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Traditional inferential procedures often fail with censored and truncated data, especially 
when sample sizes are small. In this paper we evaluate the performances of the double and 
single bootstrap interval estimates by comparing the double percentile (DB-p), double 
percentile-t (DB-t), single percentile (B-p), and percentile-t (B-t) bootstrap interval 
estimation methods via a coverage probability study when the data is censored using the 
log logistic model. We then apply the double bootstrap intervals to real right censored 
lifetime data on 32 women with breast cancer and failure data on 98 brake pads where all 

the observations were left truncated. 
 
Keywords: Double bootstrap, censored, simulation, truncated, survival 

 

Introduction 

Modeling and data analysis is never complete without reliable statistical inferential 

procedures such as the confidence intervals or hypothesis testing. These are 

powerful tools that help us make certain conclusions regarding the population and 

its parameters based on sample data. The confidence interval can also be used to 

indicate the reliability of our estimates. However, it is not easy to obtain the exact 

solutions for some of these inferential procedures especially in cases involving 

more complex data structures such as incomplete, censored or truncated data. Thus, 

many have resorted to the much simplified techniques based on the asymptotic 

normality of the maximum likelihood estimates. In recent years, the bootstrapping 

techniques have taken over some of these existing methods because they relieve us 

from certain assumptions based on the asymptotic statistical theory. Thus, the 
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bootstrap is widely preferred when sample sizes are low or data is censored or 

truncated since the Wald is known to be highly asymmetrical in these cases with 

actual coverage probability significantly different from the nominal specification 

as discussed by Jeng and Meeker (2000), Doganaksoy and Schmee (1993a; 1993b) 

and Arasan and Lunn (2009). 

The bootstrap method as described by Efron and Tibshirani (1993) is a direct 

application of the plug-in principle which is a way of understanding the population 

based on estimates from random samples drawn from the population. The standard 

bootstrap confidence interval is constructed from information obtained directly 

from the data without any theoretical assumptions. In recent years the double 

bootstrap has gained a lot of popularity because it typically has a higher order of 

accuracy. According to McCullough and Vinod (1998), and Letson and 

McCullough (1998), the double bootstrap enhances the accuracy of the ordinary 

bootstrap by estimating an error and then using this error to adjust the ordinary 

bootstrap in order to reduce its error. 

Efron (1993) introduced the bootstrap percentile (B-p), percentile-t (B-t), and 

the bias-corrected percentile (BCa) intervals, see also Efron (1981b; 1981a). Efron 

(1985) claims that the bootstrap confidence interval reduces most of the error in 

standard approximation. He also describes some of these intervals as invariant 

under transformation, thus producing accurate results without involving knowledge 

of the normalizing transformations. An extensive survey of different bootstrap 

methods for producing good confidence interval estimates is given in DiCiccio and 

Efron (1996). Singh (1981) established the second order accuracy of the bootstrap 

confidence interval by applying Edgeworth theory to the B-t interval. Hall (1986; 

1988a; 1988b) examined several different bootstrap interval estimation methods 

that can be used in both parametric and nonparametric settings and concluded that 

B-t and BCa methods were superior to other methods. More applied works on 

bootstrap confidence intervals were done by Arasan and Lunn (2008), Robinson 

(1983), Schenker (1985), and Jeng and Meeker (2000). 

The Model 

The log-logistic distribution is very popular in survival studies because it has a 

hazard rate that increases in the beginning and slowly starts to decrease after a finite 

time. These types of non-monotonic hazard rates are very popular in medical 

studies especially those involving lung cancer, breast cancer and kidney or heart 

transplant patients. This distribution has been studied by various authors such as 

Bennet (1983) who explored and provided the linear model for the log odds on 
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survival. Gupta et al. (1999) proved analytically that unique maximum likelihood 

estimates exist for the parameters of this model and analyzed a lung cancer data. 

Mazucheli et al. (2005) compared the accuracy of Wald confidence interval with 

the B-p and B-t intervals for the mode of the hazard function of the log logistic 

distribution. Other authors who have done significant work using this model are 

[Cox and Lewis (1966)], [Cox, Oakes, O’Quigley and Struthers (1982)]. The model 

can also easily be extended to accommodate covariates, truncated data and all types 

of censored observations such as left, right and interval. More discussions on 

truncated data can be found in Lawless (1982). 

