.05 

15  14.06 6.13 4.44 4.95 5.25 5.56 3.08 

25  6.44 3.62 2.40 2.86 3.01 3.17 1.90 

50  2.83 2.04 1.35 1.62 1.72 1.81 1.21 

100  1.27 1.08 0.79 0.90 0.95 0.99 0.78 

1 

15  3.510 2.209 1.475 1.752 1.851 1.948 1.321 

25  1.633 1.293 0.908 1.064 1.121 1.174 0.892 

50  0.7063 0.6391 0.5068 0.5643 0.5867 0.6061 0.5224 

100  0.3279 0.3130 0.2744 0.2921 0.2990 0.3046 0.2841 

0.95 

0.05 

15  28.00 10.00 7.00 8.43 9.00 10.00 4.00 

25  13.97 6.09 4.31 4.87 5.17 5.48 2.89 

50  5.91 3.41 2.21 2.67 2.82 2.97 1.72 

100  2.78 2.02 1.33 1.61 1.70 1.79 1.18 

1 

15  6.91 3.53 2.34 2.76 2.92 3.09 1.82 

25  3.38 2.26 1.49 1.79 1.89 1.99 1.31 

50  1.46 1.19 0.84 0.99 1.04 1.09 0.83 

100  0.68 0.62 0.49 0.54 0.57 0.59 0.50 

0.99 

0.05 

15  156.00 49.00 38.00 36.00 41.00 47.00 20.00 

25  73.00 23.00 18.26 18.08 20.00 22.00 10.00 

50  32.00 12.00 8.00 9.00 10.00 11.00 5.00 

100  15.00 6.76 4.71 5.35 5.70 6.06 3.08 

1 

15  39.00 14.17 10.35 10.73 11.90 13.17 6.25 

25  18.00 7.37 5.33 5.82 6.26 6.72 3.35 

50  8.16 4.17 2.79 3.29 3.48 3.67 2.01 

100   3.78 2.43 1.56 1.89 2.01 2.11 1.29 
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Table 2. Estimated MSE when p = 9 

 
ρ σ2 n   OLS HK HKB KIa KIg KIh KIs 

0.7 

0.05 

15  16.29 8.70 4.76 5.98 6.65 7.35 4.17 

25  5.38 4.18 2.50 3.09 3.41 3.71 2.40 

50  2.03 1.86 1.35 1.55 1.67 1.76 1.38 

100  0.89 0.86 0.73 0.78 0.82 0.84 0.74 

1 

15  4.04 2.93 1.7483 2.13 2.35 2.58 1.7482 

25  1.33 1.23 0.93 1.04 1.11 1.17 0.96 

50  0.48 0.47 0.42 0.44 0.45 0.46 0.43 

100  0.216 0.214 0.203 0.208 0.211 0.213 0.206 

0.9 

0.05 

15  48.00 19.00 11.00 13.00 15.00 16.00 8.00 

25  16.63 9.46 5.07 6.52 7.23 7.95 4.19 

50  6.28 4.83 2.72 3.46 3.87 4.25 2.51 

100  2.72 2.40 1.55 1.87 2.06 2.22 1.53 

1 

15  12.36 6.74 3.52 4.50 5.07 5.66 3.14 

25  4.00 3.19 1.85 2.31 2.59 2.84 1.82 

50  1.52 1.40 1.00 1.16 1.25 1.33 1.03 

100  0.70 0.67 0.56 0.61 0.64 0.66 0.58 

0.95 

0.05 

15  105.00 38.00 21.00 24.00 28.00 33.00 14.00 

25  34.18 16.43 8.87 11.20 12.50 13.85 6.79 

50  12.62 8.01 4.21 5.49 6.14 6.78 3.55 

100  5.78 4.47 2.50 3.19 3.58 3.94 2.29 

1 

15  25.25 11.93 6.38 7.98 9.01 10.08 5.15 

25  8.65 5.84 3.08 4.00 4.50 4.98 2.80 

50  3.10 2.63 1.60 1.97 2.20 2.39 1.59 

100  1.36 1.26 0.89 1.04 1.13 1.19 0.92 

0.99 

0.05 

15  563.00 197.00 111.00 122.00 146.00 173.00 73.00 

25  185.00 70.00 40.00 46.00 53.00 61.00 26.00 

50  71.00 30.00 17.00 20.00 23.00 26.00 12.00 

100  31.00 15.00 8.00 10.00 12.00 13.00 6.00 

1 

15  140.00 48.00 28.00 31.00 36.00 42.00 18.00 

25  48.95 21.11 11.95 14.40 16.24 18.15 8.62 

50  18.09 10.11 5.29 6.86 7.67 8.48 4.30 

100   7.96 5.49 2.93 3.82 4.32 4.80 2.62 
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