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The effect of misspecification of correct sampling probability distribution of Generalized 
Autoregressive Conditionally Heteroscedastic (GARCH) processes is considered. The 

three assumed distributions are the normal, Student t, and generalized error distributions. 
The GARCH process is sampled using one of the distributions and the model is estimated 
based on the three distributions in each sample. Parameter estimates and forecast 
performance are used to judge the estimated model for performance. The AR-GARCH-
GED performed better on the three assumed distributions; even, when Student t distribution 
is assumed, AR-GARCH-Student t does not perform as the best model. 
 
Keywords: Generalized Error Distribution, forecasts, GARCH, misspecification, 

specification 

 

Introduction 

Since the introduction of Generalized Autoregressive Conditional Heteroscedastic 

(GARCH) model of Bollerslev (1986), thousands of articles have been published 

applying the model on financial series. The model captures volatility in the market, 

and its distributional specification makes it special among other nonlinear time 

series models. The GARCH process exists on the assumption of Normal, Student t, 

and Generalized Error Distributions (GED). The Normal distribution is the usual 

assumption in any time series estimation, but due to the fact that the distribution of 

GARCH process is leptokurtic, Normal distribution was found to be in appropriate 
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in capturing the tail behavior of the series. Bollerslev (1987) therefore proposed 

Student t distribution to capture the long tail behavior of the process. Nelson (1991) 

proposed the GED distribution. 

Apart from the real applications of GARCH models on financial series, there 

is need to study the effect of misspecifying the GARCH distributional assumptions 

during estimation. Articles are very scarce along this line of thought. Wang (2002) 

affirms that spurious and inefficient inference is expected when pure GARCH 

models are misspecified. This as well may affect the Quasi Maximum Likelihood 

Estimates (QMLEs) of the misspecified model.  The QMLE of pure GARCH(1,1) 

models indicates that the ARCH parameter is small, GARCH parameter is close to 

unity and the sum of both parameters approaches unity as the sampling frequency 

increases (Engle and Bollerslev, 1986; Bollerslev and Engle, 1993; Baillie, 

Bollerslev and Mikkelsen, 1996; Ding and Granger, 1996; Andersen and Bollerslev, 

1997, and Engle and Patton, 2001.) This fact is reflected in the Integrated GARCH 

(IGARCH) of Engle and Bollerslev (1986). A more recent paper by Jensen and 

Lange (2010) shows that in a GARCH (1,1) model, the estimates of 1̂  and 1̂  tend 

to zero and unity respectively as the sampling frequency increased, which is an 

IGARCH effect. This IGARCH effect is known for pure-GARCH processes. In a 

linear AR-GARCH or nonlinear AR-GARCH processes, IGARCH effect is not 

plausible. The present work considers AR-GARCH process, and therefore 

IGARCH effect may not be expected. 

As tail distribution of the GARCH model is captured using the three 

distributions, and parameters estimated adjust accordingly, forecasts performances 

of the model are affected. Extensive Monte Carlo simulation was performed on the 

GARCH model using the three distributions. 

The GARCH (1,1) model 

The GARCH (1,1) model proposed in Bollerslev (1986) is 

 

 
2 2 2

1 1 1 1t t tw         (1) 

 

where εt are the returns series of the financial asset; σt is the volatility at time t and 

zt gives the assumed distribution. The parameters, α1 and β1 are conditioned as 

w > 0, α1 ≥ 0, β1 ≥ 0, and α1 + β1 < 1 in order to ensure stationarity of the whole 

process (Bollerslev, 1986). This condition is establish by defining 
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 2 2 2 21t t t t tk z       where zt ≈ N(0,1). Using this in (1) results in the 

Autoregressive Moving Average (ARMA) representation 

 

  2 2

1 1 1 1 1t t t tw k k            (2) 

 

where kt is serially uncorrelated with mean zero. Stationarity of the process is then 

ensured when the roots of 1 – α(1) – β(1) = 1 – (α1 + β1) = 0 lie outside the unit 

circle and this is not conditioned on time t as it is measured directly from the 

parameters of the model. Hence it is expected that 

 

  1 1 1    (3) 

 

for existence of covariance stationary process. For the stationary process, the finite 

unconditional variance of εt is given by 

 

 
2

1 11

w


 


 
 (4) 

Kurtosis of GARCH (1,1) model 

For any GARCH (p,q) process, E(zt) = 0 and Var(zt) = 1.  3

tE z  is the skewness 

and  4

tE z  gives the measure of skewness. Because the emphasis is on tail 

behaviour of GARCH residuals, the expression for the unconditional kurtosis is 

next derived. 

