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Sample size determination is a prerequisite for statistical surveys. A comprehensive 
overview of the Bayesian approach for computation of the sample size, and a comparison 
with classical approaches, is presented. Two surveys are taken as example to illustrate the 
accuracy and efficiency of each approach, and to make recommendations about which 

method is preferred. The Bayesian approach of sample size determination may require 
fewer subjects if proper prior information is available. 
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Introduction 

A good statistical study is one that is well designed and leads to a valid conclusion. 

The main aim of the sample size determination (SSD) is to find an adequate number 

of observations to be made to estimate the population prevalence with a good 

precision. That means an optimal sample size is required to give a desired level of 

validity of the results. Prior determination of a good sample size reduces expenses 

and time by allowing researchers to estimate information about a whole population 

without having to survey each member of the population (Cochran, 1977). A 

considerable number of criteria for SSD are available depending on the two types 

of inferential approaches-Frequentist and Bayesian. 

Frequentist sample size determination methods depend directly on the 

unknown parameter of interest which in practice is often very hard to get whereas 

Bayesian way does not depend on the guessed value of the true parameter rather it 

depends on a prior distribution of the parameter (M’lan et al., 2008). Bayesian 

methods often results in providing a posterior distribution which combines the pre-

experimental information of the parameter (prior distribution) with the 
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experimental data by utilizing the likelihood of the parameter (Pham-Gia, 1995). In 

case of Bayesian sample size determination, the marginal or prior-predictive 

distribution is used which is the mixture of the sampling distribution of the data and 

the prior distribution of the unknown parameters (M'lan et al., 2008). In this context, 

the minimal sample size determination using three different Bayesian approaches 

based on highest posterior density (HPD) intervals which are average coverage 

criterion (ACC), average length criterion (ALC) and worst outcome criterion 

(WOC) (Joseph et al., 1995) are examined herein. Sample sizes for two real life 

surveys were calculated using these criteria and were compared with the sample 

size determined by classical method as well as with the actual sample size utilized 

in these surveys. 

Methodology 

Bayesian Methods Used in Sample Size Determination 

Let θ be an unknown parameter vector that is derived to be estimated and Θ be the 

parameter space for θ. Suppose it is desired to determine the sample size n where a 

random sample X = (X1, X2, …, Xn) is to be used for the estimation of θ. According 

to the Bayesian approach, if f (θ) is the prior distribution for the parameter and the 

likelihood function given the data x = (x1, x2, …, xn) is  ; ( | )L x f x  . The 

preposterior marginal distribution of x is thus given by 

 

      |f x f x f d  


  . (1) 

 

Now, the posterior distribution of θ given data x with sample size n is 
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Using HPD interval approach, a sample size n most appropriate for estimating 

θ can be obtained by finding the n that gives the highest coverage of the equation 

(2) for a given fixed interval. The following three criteria are used in this paper. For 

details of these criteria, see (M'lan et al., 2008; Joseph et al., 1995; Joseph et al., 

1997; Sahu et al., 2006). The average coverage criterion seeks the smallest n 

satisfying the following condition 
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where, f (x) and f (θ | x, n) are given in equation (1) and (2) and a (x, n) is the lower 

limit of the HPD credible set of length l for the posterior density f (θ | x, n). In 

general, a (x, n) will depend both on the data x and the sample size n. ACC finds 

the minimum sample size n such that the expected coverage probability is at least 

(1 − α) for a given fixed HPD interval length l. The average length criterion seeks 

the smallest n satisfying the condition 

 

    ,l x n f x dx l

  ,  (4) 

 

where l is the desired pre-specified average length. This average length criterion is 

used to find a sample size n that would fix the coverage probability (1 − α) of the 

HPD credible set for θ. The worst outcome criterion finds the smallest n satisfying 

the following condition 
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where both l and α are fixed in advance. 

Bayesian Sample Sizes for Normal Mean 

Let the data vector x = (x1, x2, …, xn) consist of exchangeable components from a 

normal distribution with the unknown normal mean μ and variance σ2. The 

precision of the data is then λ = σ2. In this case, the prior distribution is a conjugate 

prior distribution. The prior distribution for μ and λ are λ~gamma(v, β) and 

μ | λ~N (μ0, n0 
λ). That means, the conjugate prior distribution for (μ, λ) is the 

normal-gamma conjugate prior distribution. 

Sample Sizes for Single Normal Mean with Known Precision 

If the precision λ is known, then the posterior distribution will be a normal 

distribution, i.e. 