Lifetime data are sometimes truncated due to some of the conditions in the 

study design. When the lifetime ti for the ith subject is forced to lie between the 

interval [ui, vi], where ui and vi are left and right truncation times respectively, then 

ti is said to be either left or right truncated. Subjects who do not experience the 

event within this window will not be included in the study. So, subjects are left 

truncated only if they were already at risk before entering the study. So the current 

lifetime of subject i at selection is ti ≥ ui  where ui > 0 and. Similarly right truncated 

data are data where ti ≤ vi. Thus, right truncation occurs when all the subjects have 

already experienced the event of interest when they enter the study. On the other 

hand right censoring occurs when a subject’s event time is unknown due to reasons 

such as study has ended or subject has left the study. Left censoring occurs when 

the event of interest has already occurred before the study started. In both cases 

subjects are still included in the study but it is acknowledged that their event time 

is above or below a certain point. 

There are several different parameterizations for the log logistic distribution. 

If -  < δ <   is the scale parameter and β > 0 is the shape parameter the density 

(pdf) and survivor function of the log logistic are 
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Suppose we have both right censored and uncensored lifetimes for i = 1, 2, …, n 

observations. Let ci be the indicator variable assuming the value of 1 if data is 

uncensored or 0 otherwise. The log-likelihood function for the full sample is  

given by 
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Suppose there is left truncated data for i = 1, 2, …, n observations. Let ui be the left 

truncation time for the ith subject. The log-likelihood function for the full sample is 

given by 
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  (2) 

Confidence interval estimates 

A bootstrap procedure depends on how the bootstrap sampling is done, namely 

parametric or nonparametric sampling procedures. In the parametric bootstrap 

sampling procedure, B bootstrap samples each of size n are generated from the 

assumed parametric distribution. Then, the bootstrap estimates, 
*ˆ
b , b = 1, 2, …, B 

are estimates calculated from each of these bootstrap samples of size n. The 

nonparametric procedure requires the sampling of a large number of B bootstrap 

samples with replacement from the original data set with each observation having 

equal probability of being chosen. This technique of resampling clearly requires the 

assumption that the data are independent. Following that, the bootstrap estimates 

are calculated in the same way as described before. In this research we employ the 

nonparametric bootstrap sampling procedure since we wish to incorporate censored 

and truncated observations in our dataset. 

Single bootstrap without pivot (Percentile interval or B-p) 

A clear and thorough understanding of the single bootstrap interval estimation 

procedures is essential before moving on to any of the double bootstrap methods. 

If θ is our parameter of interest and ̂  its estimate using sample data, then 
*ˆ
b  is the 

estimate of θ using the bth bootstrap sample. The B-p method is rather simple and 
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constructs confidence intervals directly from the percentiles of the bootstrap 

distribution of the estimated parameters. In this procedure B bootstrap samples, yb, 

b = 1, 2, …, B will be generated using the nonparametric bootstrap sampling 

method. Following that, estimate the bootstrap version of the parameter estimates, 
*ˆ
b  for each of the bootstrap sample, yb. The 100(1−α)% percentile interval for θ is 

 * *

[ ] [ ]
ˆ ˆ,l u  , where, 

2
l B


   , 1

2
u B

 
   

 
 and 

*

[ ]
ˆ
 , 1,2, , B    is the 

ordered list of the B values of *̂ . For ease of computation and accuracy large 

values of B that give integer values of l and u should preferably be chosen. 

The B-p method is said to be transformation-respecting and has the ability to 

automatically produce accurate results without any normalizing transformations as 

described in Efron and Tibshirani (1993). Thus it becomes especially useful when 

the distribution of ̂  is not approximately normally distributed, since in this case 

the Wald interval would not perform well unless an appropriate transformation is 

used. 

Single bootstrap with pivot (Percentile-t interval or B-t) 

The B-t method involves a bit more work than the B-p interval since it requires the 

standard error of an estimate. In this method, a bootstrap table consisting the 

percentiles of the bootstrap version of the standardized values of the parameter 

estimates (approximate pivot) is constructed using the available data. The property 

of the approximate pivot whose distribution is approximately the same for all 

parameter allows the formation of this bootstrap distribution. Following that, this 

bootstrap table is used to construct the B-t confidence intervals. The main highlight 

of this method is that it is only dependent on the data in hand and does not require 

any normal theory assumptions. However, depending on the data available, the 

bootstrap distribution produced (B-t percentiles) can be asymmetric about 0, which 

may produce more asymmetrical intervals although at a much better coverage 

probability. 