Assuming that  2

tE   and  4

tE   exist, then it suffices to write 

 

 4 3;t zE z k   

 

because   0;tE    

 

     4 4 4

t t tE E E z   because t t tz   and t  and tz  are independent 
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Then, squaring GARCH (1,1) model, 

 
2 2 2

1 1 1 1,t t tw        

 

gives 

 
2 2 2 4 2 4 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 12 2 2
t t t t t t tw w w                     . 

 

Taking expectation of the resulting expansion, as well as applying the properties 

outlined above 

 

 
 

     

2

2

1 1

22

1 1 1 1 1

1

1 1 2
t

z

w
E

k


 

    


 

          

 

 

Using the relation      4 43t z tE k E    where kz is the excess kurtosis of zt, then 

 

 
  

     

2

1 14

22

1 1 1 1 1

1 3

1 1 2

z

t

z

w k
E

k

 


    

  


          

 

 

Using the formula 
 

 

4

2
2

3
t

t

E
k

E





 
 
 

 for excess kurtosis and with the fact that 

 2

1 11
t

w
E 

 


 
 from the properties above, 

 

 

    

     

   

   

22

1 1 1 1

22 2

1 1 1 1 1

2

1 1

22 2

1 1 1 1

1 3 1
3

1 1 2

3 1
3

1 2

z

z

z

z

w k
k

w k

k

k



   

    

 

   

       
          

   
  

    
 

 (5) 
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with normally distributed innovations zt, kz = 0 and 

 

 
 

2

1

22

1 1 1

6

1 2
k



  


  
 (6) 

 

with non-normally distributed innovations zt, as in Student t and GED, 

   2 1t tVar z E z   and 
 

 
 

4

4

2
2

0
t

z t

t

E z
k E z

E z

  
 
 

, then 

 

 
 

   

2 2 2

1 1 1 1

22 2

1 1 1 1

6 2

1 2

z z z

z

k k k
k

k


   

   

   


   
 (7) 

 

In these two cases, it is observed that 
2

1  is important in determining the tail 

behavior of t , because once 
2

1 0  , 0k  . Hence, zk k   for the non-normally 

distributed case and it implies the similarity of the tail behaviors of both t  and tz  

Distributional Assumptions and Estimation 

For GARCH models, the unconditional distributions are always non normal, and 

this gives fatter tails than the normal distribution. In practice, zt is assumed to follow 

the normal distribution or non-normal distributions. These non-normal distributions 

have been proved to perform well in modeling the fatter tails (leptokurticity) 

observed in GARCH residuals. The non-normal distributions are the Student t 

distribution proposed in Bollerslev (1987) and Generalized Error Distribution 

(GED) by Nelson (1991) 

The standardized Normal distribution is 

 

   21 1
exp ,

22
t t tf z z z



 
      

 
 (8) 

 

with the log likelihood function 

 

     2

1

1
log 2

2

N

t t

t

L z N z


 
   

 
  (9) 
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where N is the sample size. The standardized Student t distribution proposed in 

Bollerslev (1987) is given as 

 

         
 1 2

2
1 1/2

, 1 / 2 / 2 1 ,

v

t

t t

z
f z v v v v z

v


 

   
               

 
 (10) 

 