 

  | ~ ,n nx N   ,  (6) 
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In this case, the three Bayesian sample size criteria give the same solution 

because the posterior precision depends only on n and does not vary with the 

particular observed data vector x. This is also equivalent to that given by Adcock 

(1988) as 
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If a non-informative prior is used such that n0 = 0, then inequality (7) reduces 

to the classical formulation. 

Sample Sizes for Single Normal Mean with Unknown Precision 

If the precision λ is unknown, then marginal posterior distribution of λ is given by 
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and t2υ+n represents a t-distribution with 2υ + n degrees of freedom. In this case, 

different Bayesian sample size criteria will give different sample size if the posterior 

precision varies with the data. 

The ACC sample size for unknown precision is similar to that for known 

precision because υ | β is the prior mean for precision λ, thus it is only necessary to 

substitute the prior mean precision for λ in inequality (7) and exchange the normal 
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quantile Z with a quantile from a t2υ distribution. If the degrees of freedom of t 

distribution do not increase with the sample size, equation (7) can give different 

sample size which is substantially different from those from inequality (8) and 

classical method of sample size. 

The average length criterion seeks the minimum n satisfying the following 

condition 
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When estimating a single normal mean with unknown precision λ with a 

gamma (v, β) prior distribution on λ, the ALC (4) is satisfied for large n. Although 

it does not appear feasible to solve inequality (9) explicitly for n, the left-hand side 

is straight forward to calculate given υ, β, α and n. Therefore, the exact smallest n 

can be found by a bi-sectional search algorithm (Chen et al., 1998). 

For a single normal mean with unknown precision λ with a gamma (ν, β) prior 

distribution on λ, the WOC is satisfied when n is sufficiently large so that 
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where Fn,2v,1−w denotes the 100(1 − w) percentile of an F distribution with n and 2v 

degrees of freedom and   1f x dx w


  . Therefore, the exact smallest n 

satisfying inequality (10) can be found by a bi-sectional search algorithm. If X = χ, 

the sample size is not defined, because Fn,2v,1−w →∞ as w→0, hence inequality (10) 

cannot be satisfied for any n. 

Results 

Classical and Bayesian Sample Size for mean with Simple Random 

Sampling 

For simple random sampling, computation of classical sample size for mean is 

made using the conventional formula (Cochran, 1977) 
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where, CV is the coefficient of variation and r the relative margin of error. Also 

note that with the population mean denoted by μ, d = rμ where d is absolute the 

margin of error and α is the level of significance. Pre-assigned values of α, r, CV 

can give an appropriate sample size n. 

Bayesian sample sizes are computed using the three types of criteria given in 

earlier section and these criteria find the minimum sample size n satisfying the 

respective condition of the criteria. Table 1 gives the classical and Bayesian sample 

size for mean with α = 0.05 considering simple random sampling assuming 

different prior distributions of mean. Also note that different length of the posterior 

credible interval for the mean are computed and given in Table 1. To make sense 

of Bayesian sample size in Table 1, gamma prior distributions for the precision are 

used with different types of parameters. 

In Table 1 the coefficient of variation used in the classical method is CV=2. 

Table 1 shows that the three Bayesian criteria provides different sample sizes. It is 

also observed from Table 1 that Bayesian criteria ACC and WOC seem to lead 

similar sample sizes whereas ALC criteria provides the smallest sample sizes. For 

example, in case of l = 0.1 and a prior about mean, u = v = 2, ACC and WOC yield 

the sample size of n = 3074 and n = 3638 which are somewhat similar but ALC 

yields a sample size of n = 2405 which is smaller than that using ACC and WOC. 

However, from Table 1 the theoretical knowledge that nALC ≤ nACC ≤ nWOC is 

observed to be satisfied. It is important to note that, as long as non-informative prior 

approaches to informative prior, the sample size gradually reduces. For example, 

Bayesian sample sizes are larger than classical sample size for non-informative 

prior (1, 1) but they are smaller than the classical sample size when using the more 

informative prior. That means, if more informative prior information is in hand, 

Bayesian method could supply more parsimonious sample size than classical 

method would. 
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Table 1. Classical and Bayesian Sample Size for SRS (α = 0.05) 

 

