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The optimal choice of sites to make spatial prediction is critical for a better understanding 
of really spatio-temporal data. It is important to obtain the essential spatio-temporal 
variability of the process in determining optimal design, because these data tend to exhibit 

both spatial and temporal variability. Two new methods of prediction for spatially 
correlated functional data are considered. The first method models spatial dependency by 
fitting variogram to empirical variogram, similar to ordinary kriging (univariate approach). 
The second method models spatial dependency by linear model co-regionalization 
(multivariate approach). The variance of prediction method was chosen as the optimization 
design criterion. An application to CO concentration forecasting was conducted to examine 
possible differences between the design and the optimal design without considering 

temporal structure. 
 
Keywords: Spatio-temporal process, functional data, optimal design, ordinary 
kriging, total model, GenSA optimization 

 

Introduction 

A method for optimum choice of location to obtain better spatial prediction is 

needed. Ordinary geo-spatial prediction methods deal with scalar value for random 

variables in each coordinate (Cressie, 1993). Recently, Giraldo et al. (2011a, 

2011b) have extended geo-spatial prediction methods for one-dimensional 

functional data (curves) based on the statistic proposed by Delicado et al. (2010). 

Delicado et al. constructed a statistic for spatial correlated functional data and 

proposed a new experimental variogram based on L2 functional distance to function 

value spatial data. Giraldo et al. extended the ordinary kriging model. They also 
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used the total linear functional model for creating a new prediction method. In the 

next section, these models are introduced briefly.  

Many researchers have investigated the problem of spatial sampling design 

e.g. Zhu & Stein (1999), Wikle & Royle (1999), Diggle & Lophaven (2006), 

Fuentes et al. (2007), etc. Here, variance of spatial prediction in extended ordinary 

kriging and Total model spatial prediction of function value data are chosen as 

criteria for obtained optimization. This is done by application of Xiang et al.’s 

(2012) optimization procedure, “Generalized Simulated Annealing for Efficient 

Global Optimization” or “GenSA,” described in the section titled ‘Optimization 

Procedure.’ Following that, CO concentration data in Tehran weather pollution 

stations is introduced as spatial correlated functional data in seventeen stations. The 

proposed approach is illustrated in the section titled ‘Application,’ and for the 

possible differences between this design and the optimal design without 

considering temporal structure, the air monitoring network is redesigned based on 

the average data over time. 

Prediction Procedures 

Consider a functional spatial process X = {Xs(t) : s   D   Rd, t   [a,b]}, where 

functional variable Xs belongs to the separable Hilbert space H of square integrable 

functions defined on T for any s   D. We assume second-order stationarity and 

isotropicity for each t   T in random process. Let s1, ..., sn be the sites in D that we 

observe a realization 
1
,...,

ns sX X  of the functional random process Xs.  

Ordinary kriging for function value spatial data 

Ordinary kriging to function value spatial data is extended by Giraldo e.al (2011a) 

as following model 
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where  
0

ˆ
sX t  is predicted function in location 0s . Modeling based on this 

prediction method needs some assumptions such as functional version of intrinsic 

stationarity and isotropicity (see Delicado et al., 2010). Emprical variogram for 

modeling spatial dependency is obtained founded on the following minimization 

variance considering unbiasedness condition 
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where moment estimation method leads to 
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Therefore, ordinary variogram, including exponential, spherical and so on, is fit to 

(3) by least square method and scale value coefficients are obtained. 

Total model prediction of function value spatial data  

Giraldo et al. (2011b) create new predictor for function value spatial data based on 

functional total model (Ramsay & Silverman, 2005) 
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and multivariate spatial predictor (Ver Hoef & Cressi, 1993; Ver Hoef and Bari, 

1998) 
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as follows 
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where λn(t,ν), ..., λ1(t,ν) are functions T×T→R. Modeling based on this prediction 

need some assumption such as functional version of second-order stationarity and 

isotropicity that is proposed by Delicado et al. (2010). Coefficients of this model 

are found through following minimization variance with unbiasedness condition 
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To solve equation (7), spatial dependency must be modeled with linear model co-

regionalization (Wackernagel, 2003). 