This distribution is symmetric around zero as it is observed in its specification 

with v > 2. At v = 1, the Student t reduces to Cauchy distribution. At 2 < v ≤ 4, its 

conditional kurtosis is less than 3, which means that the resulting tail effect is 

normal. For v > 4, the kurtosis becomes 3(v – 1)(v – 4)−1, which is greater than 3, 

hence the tail effect becomes non-normal distribution. As v → ∞, the distribution 

converges to normal distribution. The log likelihood function of Student t 

distribution is then simplified as 

 

  
   

  
 

 

2
2

2
1

2 / 21
, log 1 log 1

2 11 / 2

N
t

t

t

v v z
L z v N v

vv





                       

  (11) 

 

The standardized GED proposed in Nelson (1991) is given as 

 

  

/21 11/2 3/2

1 3 1 3 1
, 2 exp

v

v

t tf z v v z
v v v v

 



                                              

 (12) 

 

where −∞ < zt < ∞ and v > 0. The GED reduces to the standard normal distribution 

at v = 4. At 0 < v < 2, the distribution has thicker tail than the normal distribution, 

for example, at v = 1 the distribution becomes a double exponential (Laplace) 

distribution. At v > 2, the distribution of zt has thinner tails than the normal 

distribution, for example, as v tends to infinity, zt reduces to a uniform distribution 

on the interval  3, 3 . The log likelihood of this distribution is then  

expanded as 

 

  

/21 11/2 3/2

1 3 1 3 1
, 2 exp

v

v

t tf z v v z
v v v v

 



                                              

 (13) 
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These likelihood functions are then estimated using the numerical derivatives 

based on the fact that GARCH models lack closed form estimation. Berndt, Hall, 

Hall and Hausman (BHHH) algorithm of Berndt, et al (1974) is then used. This 

algorithm is termed Gauss-Newton in general Nonlinear Least Squares (NLS) and 

BHHH in MLE estimation. Unlike some other derivatives, it uses only first 

derivatives of the likelihood function and computes a set of parameter values as 

 

 
     

 
 

 
 

 
1

1

'
1

,. ,. ,.
.

i i i
N

t t ti i t t N

t

L z L z L z
 

  







   
  
   
 

   (14) 

 

where L(zt,.) is the likelihood function.  The initial parameter set is given as ψ(0) and 

the parameter set which maximize the likelihood function is denoted as ψ(i+1). The 

estimation of GARCH (1, 1) model with Student t distribution and GED follow the 

usual Quasi Maximum Likelihood Estimation (QMLE) because normality 

assumption is violated in these cases. 

Misspecification of distribution of GARCH model could lead to stationarity 

and explosion of the series in some points. Though standard errors will be 

consistent; the QML estimators 
 1i




 are generally closed to the exact ML 

estimator 
 1ˆ i




 for symmetric GARCH distribution. For non-symmetric 

conditional distributions, both the asymptotic and finite sample loss in efficiency 

are quite large and parametric estimation approach are not applicable in this regard 

(Mills and Markellos, 2008). 

Forecasts Evaluation 

Forecast evaluation criteria considered are the Root Mean Squares Forecast Error 

(RMSFE), Mean Absolute Error (MAE), Mean Absolute Percentage Forecast Error 

(MAPFE) and Theil Inequality of Theil (1961;1966). The MSFE is defined as 

 

  
2

2 2

1

1
ˆ

m

t t

t

MSFE
m

 


   (15) 

 

where 
2ˆ
t  is the predicted in-sample conditional variances, and this depends on the 

scale of the variance series, 
2

t . The square root of MSFE is the RMSFE 
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  
2

2 2

1

1
ˆ

m

t t

t

RMSFE
m

 


   (16) 

 

The MAFE and MAPFE are obtained by taking the absolute differences of the 

predicted conditional volatilities and the observed volatilities as 

 

 
2 2

1

1
ˆ

m

t t

t

MAFE
m

 


   (17) 

 

 
2 2

2
1

ˆ
100

m
t t

t t

MAPFE
 




   (18) 

 

The Theil inequality is given as 

 

 

 
2

2 2

1

2 2

1 1

1
ˆ

1 1
ˆ

m

t t

t

m m

t t

t t

m
TI

m m

 

 



 









 

 (19) 

 

The inequality coefficient is time invariant and always lies between 0 and unity. 

