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Modeling Correlated Time-Varying Covariate Effects 
In A Cox-Type Regression Model 

 
 
 

Mourad Tighiouart 
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In this paper, I extend the proposed model by McKeague and Tighiouart (2000) to handle  time-varying 
correlated covariate effects for the analysis of survival data. I use the conditional predictive ordinates    
(CPO’s) for model comparison and the methodology is illustrated by an application to nasopharynx cancer    
survival data. A reversible jump MCMC sampler to estimate the CPO’s will be presented. 
 
Key words: Correlated time-varying covariate effects, Right censoring; Reversible Jump MCMC; Pseudo-    
                   Bayes factors  
 
 

Introduction 
 
The proportional hazards model of Cox (1972) is 
considered to be the most popular approach to the 
analysis of time-to-event data. In the past three 
decades, many authors have proposed variants of 
this model to relax the somehow restrictive 
proportional hazards assumption and to analyze 
multivariate survival data, see Andersen et al. 
(1992) and Ibrahim, et al. (2001).  
 In this paper, I use the local characteristics 
of Gaussian Markov random fields to describe the 
prior information of the conditional hazard 
function for right-censored survival data. 
McKeague and Tighiouart (2000) modeled the 
conditional hazard function (given covariates z) 
h(t|z) as a product of conditionally independent 
stochastic processes, corresponding to (1) a 
baseline hazard function h0(t), and (2) a regression 
function exp(β(t)’z) representing the effects of 
covariates: 
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 A discretized version of model (2) in 
which the jump times τ1, τ2, …, τk are fixed and the 
levels h1, h2,…, hk-1 form a first order auto-
regressive process has been considered by 
Gamerman (1991) and West (1992). Arjas and 
Gasbarra (1994) and McKeague and Tighiouart 
(2002) extended model (1) by allowing the jump 
times to be random and McKeague and Tighiouart 
(2000) considered a dynamic version of model (2) 
in which the log-levels λi=log(hi) and covariate 
effects βi, i=1,2,… form a Gaussian Markov 
random field. A related Markov random field 
model for the prior intensity of a non-homogenous 
Poisson process was introduced by Arjas and 
Heikkinen (1997), but was not studied in the 
survival analysis context and adjustment for 
covariate effects was not considered. 
  The class of priors used by McKeague and 
Tighiouart (2000) for β(t) implies independence 
between the covariate effects, an assumption that 
may not be true in practice. For instance, in a case 
study of nasopharynx cancer survival data, West 
(1992) and McKeague and Tighiouart (2000) 
showed a clear correlation between the posterior 
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mean effects of the two measures of the extent of 
the cancer, which was not accounted for in the 
model. 
 In  this paper, I extend the model proposed 
by McKeague and Tighiouart (2000) by 
implementing a correlation structure between 
some of the covariate effects in the prior. I use the 
pseudo-Bayes factor for model selection, and 
calculation of the conditional predictive ordinates 
(CPO’s) are performed using the output from the 
Metropolis-Hastings-Green (MHG) algorithm 
(Metropolis et al., 1953; Hastings, 1970; Green 
(1995). The analysis indicates that the null 
hypothesis of no correlation between the effects of 
the two measures of the extent of the cancer is 
rejected and a correlated prior process should be 
used to estimate conditional survival probabilities. 

 
Methodology 

 
Let T1,…,Tn be nonnegative independent random 
variables with associated p-dimensional covariate 
vectors zj, j = 1,…, n. Assume that the data may be 
subject to right censoring, i.e., we observe (X1, δ1, 
z1),…, (Xn, δn, zn) where Xj = min(Tj, Uj), Uj being 
the censoring time for the j-th individual, and δj = 
I{Tj ≤ Uj}. The conditional hazard function is 
given by (2), where I{} is the indicator function, 0 
= τ1 < τ2 < τ3 < … is an increasing sequence of 
jump times, the hi's represent the levels of the 
baseline hazard function h0(t), and {βi, i ≥ 1} = 
{(βi1,…,βip)’, i≥1} is a p-dimensional process 
describing the effect of covariate vector z.  