In this procedure, compute 
*ˆ
b  for b = 1, 2, …, B bootstrap samples and 

obtain 
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Here, 
*ˆ( )bse   is the estimated standard error of 

*ˆ
b  for the bootstrap sample, yb. In 

B-t confidence interval the 
2


 quantile are based on B-t percentiles which can be 

obtained using the data. In order to do this obtain 
*

[ ]R  , 1, 2, ,B    which is the 

ordered list of the B values of R*. The 
2


 percentile of R* is then the value 

2

*

B
R   

. 

Then, the 100(1−α)% confidence interval for θ is  * *

[ ] [ ]
ˆ ˆ ˆ ˆ. ( ) , . ( )l uR se R se      
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2
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2

u B
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Double bootstrap procedures 

The double bootstrap procedure requires resampling from bootstrap samples in 

order to further reduce the bias and correct the errors in the bootstrap procedures, 

see Martin (1992). Similarly a double bootstrap confidence interval procedure is a 

further iteration to the ordinary bootstrap confidence interval procedure which 

would further reduce the order of magnitude of coverage error. Both B-p and B-t, 

has under mild regularity conditions, a 2 sided coverage error equals O(n−1), at 

nominal level α. It follows that a further iteration of the ordinary bootstrap 

confidence interval would further reduce the order of magnitude of coverage error 

to O(n−2). 

Double bootstrap without pivot (Double B-p) 

The double bootstrap without a pivot or double B-p is given by Shi (1992) and also 

discussed by Letson and Mccullough (1998) and is constructed as follows. First, 

draw B single bootstrap samples, denoted y1, y2, …, yb, b = 1, 2, …, B. Then, for 

each b draw another c = 1, 2, …, C bootstrap resamples. Following that calculate 
**ˆ
bc  for each double bootstrap samples. In the next step we have to calculate the 

number of 
**ˆ
bc  that is lesser or equal to ̂  for each c and divide this number by C 

 

 
 **ˆ ˆ# bc

bQ
C

 
  (4) 

 

Following that if the ordered values of Qb are Q[1], Q[2], …, Q[B] then the 

(1−α) % double percentile bootstrap confidence interval for θ is  * *

[ ] [ ]
ˆ ˆ,l u    where 
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*

[ ]
ˆ
 , 1,2, , B    is the ordered list of the B 

values of *̂ . In cases where l and u are not integers, they should be rounded to the 

nearest integer lesser than or equal to their values. 

Double bootstrap with pivot (Double B-t) 

The double bootstrap with pivot or double B-t was discussed Mccullough and 

Vinod (1998) and also Letson and Mccullough (1998). In order to construct the 

double B-t confidence interval for the parameter, θ, recall that for the B-t interval 

we need to compute 
*

bR  as given by (3). Following that we now have to resample 

C double bootstrap samples from each of the single bootstrap samples and obtain 
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In the next step we have to calculate the number of times the second stage 

root 
**

bcR  is lesser or equal to the first stage root 
*

bR  for each c and divide this 

number by C 
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Then, if the ordered values of Zb are Z[1], Z[2], …, Z[B], the (1−α)% double B-t 

confidence interval for θ is  * *
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*

[ ]R  , 1, 2, ,B    is the ordered list of the B values of R*. 

Simulation study 

A simulation study was conducted using N = 1000 samples of size n = 25, 30, 40 

and 50 to compare the performance of the confidence interval estimates discussed 

in the previous section for the parameters of the log logistic model with censored 

data. We used α = 0.05 and α = 0.10 where α is the nominal error probability and 

censoring proportion (cp) of 10% and 15%. We compared a total of 4 methods 
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namely the B-p, B-t, DB-p and DB-t. Following that, we calculated the estimated 

coverage probability error by adding the number of times in which an interval did 

not contain the true parameter value divided by the total number of samples. 

The estimated left (right) error probability was calculated by adding the 

number of times the left (right) endpoint was more (less) than the true parameter 

value divided by the total number of samples. Following Doganaksoy and Schmee 

(1993a) if the total error probability is greater than  ˆ2.58 .s e  , then the method 

is termed anticonservative, and if it is lower than  ˆ2.58 .s e  , the method is 

termed conservative. The estimated error probabilities are called symmetric when 

the larger error probability is less than 1.5 times the smaller one. 