The smaller these forecast evaluation criteria, the better the candidate model 

represent well the data. 

Monte Carlo Simulations 

The Monte Carlo experiment is set up using the AR(1)−GARCH(1,1) DGP  

 

 
2 2 2

1 1 10.02 0.250.15 0.5 , 0.60
tt t t t ty y          , (20) 

 

with the error distribution εt = σtzt where zt is assumed to follow Normal, Student t 

and GED distributions. The parameters of the AR(1) and GARCH(1,1) models are 

set within the stationary region in order to avoid problems data explosion. The 

sample sizes N are varied as 2000, 4000 and 6000 with in-sample forecasts 

generated as 25% of the data length. The results are then presented as Scenarios 1 
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to 3 in Tables 1−6 below. Each Scenario gives results for parameter estimation, 

volatility, excess kurtosis and forecasts evaluations criteria. 

Scenario 1: When the true Distribution is Normal 

Tables 1 and 2 present the results when the GARCH processes are simulated based 

on Normal distribution assumption, and these processes are used to estimate the 

GARCH process based on Student t, GED and the same Normal distribution. The 

results in Table 1 show that the AR-GARCH parameter estimates, measures of 

volatility and kurtosis are not consistent with sample sizes. Both the AR and 

GARCH parameter estimates computed for Student t distribution have larger biases 

in compared with that of Normal and GED distributions, even though excess 

kurtosis of the AR-GARCH-Student t model is the smallest. Volatility of the AR-

GARCH-Student t model is also observed to be higher than that of the Normal and 

GED distributions. The excess kurtosis of the AR-GARCH-Normal model was 

expected to be the smallest because the series is sampled from Normal distribution 

but this was not the case. 

Looking at the results of the in-sample forecasts realized from the AR-

GARCH models as given in Table 2, the AR-GARCH-Normal and AR-GARCH-

GED model perform better than AR-GARCH-Student t model on forecasts as given 

by the minimum values of the RMSPE and Theil inequality coefficients. The AR-

GARCH-GED is expected to realize better forecasts than AR-GARCH-Normal 

model. 
 
 
Table 1. Model Parameter, Volatility and Kurtosis when GARCH processes are simulated 

based on Normal distribution assumption 
 

Assumed 

Distribution 
Sample 0

̂  

(0.1500) 

1
̂  

(0.5000) 

ŵ  

(0.0200) 
1̂  

(0.2500) 

1̂  

(0.6000) 

Persistence 

(0.8500) 
Volatility 

Exc. 

Kurtosis 

Normal 

2000 0.1480 0.4839 0.0169 0.2110 0.6596 0.8706 0.1306 1.6427 

4000 0.1518 0.4724 0.0173 0.2049 0.6590 0.8639 0.1271 1.8430 

6000 0.1475 0.4750 0.0180 0.2052 0.6503 0.8555 0.1246 1.3275 

Student t 

2000 0.1462 0.4868 0.0820 0.1500 0.6000 0.7500 0.3280 0.2895 

4000 0.1471 0.4794 0.0794 0.1500 0.6000 0.7500 0.3176 1.8408 

6000 0.1576 0.4916 0.0849 0.1500 0.6000 0.7500 0.3396 0.4501 

GED 

2000 0.1499 0.4811 0.0160 0.2125 0.6831 0.8956 0.1533 2.3761 

4000 0.1547 0.4662 0.0172 0.2106 0.6743 0.8849 0.1494 2.1683 

6000 0.1495 0.4723 0.0185 0.2118 0.6612 0.8730 0.1457 1.7707 
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Table 2. Forecast evaluation estimates when GARCH processes are simulated based on 

Normal distribution assumption 
 

Assumed 
Distribution 

Sample RMSPE MAFE MAPFE Theil  

Normal 

2000 0.0003 0.0112 48.0967 0.0289 

4000 0.0002 0.0104 44.8820 0.0257 

6000 0.0001 0.0101 49.5855 0.0287 

Student t 

2000 0.0011 0.0464 500.3362 0.1270 

4000 0.0007 0.0437 529.5600 0.1242 

6000 0.0008 0.0602 503.3612 0.1363 

GED 

2000 0.0003 0.0110 50.1820 0.0276 

4000 0.0002 0.0102 47.7504 0.0246 

6000 0.0001 0.0099 53.1115 0.0276 

 