Let τmax = max{Xj, 1≤j≤ n}. The Bayesian 
approach consists of putting a prior distribution on 
the p covariate effects and the unknown baseline 
hazard function. The jump times τ2, τ3, … form a 
time-homogeneous Poisson process with rate γ. 
The pr ior distributions of the remaining parts of 
the model are specified conditionally given the 
number m of τi, i ≥ 1 in the interval [0, τmax], as 
follows. 

  
Covariate Effects Prior 
 I specify βm = {βkj: k=1,…, m, j=1,…, p} 
to be a Gaussian Markov random field with a 
neighborhood system {∂ (k , j)} of the following 
form: ∂ (k , j) = {(k-1, j), (k+1, j), (k , l), l∈ ∂ (j)}, 
where {∂ (j), j = 1,…, p} is a given neighborhood 
system for the covariate effects. This means that 

interactions in time are only permitted between the 
same components of the covariate effects. The 
model then amounts to: 
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 In addition, I assume only pairwise 
interaction between the covariate effects. It 
follows that the conditional mean νkj is given by 
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see Cressie (1993, Ch. 6). 

 
 The hyperparameters µkj = E(βkj), k = 1,…, 
m represent the trend in the levels of the j-th 
covariate effect, skj, rkj are used to smooth the j-th 
covariate effect, and ρkl, l∈∂(j) measure the 
correlation between βkj and βkl, l∈∂ (j). The 
distribution of βm is completely determined by its 
local characteristics provided the hyperparameters 
satisfy the following conditions: skj, rkj, ρkl, l∈∂ (j) 
are nonnegative with 
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see, e.g., Besag and Kooperberg (1995). 
McKeague and Tighiouart (2000) introduced a 
way of controlling the hyperparameters by the 
length of adjacent time intervals and I can adapt 
their approach to the present setting as follows: 
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where 1k k k+∆ = ∆ − ∆  is the gap between the k-th 
and (k+1)-st jump times, 2 ≤ k  ≤ m-1, and the 
parameters cj, σj > 0, and ρ ≥ 0 satisfy  

 
2

( )

1,j l
l j

c ρ σ
∈∂

+ <∑  j=1,…, p.  (4) 

 
 The parameter γ controls the rate of jump 
times, cj controls the nearest neighbor interaction 
between the levels of the j-th covariate effect, σj 
represents the precision of the prior information of 
the j-th covariate effect, and ρ controls the 
dependency structure between neighboring 
covariate effects: higher values of ρ signify greater 
correlation, and ρ = 0 gives rise to the 
conditionally independent time-varying covariate 
effects model analyzed by McKeague and 
Tighiouart (2000). For simplicity of presentation, I 
restrict attention to the case µkj = µj which 
indicates constant prior levels in the mean of the j-
th covariate effect. 
 The distribution of βm is Gaussian with 
mean vector µβm and covariance matrix (Imp-C1)-1 
M1, where µβm ={µkj: k=1,…, m, j=1,…, p}, C1 is 
an mp × mp matrix defined as follows. For j=1,…, 
p and i=m(j-1),…, mj, ci,i+1=rij, ci,i-1=sij, ci,i+ml=ρ il, 
for l ∈ ∂(j), ci+ml,i=ρ i+ml,i for i ∈ ∂(j), clk=0 
otherwise, M1=diag(σ2

kj, k=1,…, m, j=1,…, p), and 
Imp is the identity matrix. 

