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Discrete distributions have played an important role in the reliability theory. In order to 
obtain Bayes estimators, researchers have adopted various conventional techniques. 
Generalizing the results of Maiti (1995), Chaturvadi and Tomer (2002) dealt with the 
problem of estimating P{X1, X2, …, Xk ≤ Y}, where random variables X and Y were 
assumed to follow a negative binomial distribution. Agit et al. obtained Bayesian estimates 
of the reliability functions and P{X1, X2, …, Xk ≤ Y} considering X and Y following 
binomial and Poisson distributions. The reliability function of the generalized Poisson and 

generalized geometric distribution is investigated. The expression for P{X1, X2, …, Xk ≤ Y} 
was obtained with X’s and Y following a Poisson distribution and some particular cases are 
shown. 
 
Keywords: Generalized Poisson distribution generalized geometric distribution, 
reliability function, Bayes estimators 

 

Introduction 

Much research exists in the literature for estimating various parametric functions 

of several discrete distributions through classical and Bayesian approaches. 

Cacoullos and Charalambildes (1975) obtained MVUE for truncated binomial and 

negative binomial distributions. Bayesian estimation of the parameter of binomial 

distribution has been considered by Chew (1971). Barton (1961) and Glasser (1962) 

obtained UMVUE of P(X = x) for Poisson distribution. Blyth (1980) studied the 

absolute error of UMVUE of the probability of success of binomial distribution. 

For a random variable X following binomial distribution, Pulskanp (1990) has 

shown that the UMVUE of P(X = x) is admissible under squared-error loss function 
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when X = 0 or n. Irony (1992) developed Bayesian estimation procedures related to 

Poisson distribution. Guttman (1958) and Patil (1963) provided UMVUEs of 

parametric functions of negative binomial distribution. Patil & Wani (1966) 

obtained UMVEUs of distribution function of various distributions. Roy & Mitra 

(1957) considered the problem of minimum variance unbiased estimation of 

univariate power series distribution. Patil (1978) generalized their results to 

multivariate modified power series distribution. Patil & Bildikar (1966) derived 

MVUE for logarithmic series distribution. 

Discrete distributions have played important role in reliability theory. Kumar 

& Bhattacharya (1989) considered negative binomial distribution as the life time 

modal and obtained UMVUEs of the mean life and reliability function. Another 

measure of reliability is under stress-strength setup in the probability Pr{X ≤ Y}, 

under the assumption that X and Y followed geometric distribution and derived 

UMVUE & Bayes estimator. Chaturvedi & Tomer (2002) considered classical & 

Bayesian Estimation procedures for the reliability function of the negative binomial 

distribution from a different approach generalizing the results of Maiti (1995), they 

dealt with the problem of estimating P{X1, X2, …, Xk ≤ Y}, where random variables 

X & Y were assumed to follow negative binomial distributions. Chaturvadi, et al. 

(2007) considered Bionomail and Poisson distribution and obtained the Bayesian 

estimators of reliability function and dealt with the problem of estimating 

P{X1, X2, …, Xk ≤ Y}, where the random variables X & Y were assumed to follow 

binomial and Poisson distributions. 

In order to obtain Bayes estimators of parameter and various parametric 

functions of different distributions, researchers have adopted a conventional 

technique, i.e., obtaining their posterior means. This article considers the 

Generalized Poisson and Generalized Geometric distributions and the problems of 

estimating reliability functions and P = P{X1, X2, …, Xk ≤ Y} from a Bayesian 

viewpoint. Bayes estimators of these parametric functions are derived. It is worth 

mentioning that in contrary to conventional approach, only estimators of factorial 

moments are needed to estimate these parametric functions and no separate dealing 

is needed. 
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Generalized Poisson Distribution 

The random variable follows Generalized Poisson distribution with parameter λ and 

β if its pmf is 
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The reliability function at a specific mission time, for example, t0 (≥ 0) is 
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and the hazard rate function is 
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Let {Xi}, i = 1, 2, 3, …, k be k independent random variables following a 

generalized Poisson distribution (1) with parameters λi and β (known) and Y is a 

random variable, independent of X’s following generalized Poisson distribution 

with parameter u. Denoting 
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From additive property of generalized Poisson distribution 
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Next, Bayes estimators of R(t0) and ‘P’ for generalized Poisson distribution are 

estimated. 
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Bayes Estimation Of R(t0) and ‘P’ For Generalized Poisson Distribution  

The likelihood function given the random sample information  

X = (X1, X2, …, Xn)   is 
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where 
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Because, λ > 0 consider the prior distribution for λ when β is known to be gamma 

with parameters (α,θ) and pdf 
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From (6) and (7), the posterior density function of λ is given by 
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The Bayesian estimator of λp, for p > 0, is given by 
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Now, Equation (1) can be written as 
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On using (9) the Bayes estimator of P(x;λ) at a specific point ‘X’ is 
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Using (10) in (2), in order to obtain Bayesian estimator of R(t0), results in 
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Also, for obtaining Bayesian estimator for ‘P’ we consider independent priors for 

λ* and u to be gamma with parameters (α1, θ1) and (α2, θ2) respectively and using 

equations (4) and (10) is 
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Special Cases 

For β = 0, equation (1) reduces to Poisson distribution, therefore for β = 0, 

equations (11) and (12) give the Bayesian estimators for R(t0) and P (see Chaturvedi, 

et al., 2007) and are 
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Generalized Geometric Distribution 

The random variable ‘X’ follows Generalized Geometric distribution with 

parameters α and β if its pmf is 
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The reliability function at a specific mission time, for example, t0 (≥ 0) is 
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and the hazard rate function is 
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Bayes Estimation Of R(t0) For Generalized Geometric Distribution 

The likelihood function given the random sample information  

X = (X1, X2, …, Xn)   is 
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Because, 0 < α < 1, it is assumed that the prior information about α when β is known 

from Beta distribution with pdf 
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The posterior distribution from (15) and (16) can be written as 
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The Bayesian estimator of αp, for p > 0, is given by 
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Now, equation (13) can be written as 
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On using (18) the Bayes estimator of P(x;λ) at a specific point ‘X’ is 
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Using (19) in (14), in order to obtain Bayesian estimator of R(t0), results in 
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