Scenario 2: When the true Distribution is Student t 

Tables 3 and 4 present the results when the true GARCH distribution follows 

Student t. Here, the distinctions in the GARCH estimates can only be made using 

the persistence and unconditional volatility measures. The AR-GARCH-Student t 

model still presents smallest persistence and highest volatility. The excess kurtosis 

of the AR-GARCH-Student t model is the smallest followed by that of AR-

GARCH-Normal model. 
 
 
Table 3. Model Parameter, Volatility and Kurtosis when the true GARCH distribution 
follows Student t 
 

Assumed 
Distribution 

Sample 0
̂  

(0.1500) 

1
̂  

(0.5000) 

ŵ  

(0.0200) 
1̂  

(0.2500) 

1̂  

(0.6000) 

Persistence 
(0.8500) 

Volatility 
Exc. 

Kurtosis 

Normal 

2000 0.1408 0.5096 0.0232 0.2295 0.6105 0.8400 0.1450 2.5966 

4000 0.1478 0.4830 0.0237 0.2576 0.5762 0.8338 0.1426 4.0384 

6000 0.1497 0.4878 0.0219 0.2483 0.6032 0.8515 0.1475 3.7926 

Student t 

2000 0.1510 0.5165 0.0938 0.1500 0.6000 0.7500 0.3752 0.7336 

4000 0.1472 0.4829 0.0911 0.1500 0.6000 0.7500 0.3644 0.8526 

6000 0.1408 0.5114 0.0961 0.1500 0.6000 0.7500 0.3844 1.1013 

GED 

2000 0.1416 0.4967 0.0261 0.2476 0.5979 0.8455 0.1689 3.5293 

4000 0.1473 0.4792 0.0243 0.2620 0.5937 0.8557 0.1684 5.7359 

6000 0.1491 0.4890 0.0230 0.2585 0.6093 0.8678 0.1740 5.9655 
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Table 4. Forecast evaluation estimates when the true GARCH distribution follows 

Student t 
 

Assumed 
Distribution 

Sample RMSPE MAFE MAPFE Theil  

Normal 

2000 0.0004 0.0145 63.7385 0.0332 

4000 0.0002 0.0131 62.2680 0.0324 

6000 0.0003 0.0247 63.1032 0.0392 

Student t 

2000 0.0015 0.0627 635.1114 0.1552 

4000 0.0010 0.0574 611.0665 0.1471 

6000 0.0009 0.0678 645.0181 0.1582 

GED 

2000 0.0004 0.0156 76.3588 0.0355 

4000 0.0002 0.0132 68.0163 0.0321 

6000 0.0004 0.0253 70.6578 0.0396 

 
 

In terms of forecasts, the AR-GARCH-Student t model is the worst, even 

though the DGP is realized from the same probability distribution. The forecast 

performances of AR-GARCH-Normal and AR-GARCH-GED seem not different 

from each other as indicated by the forecast evaluation estimates. 

Scenario 3: When the true Distribution is GED 

Table 5 and 6 present the results when the true GARCH distribution is GED. 

In Table 5, in the AR(1) estimates, the estimates for the constant 0̂  are all 

consistent with sample sizes when the three probability distributions are assumed. 

The autoregressive parameters 1̂  are not consistent with sample sizes. The 

GARCH parameter estimates computed for Student t distribution are the same to 

that of Table 1 and 3 while the AR(1) parameter are different in the two results. The 

Student t distribution assumption of GARCH model still presents model estimates 

with highest volatility but with lowest persistence of this volatility. Misspecifying 

GED for Student t distribution here also caused the excess kurtosis to be negative 

in AR-GARCH-Student t model and this is a very spurious case. 

The forecast evaluation results of the model estimates follow in In Table 6. 