 
Baseline Hazard Prior 
 Let λi = log(hi). The prior distribution for 
the levels of the log-baseline hazard λ1,…, λm is 
taken to be the same as the prior for the j-th 
covariate effect when p=1. Denote by µk = E(λk) 
the trend in the levels of the baseline hazard 
function, 2

kσ  the conditional variance of λk given 
λi, i≠k , and sk, rk the influences of the left and right 
neighbors of λk, respectively. The corresponding 
nearest neighbor interaction and precision of the 
prior information parameters will be denoted by c 
and σ, respectively. 
 In what follows, I denote by λm both the 
random vector (λ1,…,λm) and the last log-level of 
the baseline hazard function. The joint distribution 
of λm=(λ1,…,λm) is Gaussian with mean vector µλm  
and covariance matrix (Im-C)-1 M, where µλm = 
(µ1,…,µm), C = (cij)1≤i,j≤m, ci,i+1 = ri, ci,i-1 = si, M = 

diag( 2
1σ ,…, 2

mσ ), and Im is the identity matrix. 
Again, I will assume that µi  = µ indicating a 
constant prior level in the mean of the log-baseline 
hazard function.  

 
Data Likelihood and Posterior 
 For k = 1,…, p, and i = 1,…, m, let Ni be 
the number of observed deaths in the interval (τi, 
τi+1], 

1{ : , 1}i j i j
ik jkj X

W z
τ τ δ+< ≤ =

= ∑ , and Wi = (Wi1,…, 

Wip) with τm+1 = τmax. Assuming that the censoring 
mechanism is non-informative, the likelihood is 
proportional to the product form 
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 Let τm = (τ1,…,τm), and λm = (λ1,…, λm), 
then the posterior density of the parameter (τm, λm, 
βm) is proportional to the product of the prior and 
likelihood 
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where A = M-1(Im-C) and A1 = M1

-1(I2m-C1). 
 
 I use a reversible jump MCMC algorithm 
to extract features from this posterior distribution, 
see the appendix. 

 
Model Comparison 
 In this section, I test the null hypothesis 
H0: ρ = 0 against the alternative H1: ρ > 0. This is 
equivalent to selecting between the conditionally 
independent time-varying covariate effects model 
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M1 analyzed by McKeague and Tighiouart (2000) 
and model M2, in which the covariate effects 
satisfy (3). Pseudo-Bayes factor is used to select 
the best model (Gelfand et al. (1992)), and its 
calculation uses the output of the MHG sampler. 
 Let X = (X1,…, Xn) denote the data vector, 
and θ = (λ(t), β(t)) be the model parameter. The 
predictive density is ( ) ( | , ) ( ) ,f X f X z dθ π θ θ= ∫  

where π(θ) denotes the prior density of θ and the 
conditional predictive ordinate (CPO) is given by 
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where X(i) is the data vector X with Xi deleted. The 
pseudo-Bayes factor is given by 
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and model selection proceeds by choosing M1 (M2) 
according to B > (<) 1. For a complete discussion 
and justification of this technique, see Geisser and 
Eddy (1979), Box (1980), Gelfand et al. (1992), 
and Gelfand and Mallick (1995). 
 Exact calculation of B is not possible, 
however Monte Carlo estimates of the CPO's can 
be obtained using the output of the MHG sampler 
θ1,…, θN and the idea of importance sampling 
density, see Gelfand and Dey (1994). The 
approximation is given by 
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 For a censored observation, I compute the 
conditional survival function S(Xi|X(i), Mj), j=1, 2. 

 
Results 

 
West (1992) and McKeague and Tighiouart (2000) 
studied data on 181 nasopharynx cancer patients 
whose cancer careers, culminating in either death 
(127 cases) or censoring (54 cases) are recorded to 
the nearest month, ranging from 1 to 177 months. 

The analyses were based on five covariates: (1) 
Sex of the patient (0 for male, 1 for female); (2) 
Age of the patient at time t = 0, the start of 
monitoring of the cancer career of that patient 
(standardized to have zero mean and unit standard 
deviation across all patients in the study); (3) 
Dosel, an average measure of the extent of 
radiotherapy treatment to which the patient has 
been subjected (also standardized, as with age); (4) 
Tumor1, a measurement of the extent of the cancer 
(in terms of an estimate of the number of 
cancerous cells), taking value 1, 2, 3 or 4; (5) 
Tumor2, a measure similar to Tumor1, taken from 
a different X-ray section, again taking values 1, 2, 
3 or 4.  