Optimization Procedure 

Optimization is the process which one finds that value of a vector x, say, that 

maximizes or minimizes a given function f. The idea of optimization goes to the 

heart of statistical methodology, as it is involved in solving statistical problems 

based on least squares, maximum likelihood, posterior mode, and so on. Xiang et 

al. (2012) created global optimization procedure “GenSA” which is applicable for 

geo-statistical process. GenSA gives the lower and upper bound of geographical 

coordinates and finds optimum coordinates based on specific criteria. GenSA uses 

a distorted Cauchy-Lorentz visiting distribution, with its shape controlled by the 

parameter qv 
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Here t is the artificial time. This visiting distribution is used to generated a trial 

jump distance Δx(t) of variable x(t) under artificial temperature  
vqT t . The trial 

jump is accepted if it is downhill (in terms of the objective function). If the jump is 

uphill it might be accepted according to an acceptance probability. A generalized 

Metropolis algorithm is used for the acceptance probability 
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where qa is a parameter.  

The minimax of prediction model of variance was used as optimization 

criterion. Variance of mentioned predictions is calculated as follows 

 

     
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Giraldo et al. (2011a) calculate variance of ordinary kriging, resulting in 
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where functional variogram Γ(t) is defined by Delicado et al. (2010) and γ(.) is the 

classical variogram fitted to empirical variogram. Giraldo et al. (2011b) calculate 

variance of Total model, resulting in 
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More detail of this variance is provided in Giraldo et al. (2011a, 2011b). To 

calculate the predictions variance in any location s0, a smoothing process is applied 

to the curves, which expands the curves and the functional parameters in terms of 

a set of Fourier basis functions. The number of Fourier basis is found by a 

Functional Cross-Validation procedure similar to the leave-one-out procedure 

(Cressie, 1993) introduced by Giraldo et al. (2011a). 

Data 

Transportation-related air pollution is one of Tehran’s most important problems. 

One of the most hazardous air polluting agents is carbon monoxide (CO), often 

exceeding two or three times the average levels recommended by the World Health 

Organization (WHO). This gas is colorless, odorless, and tasteless, and its 

predilection to bind hemoglobin is 200-220 times more than that of oxygen. Thus, 

it can prevent oxygen transfer to tissues and cause tissue hypoxia. For these reasons, 

the demand for reliable data to assess progress in air quality has grown rapidly over 

the past decade. In fact, motivated by increasing air monitoring stations in Tehran, 

three newly designed sites are proposed for monitoring CO. The data set used here 

describes daily averages of carbon monoxide (in ppm) at 17 monitoring sites, 
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geographically distributed across Tehran. Following the air quality standards 

(NAAQS, http://www.epa.gov/air/criteria.html), daily CO concentration is 

measured as the daily 1-hour average concentration. The current analysis considers 

data collected in 2011. 

Application 

Positioning of Tehran air quality stations and curves of seventeen stations created 

by smoothing procedure (Ramsay & Silverman, 2005) with 31 Fourier basis is 

illustrated in Figure 1. 
 
 

 
 
Figure 1. Position and CO concentration curves of seventeen air quality monitoring 

stations in Tehran 

 

 
 

Considering variance of the mentioned prediction method in GenSA algorithm, 

three locations in Tehran map can be identified that minimize maximum predictions 

variance simultaneously. The possible differences between this design and the 

optimal design, without considering temporal structure, are surveyed, and the air 

monitoring network is redesigned based on averaged data over time. Figure 2 shows 

the optimal location based on Ordinary method for functional data vs. ordinary 

kriging on averaged time data (spatial data). It is worth mentioning that spherical 

http://www.epa.gov/air/criteria.html
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variogram (13) is chosen for modeling dependency structure, then parameters are 

estimated based on empirical variogram by applying least square method. 
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Figure 2. Optimal location for three monitoring sites based on kriging model for spatial 
data (left) and ordinary model for spatial functional data (right) 

 

 
 

Figure 3 shows optimal location founded on Total prediction model for functional 

data vs. ordinary kriging on averaged time data (spatial data). Dependency structure 

is modeled with a linear model co-regionalization with exponential variogram (14) 
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Figure 3. Optimal location for three monitoring sites based on kriging model for spatial 

data (left) and Total model for spatial functional data (right) 

 

 

Results 

Figures 2 and 3 show the optimal design based on ordinary model and Total model 

for the spatially correlated functional data. 

Conclusion 

Although the modeling of spatial dependency based on the two proposed functional 

models is different, both tend to locate new monitoring stations nearer from existing 

stations than in the non-functional version of ordinary kriging. Thus, considering 

time on spatial data affects location sampling. In other words, maximum variance 

of functional predictions of the three locations is global minimized closer to other 

stations, but optimal design based on averaged data over time (spatial data) tends 

to fill the space (Figures 2 and 3). 
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