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Lognormal distribution is widely used in the analysis of failure time data and stock prices. 
Maximum likelihood and Bayes estimator of the coefficient of variation of lognormal 
distribution along with confidence/credible intervals are developed. The utility of Bayes 
procedure is illustrated by analyzing prices of selected stocks. 
 

Keywords: Bayesian inference, volatility, stock prices, coefficient of variation, 
lognormal distribution 

 

Introduction 

The study on coefficient of variation (CV) of the normal distribution dates back to 

McKay (1932); since then various articles have appeared concerning improved 

estimation of CV of a normal distribution and tests for equality of CV’s of two or 

more normal distributions. Some of the recent references regarding the estimation 

of CV of the normal distribution are Ahmed (1995), Breunig (2001), Liu, et al. 

(2006), Mohmoudvand & Hassani (2009) and Panichkitkosolkul (2009). The 

papers dealing with tests for equality of CV’s of independent normal distributions 

are Bennett (1976), Doornabos & Dijkstra (1983), Shafer & Sullivan (1986), Gupta 

& Ma (1996), Nairy & Rao (2003) and Verril & Johnson (2007). In addition to 

these papers, the papers on CV relating to finance and economics are Brief & Owen 

(1969), Jobson & Korkie (1981), De, et al. (1996) and Memmel (2003). These 

papers are developed on the assumption of normality of the observations.  

mailto:arunaraomu@gmail.com
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Generally stock prices do not follow normal distribution and the data is 

analyzed using logarithm of prices. This amounts to the assumption that stock price 

is lognormally distributed. CV is not invariant under distributional transformation, 

and thus estimators are to be derived for the CV of the lognormal distribution.  

Maximum likelihood estimator (M.L.E) and confidence interval for the CV 

of the lognormal distribution are derived, as well as the Bayes estimator of CV of 

the lognormal distribution using a) Right invariant prior b) Left invariant Jeffrey’s 

prior. 

Bayesian inference has several advantages over the likelihood based inference 

(Ghosh, et al., 2006; Berger, 1985). Simulation study carried out in this paper 

suggests that Bayesian credible intervals have smaller average length compared to 

the confidence interval obtained by M.L.E. Financial analysts are generally not well 

exposed to Bayesian analysis and this paper introduces this idea by analyzing the 

stock prices of 3 Indian stocks. 

The maximum likelihood estimator and Bayes estimator of the CV of the 

lognormal distribution and the associated confidence/credible intervals are initially 

derived. A simulation study is conducted to compare the coverage probability and 

average length of the confidence/credible intervals. The procedures developed in 

this paper are illustrated by analyzing stock prices of 3 scripts belonging to large 

cap sector of the Indian stock market. For this purpose daily data from August 19 

to November 6 for the year 2013 is used. By using part of the data as training set 

and remaining data as the validation set, the paper demonstrates that Bayesian 

inference can be used to predict stock market volatility. 

Bayes Estimator of CV of the Lognormal Distribution   

Let x1, x2, …, xn be a random sample from lognormal distribution with density 
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Denoting log Xi as Zi, the minimal sufficient statistic for μ and σ2 are 
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and 
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Therefore the maximum likelihood estimator of μ and σ2 are Z  and 
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mean, variance and coefficient of variation of the lognormal distribution are 
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respectively. Using the invariance property of maximum likelihood estimators, the 

maximum likelihood estimator of the CV of lognormal distribution is given by 
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The Bayes estimator of the CV of the lognormal distribution depends on the 

specification of the prior distribution for μ and σ2. In objective Bayesian analysis, 

the commonly used priors are the following 

 

 Right invariant prior: For the location scale family with location 

parameter μ and scale parameter σ, the right invariant prior is 

π(μ,σ) = 1/σ. 

 Jeffrey’s prior: Jeffrey’s prior for μ and σ is given by π(μ,σ) = 1/σ2. 

Jeffrey’s prior is left invariant but not right invariant. 

 

Because the lognormal distribution belongs to log location scale family, the above 

priors were used in this study. Although right invariant prior is recommended 

(Ghosh, et al., 2006; Berger, 1985), the use of Jeffrey’s prior aids in studying the 
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Bayesian robustness with respect to specification of the prior distribution. Because 

the distribution of Z   and 
2

zS  are independent, denoting η = 1/σ2, after some 

simplification the posterior density of η is obtained as Gamma   22 1
, 1

2 2
z

n
n S

 
 

 
 

is obtained under right invariant prior and Gamma   23 1
, 1

2 2
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n
n S
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 under 

Jeffrey’s prior. 