Length (l) 
Classical 

sample size 
Different prior   

Bayesian sample size 

ACC ALC WOC 

0.1 
  

6147 
  

Gamma (1,1) 7396 4819 7948 

Gamma (2,2) 3074 2405 3638 

Gamma (3,3) 2385 2028 2627 

Gamma (4,4) 2118 1877 2488 

Gamma (2,3) 4526 3612 4962 

0.2 
  

1537 
  

Gamma (1,1) 1842 1198 2010 

Gamma (2,2) 761 595 823 

Gamma (3,3) 589 501 675 

Gamma (4,4) 522 463 614 

Gamma (2,3) 1147 463 1250 

0.3 
  

683 
  

Gamma (1,1) 813 528 890 

Gamma (2,2) 333 260 392 

Gamma (3,3) 257 218 310 

Gamma (4,4) 227 201 255 

Gamma (2,3) 504 394 560 

0.5 
  

246 
  

Gamma (1,1) 287 185 311 

Gamma (2,2) 114 88 136 

Gamma (3,3) 86 73 105 

Gamma (4,4) 76 67 89 

Gamma (2,3) 176 136 190 

 
 

 
 
Figure 1. Classical and Bayesian sample size for different length with prior gamma (1,1) 
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Figure 1 gives the the comparison among classical sample sizes and Bayesian 

sample sizes for mean with respect to different length of the highest posterior 

density interval using the non-informative prior (1,1). Figure 1 shows that the 

Bayesian WOC criteria provides the largest sample size whereas Bayesian ALC 

criteria provides the smallest sample size and classical sample size and Bayesian 

ACC criteria give almost similar sample size. Figure 1 also elucidates that as length 

increases, sample size gradually decreases and this fact is true for both classical and 

Bayesian method of sample size determination. 

Applicability of the Bayesian SSD in Real Life 

The sample size determination (SSD) approaches from Bayesian perspective are 

grounded in theory and are eventually candidates for utilization in some real 

surveys. However, positive utilization of these methods in large-scale survey 

research in Bangladesh would depend on the computational features of the methods 

with respect to those usually used in such surveys. This study considered two 

recently conducted surveys as examples by comparing the sample sizes in these 

surveys with the hypothetical appropriate sample size computed using Bayesian 

criteria. The choice of the surveys was arbitrary; samples were selected mainly by 

considering availability in published format. 

Household Income and Expenditure Survey 2010 

Household Income and Expenditure Survey (HIES) is conducted by Bangladesh 

Bureau of Statistics (BBS), and is the main data source for estimation of poverty in 

Bangladesh. This survey provides valuable data on household income, expenditure, 

consumption, savings, housing condition, education, employment, health and 

sanitation, water supply and electricity, etc. (HIES, 2005). In the 2010 survey, a 

two-stage stratified random sampling technique was followed in drawing samples. 

The sample size of HIES 2010 was reported as 12,240 households, where 7,840 

were from rural areas and 4,400 from urban areas. For making theoretically 

comparable, the required sample size was also calculated using the usual classical 

formula in equation (11) and multiplying it by design effect (deff) for adjustment 

of cluster sampling. Note that the choice of design effect = 1.6 is made on the basis 

of conventional practice in Bangladesh surveys where design effect is assumed to 

vary from 1.5 to 2.0. 

In this computation CV(x), the pre-assumed value of the population 

coefficient of variation is computed from the HIES 2005 considering “Household 

Income” as the main interesting variable, 
2

2 1.64z    and the maximum allowable 
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relative margin of error r = 10%. The sample sizes actually used in HIES 2010 

along with sample sizes computed using classical and Bayesian methods are given 

in Table 2. For the Bayesian approach the prior    1, ,
CV

std    is considered 

and the CV and standard deviation of “Household Income” computed from the 

HIES 2005 are used. The CV for rural and urban populations as 3.01 and 4.71 

respectively are used in both approaches of sample size determination. 
 
 
Table 2. Classical and Bayesian Sample Size for HIES 2010 (α = 0.1) 

 

Region 
Sample size 

actually used 
Classical 
method 

Hypothetically computed sample size 

ACC ALC WOC 

Rural  7840 3922 3621 8542 7096 

Urban 4400 9604 9200 4908 5021 

Total 12240 13526 12821 13450 12117 

 
 

From Table 2, it can be observed that the total sample size used in the actual 

survey is almost same as that determined by the classical method as well as by the 

three Bayesian criteria. However, the urban-rural split of the sample sizes seems be 

of reverse order in the hypothetically determined methods. This could be due to the 

reason that the actual study allocated the size proportionally to the 70%-30% rural-

urban population of Bangladesh whereas the classical and Bayesian SSD used in 

the hypothetical computation considered separate sample sizes for urban and rural 

domains, and because CV of household income in urban area is much higher than 

that in rural area, the urban sample sizes is obtained to be larger. It is obvious that 

the choice of higher sample size in urban area according to the computed sample 

size could have provided better precision than that possibly been attained in the 

actual survey. 