The right hand side of Figure 1 (following 
page) shows the posterior mean effects for tumor1 
and tumor2 obtained by McKeague and 
Tighiouart, and the left hand side the estimates 
obtained by West. The similar pattern of the 
posterior mean effects of tumor1 and tumor2 
suggests that a correlated prior process for the two 
effects is more realistic. I therefore fitted model 
M2 with ρ = 1/2 and compared it with model M1, 
fitted by McKeague and Tighiouart, which 
corresponds to ρ = 0. The remaining 
hyperparameters were the same for both models, 
and can be found in McKeague and Tighiouart 
(2000). The logarithm of the pseudo-Bayes factor 
is found to be 
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suggesting that a time-varying correlated covariate 
effect should be used to estimate conditional 
survival probabilities. 
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Conclusion 
 

I have presented a complete nonparametric 
Bayesian approach to inference from right-
censored survival data. The methodology is an 
extension of the model proposed by McKeague 
and Tighiouart (2000) in the sense that the 
Bayesian model accounts for any correlation 
structure between some of the time-varying 
covariate effects in the prior. Except for the 
constraints (4), direct specification of the 
parameter controlling the amount of correlation 
between the covariate effects is not possible. A 
second stage prior can easily be placed on the 
hyperparameter ρ ; I did not pursue this hierarchy 

here because my goal is to simplify the 
presentation of this methodology. 

The computational method used to extract 
features of the posterior distribution is similar to 
the one used in McKeague and Tighiouart (2000). 
The only difference is the extra term involved in 
the prior ratio of the correlated covariate effects. 
This is very convenient when writing the codes of 
this sampler. 

The methodology was illustrated by an 
analysis of a nasopharynx cancer survival data set. 
The class of prior processes defining the Bayesian 
model was flexible enough to detect a correlation 
structure between some of the time-varying 
covariate effects; in particular, pseudo-Bayes 
factors were calculated to support this evidence.  

 
 

Figure 1. 
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Appendix 
 

To simplify the description of the algorithm, I will 
assume that p=2 and will denote by α(t) and β(t) the 
two time-varying correlated covariate effects and µα, 
µβ their constant prior means, respectively. The 
constant prior mean of the log-baseline hazard 
function λ(t) will be denoted by µλ. The procedure 
for calculating features of the posterior distribution 
of (τm, λm, αm, βm) (note that here m is random) 
consists of running a reversible Markov chain on the 
state space 

1
i

i

S S
≥

= ∪ , where 3i
i iS D= ×R , and 

Di={(x1, x2,…, xi): 0 = x1 < x2< …< xi <τmax}, using 
the Metropolis-Hastings-Green algorithm.  
 A transition from (τm, λm, αm, βm) to 

' ' ' '
' ' ' '( , , , )m m m mτ λ α β  is accomplished by randomly 

selecting one of five types of moves (H0, Hα, Hβ, B, 
D): a change of height of a randomly selected level 
of the baseline hazard rate, change of height of a 
randomly selected level of the covariate effect α(t), 
change of height of a randomly selected level of the 
covariate effect β(t), birth of a new jump time at a 
randomly selected location in (0,τmax), and death of a 
randomly selected jump time, respectively.  
 When selecting moves of type H0, Hα, Hβ, 
the acceptance probability is the same as in the 
classical Metropolis-Hastings algorithm:  

min {1, (likelihood ratio) × (prior ratio) × 
(proposal ratio)}, 

whereas if moves of type B or D are selected, the 
current state (τm, λm, αm, βm) is mapped onto 

' ' ' '
' ' ' '( , , , )m m m mτ λ α β  by a one-to-one transformation τ. 

The acceptance probability then takes the form: 
min {1, (likelihood ratio) × (prior ratio) × 
(proposal ratio) × J(τ)}, 
 

where J(τ) is the Jacobian of the transformation τ. 
Except for the  expressions of the prior ratios in the 
moves of type Hα, Hβ, B, and D, a complete 
description of the types of moves, transformation τ, 
expressions of the likelihood and proposal ratios, and 
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