Under squared error loss function, the Bayes estimator of CV is 
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where the expectation is taken with respect to the posterior density of π(η|z). This 

expectation must be evaluated numerically, thus the importance sampling approach 

was used to evaluate the integral. In this approach observations are generated from 

the posterior density and the numerical value of the expectation is given by 
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where 
2 , 1i i   to M refers to the value of 1/ηi generated from the posterior density 

and M denotes the number of sample values generated. 10,000 observations are 

generated from the posterior density and using this, the Bayes estimator and equi-

tailed credible intervals are obtained. For the likelihood based confidence interval, 

the equi-tailed confidence interval for η = 1/σ2 is constructed using the Chi-square 

distribution for 
  2

2

1
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n
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
. This confidence interval is then inverted to give a 

confidence interval for CV of the lognormal distribution. The confidence interval 

based on maximum likelihood estimator is given by 
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where 
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Finite Sample Comparison of Credible and Confidence 
Intervals 

The advantage of Bayes inference over likelihood-based inference is that it gives 

straightforward interpretation of the credible interval. Nevertheless, the superiority 

of the Bayes inference follows by comparing the coverage probability and length 

of the credible interval compared to the confidence interval based on maximum 

likelihood estimator. For this purpose a simulation study is conducted. For a 

random sample of size n (n = 10, 20, 40, 60, 80, 100, 150, 200, observations are 

generated from lognormal distribution or equivalently from normal distribution) 

with parameter μ and σ2. The value of μ and σ2 are adjusted to yield a CV of 0.1, 

0.3, 0.5, 0.7, 1, 1.5, 2, 2.5. The value of μ is fixed at 3. For the sample size and the 

value of CV, maximum likelihood estimator and the associated confidence intervals 

are computed using the expressions given in the previous section. For this sample 

size and value of CV, Bayes estimator, equi-tailed and HPD credible intervals are 

obtained using 10,000 simulated values of η, and thereby  
1

1 2

1e   from the 

posterior gamma density of η. This constitutes a single run in the simulation 

experiment. In each run the length of the confidence/credible interval is recorded. 

In addition, it is also recorded that whether the true value lies inside the confidence/ 

credible interval. To estimate the coverage probability and average length of the 

confidence interval, the simulation experiment is repeated using 1000 runs. The 

coverage probability refers to the proportion of times the true value lies inside the 

interval. The credible/confidence level is fixed at 0.95. Tables 1 and 2 summarize 

the results of the simulation study. 
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Table 1. Coverage probability of the credible and confidence interval for the CV across 

sample sizes for 8 combinations of specified values of CV 
 

Sample Size 

Bayes Procedure (Equi-tailed)  Maximum Likelihood (Equi-tailed) 

# of times Coverage 
probability Is maintained 

Average length  # of times Coverage 

probability Is maintained 
  

Average length 

  Right 
invariant prior 

Jeffrey’s 
prior 

Right 
invariant prior 

Jeffrey’s 
prior 

 

10 0 0 * *   8 19.0641 

20 0 0 * *  8 2.4722 

40 0 0 * *  8 1.1390 

60 1 0 1.4965 *  8 0.8264 

80 4 0 0.1812 *  8 0.6888 

100 8 0 0.5513 *  8 0.5976 

150 8 7 0.4472 0.5010  8 0.4715 

200 7 5 0.4363 0.4342  7 0.4477 

Overall 28 12 0.6225 0.4676   63 3.2134 
 

* Whenever coverage probability is not maintained average length has not been calculated 

 
 

It may be said that the coverage probability is maintained if the estimated 

coverage probability lies between 0.940 to 0.960. That is (1−α) ± 0.01. From the 

table it is clear that the confidence interval based on maximum likelihood estimator 

maintains coverage probability for all sample sizes. On the other hand the equi-

tailed credible interval maintains coverage probability when the sample size is 

greater than or equal to 100. However the average length of the credible interval is 

much shorter compared to the confidence interval. For example when n = 150 using 

right invariant prior, the average length of the credible interval is 0.4472 and using 

Jeffrey’s prior it is 0.5010 while for the confidence interval it is 0.4715. The average 

length of the interval is computed using those intervals for which the coverage 

probability is maintained. The length of the confidence interval for Jeffrey’s prior 

is marginally higher than right invariant prior. Table 2 presents the coverage 

probability and length of the HPD credible interval. 