The value of δ = −18 and β = 4 were chosen as the parameters of the model 

to simulate failure times that mimic those seen in automobile brake pad failures. 

Suppose there are i = 1, 2, …, n observations. Random numbers from the uniform 

distribution on the interval (0,1), ui, was generated to produce ti for the ith 

observation 

 

 

 1/

1 1
1 .i

i

t
e u





  
   

  
 

 

To obtain censored observation in our data, the censoring time for the ith 

observation, ci were simulated from the exponential distribution with parameter μ 

where the value of μ could be adjusted to obtain the desired approximate censoring 

proportion in our data. Following that ti will be censored at ci if ti > ci and 

uncensored otherwise. The simulation study was carried out via the FORTRAN 

programming language. 

Simulation results 

Depicted in Table 1 are the summary of the estimated left, right and total error 

probabilities for the different methods discussed in the previous section. The results 

using the B-p method were omitted from the discussion due to the method’s poor 

performance when compared to the other methods. The B-p interval uses the 

empirical distribution and tends to fail when the distribution of *̂  is highly skewed 

which is rather common when bootstrapping censored and truncated observations. 

Inclusion of the B-p results would require a substantial increase in the graphical 

scale. Thus, we decided only to compare and display the results for the remaining 

3 methods in all discussions that follow. More comprehensive results are given in 



ARASAN & ADAM 

407 

Tables 2−5. The left and right estimated error probabilities should preferably be 

equal or close to α/2. The overall performances of the different methods were 

judged based on the total number of anticonservative (AC), conservative (C) and 

asymmetrical (AS) intervals. We are also interested in methods that behave well at 

different nominal levels and censoring proportions. Figures 1−8 compare the results 

of the coverage probability study using different methods graphically. 

The alternative computer intensive methods are usually employed to relieve 

us from tedious calculations and asymptotic normality assumptions. Thus, we wish 

to see them perform well especially at smaller sample sizes where the intervals 

based on asymptotic normality usually fail. Based on the results of the simulation 

study, we see that the DB-t intervals are more reliable than the DB-p and B-t 

methods. The DB-t method does not produce any conservative or anticonservative 

intervals for both parameters δ and β, even when censoring proportion in the data 

in high (cp = 15%). 

The DB-t method produced very few asymmetrical intervals, especially for 

the parameter β at α = 0.05 (see Table 1). The estimated error probabilities for the 

DB-t is also always closer to the nominal compared to the other methods even when 

the censoring proportion is high and sample size is low (n = 25, see Figures 1−8 

and Tables 2−3). All methods seem to produce fewer conservative, anticonservative 

and asymmetrical intervals when α = 0.10. So overall we can conclude that the DB-

t interval is the best method to employ when dealing with censored data especially 

at very low sample sizes (n = 25). The DB-p tends to work slightly better than the 

B-t method but both these methods do not perform as well as the DB-t when 

samples sizes are low (n = 25). 
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Table 1. Summary of the interval estimates at α = 0.05 and 0.10, cp = 10% and 15% 

 

      Parameters 

   δ β 

    Methods C AC AS C AC AS 

α = 0.05 

cp = 10% 

Double B-p 0 1 2 0 0 4 

Single B-t 0 1 3 0 2 3 

Double B-t 0 0 1 0 0 3 

cp = 15% 

Double B-p 0 1 4 0 0 4 

Single B-t 0 2 4 0 2 4 

Double B-t 0 0 1 0 0 1 

α = 0.10 

cp = 10% 

Double B-p 0 0 1 0 0 2 

Single B-t 0 0 2 0 0 2 

Double B-t 0 0 0 0 0 1 

cp = 15% 

Double B-p 0 0 2 0 0 3 

Single B-t 0 1 3 0 1 2 

Double B-t 0 0 1 0 0 1 

 
 