The comparison between the classical and Bayesian SSD for the said survey 

reveals not much of difference except that the WOC criteria produced smallest 

sample size in comparison to the other methods. The ACC criteria and the classical 

method give almost a same sample size, which implies that with similar level of 

prior information even the most conservative Bayesian criteria gives as good 

sample size as the classical method. This result has been revealed in an extensive 

simulation with different level of significance and different level of precision. 

However, it can be expected that if higher level of prior information is in hand, 

Bayesian approach may possibly utilize them and reduce the required number of 
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samples whereas the classical method do not have any option to utilize them. That 

means that, if a Bayesian approach is applied, as opposed to a classical approach 

for sample size determination, then it could have optimized the opportunity.  

Bangladesh Demographic and Health Survey (BDHS) 2007 

The Bangladesh Demographic and Health Survey (BDHS) is a periodic survey 

conducted in Bangladesh to serve as a source of population and health data for 

policymakers, program managers, and the research community. The sample size 

for BDHS 2007 was determined according to six divisions and two regions using 

BDHS 2004 with the help of the usual SSD formula (see the previous section) and 

the three Bayesian criteria (as described in the Methodology).  
 
 
Table 3. Classical and Bayesian Sample size for six divisions and two regions of BDHS 

2007 (α = 0.05) 
 

Region 
Sample size 

actually used 
Classical 
method 

Hypothetically computed sample size 

ACC ALC WOC 

Dhaka 2726 376 394 213 398 

Chittagong  2423 448 468 259 456 

Khulna 1935 683 1124 677 1010 

Barisal 1674 1071 1490 912 1256 

Rajshahi 2403 707 1064 637 955 

Sylhet 1949 267 166 69 187 

Total (for division) 11485 3552 4706 2767 4262 

Urban 5218 690 1111 669 998 

Rural 7981 513 605 346 576 

Total (for region) 11485 1203 1716 1015 1574 

 
 

Considering the variable “children ever born” as the variable of interest, 

computations similar to those in the previous section were done. The actual sample 

sizes used in the survey along with the computed required sample sizes using 

Bayesian and classical methods are given in Table 3. The sample sizes are 

computed with two different perspectives about domains. Often only the 

rural/urban segregation of the estimates is needed from surveys; in such cases 

sample size may be calculated for only those two domains. BDHS 2007 makes 

separate estimates for the six administrative divisions of Bangladesh and hence 

these six domains were considered in the computation. 
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Table 3 shows that the hypothetically determined sample size (classical and 

Bayesian approach) is very much smaller than actually used sample size of BDHS 

2007 for division and regions which indicates oversampling for reporting more 

reliable estimates of the rarer characteristics of that division or region. However, 

classical and Bayesian sample sizes are determined using the usual SSD formula 

due to unavailability of the used sample size formula of BDHS 2007. Because the 

coefficient of variation of “children ever born” is very low, so that a very much 

smaller sample size was obtained from classical and Bayesian approach than the 

used sample size of BDHS 2007. This may be explained because the Bayesian 

sample size using ACC and WOC criteria is larger than the classical sample size 

for all division and two regions. This table concludes that the Sylhet division has 

smallest sample size among all divisions for both approach and actually used 

sample size of BDHS 2007. Also note that Barisal division has the largest sample 

size among the other divisions of Bangladesh for classical and Bayesian approach 

but BDHS 2007 showed that the Dhaka division has the largest sample size among 

all divisions. This table also shows that the urban-rural sample size is present in 

reverse order in the hypothetically determined methods like the previous survey 

(HIES 2010). This statement indicates that the sample size allocation among the 

urban-rural strata and among the divisions could have possibly been done 

proportionally.  

Conclusion 

Results suggest that the classical sample size is larger than Bayesian sample size in 

the applications examined, although the estimated sample sizes in both methods 

(classical and Bayesian) are decreased when a larger margin of error is considered. 

Prior information can reasonably be utilized to improve Bayesian sample size 

estimation. In Bayesian approach of sample size determination, different prior are 

used in place of classical estimator. The estimated sample sizes decreased when 

moving towards informative prior from a non-informative prior. Results from this 

study show that the proper use of prior information may enhance the strength the 

of the Bayesian method of sample size determination. Thus, an optimized 

parsimony could be achieved by use of Bayesian sample size determination with 

substantially informative priors. 
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