Starting with the AR(1)−GARCH(1,1)−Student t model, the model is the worst in 

terms of forecasts because it presents the highest RMSPE, MAPE, MAPFE and 

Theil inequality coefficient. The best model is AR(1)−GARCH(1,1)−GED model, 

and this is expected because the DGP assumed GED initially. The performance of 
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AR(1)−GARCH(1,1)−Normal in terms of forecast is very close to that of 

AR(1)−GARCH(1,1)−GED model. 
 
 
Table 5. Model Parameter, Volatility and Kurtosis when the true GARCH distribution is 

GED 
 

Assumed 
Distribution 

Sample 0
̂  

(0.1500) 

1
̂  

(0.5000) 

ŵ  

(0.0200) 
1̂  

(0.2500) 

1̂  

(0.6000) 

Persistence 
(0.8500) 

Volatility 
Exc. 

Kurtosis 

Normal 

2000 0.1409 0.5120 0.0219 0.2260 0.6112 0.8372 0.1345 0.1984 

4000 0.1478 0.4848 0.0236 0.2576 0.5639 0.8215 0.1322 0.4768 

6000 0.1497 0.4880 0.0218 0.2465 0.5932 0.8397 0.1360 0.3859 

Student t 

2000 0.1373 0.5192 0.0877 0.1500 0.6000 0.7500 0.3508 -0.3883 

4000 0.1469 0.4863 0.0854 0.1500 0.6000 0.7500 0.3416 -0.3554 

6000 0.1500 0.4860 0.0875 0.1500 0.6000 0.7500 0.3500 -0.4099 

GED 

2000 0.1424 0.5024 0.0225 0.2284 0.6031 0.8315 0.1335 0.1874 

4000 0.1481 0.4834 0.0228 0.2493 0.5763 0.8256 0.1307 0.4139 

6000 0.1498 0.4900 0.0214 0.2430 0.5973 0.8403 0.1340 0.3518 

 
 
Table 6. Forecast evaluation estimates when the true GARCH distribution is GED 

 
Assumed 

Distribution 
Sample RMSPE MAFE MAPFE Theil  

Normal 

2000 0.0002 0.0099 48.9918 0.0280 

4000 0.0002 0.0100 50.8079 0.0292 

6000 0.0002 0.0142 50.9182 0.0325 

Student t 

2000 0.0013 0.0529 521.4746 0.1396 

4000 0.0008 0.0496 499.5437 0.1329 

6000 0.0008 0.0547 494.8839 0.1379 

GED 

2000 0.0002 0.0100 49.5704 0.0284 

4000 0.0002 0.0097 48.9723 0.0284 

6000 0.0002 0.0140 49.9722 0.0322 
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Conclusion 

The misspecification of GARCH probability distribution functions were considered. 

These are the Normal, Student t and Generalized Error Distributions (GED). The 

estimation convergence time varied based on the distribution and the set sample 

sizes. When a Normal distribution was assumed, the AR−GARCH−GED seemed 

to perform marginally better than AR−GARCH−Normal model in terms of 

forecasts as revealed in the estimates of the Theil inequality. Though, the 

AR−GARCH−Normal was the best model here in terms of parameter estimates, 

and this was expected because the DGP assumed Normal distribution initially. With 

the assumption of Student t distribution in the DGP, the forecast performance of 

the models computed with Normal distribution and GED reduced and these still 

presented better models than the corresponding AR−GARCH−Student t model. 

Similar results were obtained when the DGP assumed GED. 

It was also observed that all the results obtained, particularly the parameter 

estimates were not consistent with sample sizes. These are expected because 

volatility came into play. In empirical modeling research like this, interest should 

either lie in the behavior of the volatility–assuming a probability distribution which 

will give us the best volatility measurement–or in the forecasts. The best GARCH 

model may not actually produce the best forecast estimates and probability 

distributions have effect on the tail distribution of the innovations. This work can 

be replicated using higher order of the model, and in that case, more sophisticated 

software is recommended for the simulation in order to avoid convergence 

problems. 
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