Table 2. Coverage probability of interval estimates for δ at α = 0.05 

 

  cp = 10% cp = 15% 

Methods n Left Right Total Left Right Total 

Double B-p 

25 0.045 0.028 0.073 0.049 0.024 0.073 

30 0.036 0.026 0.062 0.043 0.020 0.063 

40 0.030 0.022 0.052 0.033 0.020 0.053 

50 0.029 0.017 0.046 0.032 0.015 0.047 

Single B-t 

25 0.056 0.020 0.076 0.060 0.021 0.081 

30 0.043 0.022 0.065 0.049 0.022 0.071 

40 0.038 0.024 0.062 0.040 0.018 0.058 

50 0.037 0.025 0.062 0.040 0.022 0.062 

Double B-t 

25 0.029 0.028 0.057 0.033 0.024 0.057 

30 0.022 0.030 0.052 0.019 0.022 0.041 

40 0.016 0.023 0.039 0.014 0.023 0.037 

50 0.014 0.022 0.036 0.018 0.022 0.040 
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Table 3. Coverage probability of interval estimates for β at α = 0.05 

 

  cp = 10% cp = 15% 

Methods n Left Right Total Left Right Total 

Double B-p 

25 0.006 0.039 0.045 0.002 0.048 0.050 

30 0.008 0.033 0.041 0.004 0.038 0.042 

40 0.010 0.030 0.040 0.013 0.032 0.045 

50 0.014 0.031 0.045 0.012 0.035 0.047 

Single B-t 

25 0.021 0.055 0.076 0.022 0.058 0.080 

30 0.025 0.045 0.070 0.025 0.045 0.070 

40 0.022 0.035 0.057 0.023 0.043 0.066 

50 0.025 0.033 0.058 0.019 0.037 0.056 

Double B-t 

25 0.028 0.024 0.052 0.023 0.025 0.048 

30 0.031 0.021 0.055 0.021 0.021 0.042 

40 0.028 0.013 0.041 0.027 0.010 0.037 

50 0.027 0.015 0.042 0.022 0.015 0.037 

 
 
Table 4. Coverage probability of interval estimates for δ at α = 0.10 

 

  cp = 10% cp = 15% 

Methods n Left Right Total Left Right Total 

Double B-p 

25 0.068 0.043 0.111 0.070 0.042 0.112 

30 0.057 0.041 0.098 0.064 0.041 0.105 

40 0.052 0.045 0.097 0.054 0.043 0.097 

50 0.059 0.047 0.106 0.060 0.040 0.100 

Single B-t 

25 0.071 0.043 0.114 0.085 0.045 0.130 

30 0.062 0.045 0.107 0.077 0.038 0.115 

40 0.063 0.044 0.107 0.070 0.045 0.115 

50 0.068 0.043 0.111 0.069 0.047 0.116 

Double B-t 

25 0.043 0.053 0.096 0.049 0.043 0.092 

30 0.037 0.053 0.090 0.033 0.045 0.078 

40 0.040 0.047 0.087 0.030 0.050 0.080 

50 0.041 0.046 0.087 0.050 0.046 0.096 
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Table 5. Coverage probability of interval estimates for β at α = 0.10 

 

  cp = 10% cp = 15% 

Methods n Left Right Total Left Right Total 

Double B-p 

25 0.036 0.064 0.100 0.029 0.071 0.100 

30 0.037 0.059 0.096 0.035 0.068 0.103 

40 0.040 0.052 0.092 0.038 0.054 0.092 

50 0.040 0.056 0.096 0.036 0.055 0.091 

Single B-t 

25 0.046 0.077 0.123 0.046 0.086 0.132 

30 0.046 0.065 0.111 0.040 0.078 0.118 

40 0.040 0.069 0.109 0.047 0.066 0.113 

50 0.046 0.065 0.111 0.049 0.066 0.115 

Double B-t 

25 0.054 0.040 0.094 0.051 0.042 0.093 

30 0.055 0.035 0.090 0.047 0.032 0.079 

40 0.048 0.032 0.080 0.050 0.027 0.077 

50 0.048 0.039 0.087 0.046 0.039 0.085 

 
 

 
 

Figure 1. Interval estimates at α = 0.05, cp = 10% for parameter δ 
 

 
 

 
 

Figure 2. Interval estimates at α = 0.05, cp = 10% for parameter β 
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Figure 3. Interval estimates at α = 0.05, cp = 15% for parameter δ 
 

 
 

 
 

Figure 4. Interval estimates at α = 0.05, cp = 15% for parameter β 
 

 
 

 
 

Figure 5. Interval estimates at α = 0.10, cp = 10% for parameter δ 
 

 
 

 
 

Figure 6. Interval estimates at α = 0.10, cp = 10% for parameter β 
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Figure 7. Interval estimates at α = 0.10, cp = 15% for parameter δ 
 

 
 

 
 

Figure 8. Interval estimates at α = 0.10, cp = 15% for parameter β 
 

 

Real data analysis 

To illustrate the application of the double bootstrap confidence interval procedures, 

we will consider two data sets dealing with censored and truncated observations 

respectively. First is the data on breast cancer by Leathem and Brooks (1987) on 

the lifetimes of 32 women whose tumor has potential to metastasize thus classified 

as positive staining. 11 of the observations were censored which make the censoring 

proportion almost 34%. 

Considering the sample size and the censoring proportion in the data, any use 

of inferential procedures based on the asymptotic normality of the maximum 

likelihood estimates is not advisable. The second is 98 left truncated data on the 

lifetimes of the brake pads of automobiles. The left truncated lifetimes ui is the 

current odometer reading for each car. Only cars that had initial pads were selected 

and the remaining, and initial pad thickness, were used to estimate ti. Although the 

simulation study did not extend to include any truncated data, we believe we may 

generalize the results obtained using censored data to truncated data since in both 

cases the distribution of the bootstrap estimates will be skewed and far from normal, 

see Figures 10 and 12. 
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Right censored data 

The log logistic distribution fits the breast cancer data well as shown by the 

probability plot in Figure 9. Table 6 shows the parameter estimates when the log 

logistic distribution is fit to the data and the 95% confidence intervals using the 

Wald, DB-t, DB-p and B-t interval estimation procedures. 
 
 

 
 
Figure 9. Log logistic probability plot for the breast cancer data 

 

 
 
Table 6. MLE of breast cancer data and 95% confidence intervals 

 

   ̂    SE Wald B-t DB-p DB-t 

δ -5.187 0.953 (-7.054,-3.3189 (-7.154,-3.549) (-6.824,-3.744) (-8.231,-3.824) 

β 1.200 0.220 (0.769,1.633) (0.811,1.666) (0.826,1.611) (0.824,1.677) 

 
 

Figure 10 shows the histogram of 1000 bootstrap replications of ̂  and ̂ . 

We can clearly see that both the histogram are not very close to normal shape and 

appear to be skewed especially the distribution of *̂ . Goodness of fit test based on 

the Anderson-Darling and Kolmogorov-Smirnov had also rejected the assumption 

of normality at α = 0.05. In this case we can expect a disagreement between the 

standard normal interval and intervals based on the bootstrap methods as 

highlighted by Efron and Tibshirani (1993). 
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Figure 10. Bootstrap replication of ̂  and ̂  for breast cancer data 

 

 
 

Based on the coverage probability study, we could see the DB-t intervals 

produces the most reliable intervals when sample sizes are small and data is highly 

censored. From Figure 10, we can see that the distribution of *̂  is more skewed 

than 
*̂ . Thus, as expected the DB-t interval for the parameter δ tends to disagree 

more with the Wald interval, than the parameter β. The DB-t interval for the 

parameter δ is also wider than other intervals because it tries to accommodate the 

skewness in the distribution of the bootstrap estimates, which eventually increases 

the probability of the true parameter value lying within this interval as verified by 

the results of the coverage probability study. Other intervals, though narrower may 

fail to include the true parameter value. Observe that for the parameter β the Wald 

interval is wider than the DB-t intervals. So the DB-t interval has the ability to 

adjust itself according to the distribution of the bootstrap estimates which is directly 

linked to the data in hand and not dependent on any theoretical assumptions, which 

may fail when the normal approximation is simply not true. So it would actually be 

more practical to employ the DB-t interval in this case. 

Based on the results of the coverage probability study we can see that the DB-

p and B-t intervals do not perform as well as the DB-t when sample sizes are small. 

Their performance tends to improve gradually when n > 30. However we have 

included the interval estimates based on these methods merely to do some 

comparison study. As we can see the B-t interval is the narrowest among the 4 

intervals and there is much doubt as to whether the true parameter value will 

actually be included within this interval. The DB-p interval is much closer to the 

Wald interval than the DB-t, especially for parameter δ. This only makes it clearer 

that the DB-t interval will be more reliable since DB-p did not perform as well as 

DB-t in the coverage probability study. 
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Left truncated data 

Table 7: MLE of brake pad data and 95% confidence intervals 

   ̂    SE  Wald B-t DB-p DB-t 

δ -17.062 1.619  (-20.235,-13.889) (-20.381,-13.810) (-20.246,-13.765) (-20.686,-14.005) 

β 4.137 0.383  (3.387,4.888) (3.397,4.892) (3.379,4.831) (3.427,4.974) 

 

Table 7 shows the parameter estimates when the log logistic distribution is fit to the 

brake pad data and the 95% confidence intervals using the Wald, DB-t, DB-p and 

B-t interval estimation procedures. It is known that 
 
 

ˆ;

ˆ;

i

i

i

S t
e

S u




  is U(0,1) given ui. 

Thus, can plot the uniform residual, ei against the uniform quantile to see if the log 

logistic distribution fits data as given in Figure 11. As we can see the model fits the 

data quite well. 
 
 

 
 
Figure 11. Log logistic probability plot for break pad data 

 

 
 

Figure 12 shows the histogram of 1000 bootstrap replications of ̂  and ̂ . We 

can also observe that for the left truncated data both the histogram appear to be 

skewed. The goodness of fit test based on the Anderson-Darling and Kolmogorov-
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Smirnov had again rejected the assumption of normality at α = 0.05. As with the 

breast cancer data we can expect a disagreement between the standard normal 

interval and intervals based on the bootstrap methods. 
 
 

 
 

Figure 12. Bootstrap replication of ̂  and ̂  for break pad data 

 

 
 

The DB-t interval for both the parameters tends to disagree with the Wald interval 

due to the skewness in the distribution of the bootstrap estimates. The DB-p gives 

the narrowest interval followed by the Wald. However as we discussed earlier we 

should be cautious since these intervals may fail to include the true parameter value. 

Similar pattern is displayed for parameter β where the DB-t interval is the widest 

but now the DB-p interval is the narrowest. For both parameters the B-t interval 

and DB-p interval seem to be rather close to the Wald interval which again makes 

it clearer that the DB-t interval will be more reliable as the B-t and DB-p interval 

did not perform as well as the DB-t in the coverage probability study. 

Discussion 

It may appear as if the Wald would suffice as a confidence interval estimate due to 

its simplicity but this may not be true with smaller data sets that are censored or 

truncated. So while the Wald can still be employed especially when samples sizes 

are large and censoring proportions in the data is low, alternative bootstrap methods 

such as the DB-t should be employed otherwise. Although the DB-t method is 

slightly more computational compared to the Wald, with the existence of fast 

computers and parallel computing techniques, these results can be obtained very 
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quickly especially for small data sets. The performances of the B-t and DB-p 

method do not seem to be significantly better than the DB-t methods. Thus, we 

would not recommend employing them for the construction of confidence intervals 

for the parameters of this model. 

Keep in mind that the bootstrap confidence interval methods was initially 

introduced by Efron and Tibshirani (1993) mostly for use with location statistics 

such as the mean, median and trimmed mean. However, recently it is being used 

for more complicated statistics, especially those with standard errors that are 

attainable. Through simulation studies, we are able to assess if the bootstrap 

methods can be extended to other general problems, such as constructing 

confidence interval estimates for model parameters with censored and truncated 

data. They offer an alternative rather than depending solely on interval estimates 

that are based on asymptotic normality theory. 

Although many are still skeptical about these methods, we can’t deny that 

they provide us with an opportunity to perform comparison study which in some 

cases may lead to estimates that are better than those produced by traditional 

methods. The computation time for the double bootstrap is 2 times longer than the 

ordinary or single bootstrap procedures and negligible for the Wald procedure. For 

analyzing the breast cancer data, the computation time using the FORTRAN 

programming language only took 0.015 seconds for the single bootstrap procedures 

and 0.031 seconds for double bootstrap procedures. The single bootstrap procedure 

for the brake pad data took 0.03 seconds and the double bootstrap procedures took 

0.06 seconds. So, the results can be obtained extremely quickly in only matter of 

seconds. Thus, the argument of bootstrap methods being heavily computational is 

not applicable anymore due to the availability of very fast computers. 

The methods discussed here can be applied to the parameters of other survival 

models involving censored or truncated data. The log logistic model discussed here 

was chosen mainly due to its popularity in most cancer studies and its ability to 

accommodate both fixed and time dependent covariates easily. When the data in 

hand has more complicated structures such as double or interval censored the 

construction of the confidence intervals using solely methods based on asymptotic 

normality becomes unreliable. Thus, it’s important and also interesting to see if 

these alternative methods provide us with more appealing solutions. 
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