Table 2 shows that HPD credible interval maintains coverage probability 

when the sample size is greater than or equal to 40. The average length of the HPD 

credible intervals for both right and left invariant priors is marginally larger than 

the equi-tailed credible intervals. Theoretically the length of the HPD credible 

interval should be shorter than equi-tailed credible interval. To explore the reason 

for this phenomenon the posterior density for sample size n = 60 and 100 were 

plotted and the histogram and frequency curve of the simulated distribution of 

 
1

1 2

1e   was also plotted. 
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Table 2. Coverage probability of the HPD credible interval for the CV across sample 

sizes for 8 combinations of specified values of CV 
 

 Highest Posterior Density (HPD) 

 # of times Coverage probability Is maintained Average length 

Sample Size Right invariant prior Jeffrey’s prior Right invariant prior Jeffrey’s prior 

10 0 0 * * 

20 0 0 * * 

40 7 0 0.8344 * 

60 7 2 0.7933 0.8164 

80 6 6 0.3071 0.3009 

100 8 8 0.5684 0.5563 

150 8 7 0.4562 0.5109 

200 8 7 0.3899 0.4382 

Overall 44 30 0.5582 0.5244 
 

* Whenever coverage probability is not maintained average length has not been calculated 

 

The posterior density of η is gamma and thus the plot of the density function 

is smooth. From the histogram and frequency curve it becomes clear that the 

frequency curve needs to be smoothened at the tail areas. This type of smoothing 

does not affect the length of the HPD credible interval, but increases the length of 

the equi-tailed credible interval. This is the reason why the equi-tailed credible 

intervals are marginally shorter than the HPD credible interval. To incorporate any 

type of smoothing of a frequency curve in a simulation study is computationally 

prohibitive and is not attempted here. Figures 1 to 4 represent the posterior density 

of η and the histogram obtained from 10,000 simulated values of the distribution of 

 
1

2 2

1e  , corresponding to n = 60 and 100, for left and right invariant priors and 

the value of 
2

zS  is fixed at 0.0862 for CV=0.3. 

An attempt is also made to study the effect of specified value of CV on the 

length of credible/confidence interval. Table 3 presents the average length of the 

interval for various values of CV. From the table it becomes clear that the average 

length increases as the CV increases for the credible/confidence intervals. The 

length of the credible interval for the sample size n=100, a large value of CV=2.5, 

for HPD credible interval using right invariant prior is 1.7358 and using Jeffrey’s 

prior is 1.6924 and for confidence interval it is 1.8445. For equi-tailed tailed 

credible interval for right invariant and Jeffrey’s prior it is 1.6747 and 1.6338. The 

difference in the average length of the confidence interval when CV=0.1 and 2.5, 

is minimum for equi-tailed credible interval using Jeffrey’s prior and is maximum 

for confidence interval based on M.L.E. The difference in average length for the 

HPD credible 
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a.) using right invariant prior  b.) using left invariant prior 

 
Figure 1. Posterior density of η when n = 60 

 
 

 

 
a.) using right invariant prior  b.) using left invariant prior 

 
Figure 2. Histogram for (e(1/η)−1)½ for n = 60 

 
 

 

 
a.) using right invariant prior  b.) using left invariant prior 

 
Figure 3. Posterior density of η when n = 100 
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a.) using right invariant prior  b.) using left invariant prior 

 
Figure 4. Histogram for (e(1/η)−1)½ for n = 100 

 

 

interval based on right invariant and left invariant priors are 1.7080 and 1.6649. 

The same pattern can be observed for other sample sizes. The average length of 

HPD credible interval for Jeffrey’s prior is marginally higher compared to right 

invariant prior for all sample sizes and all values of CV under consideration. The 

coverage probability for these two priors indicates that the coverage probabilities 

are nearly the same. From the objective Bayesian analysis it amounts to the fact 

that Bayes procedure is robust against the specification of right and left invariant 

priors. 
 
Table 3. Average length of the credible and confidence intervals for various values of CV 

when the sample size is n = 100. 
 

Type of interval 
Average length when CV equal to 

Range 
0.1 0.3 0.5 0.7 1 1.5 2 2.5 

Equi-tailed credible 
interval with right 

invariant prior 
0.0274 0.0858 0.1527 0.2322 0.3848 0.7153 1.1378 1.6747 1.6473 

Equi-tailed credible 
interval with left 

invariant prior 

0.0271 0.0848 0.1508 0.2337 0.3876 0.7205 1.1138 1.6338 1.6067 

Confidence interval 

based on M.L.E 
0.0284 0.0891 0.1593 0.2438 0.4077 0.7689 1.2393 1.8445 1.8161 

HPD credible 
interval with right 

invariant prior 

0.0278 0.0872 0.1554 0.2368 0.3937 0.7354 1.1748 1.7358 1.7080 

HPD credible 
interval with left 

invariant prior 

0.0275 0.0862 0.1534 0.2337 0.3876 0.7205 1.1489 1.6924 1.6649 
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Analysis of Stock Prices 

The advantage of Bayesian analysis is that one can constantly upgrade their 

knowledge regarding the parameter. This is helpful for making future prediction. 

In this example the Bayes estimation of the index volatility per mean return is 

discussed with respect to the stock prices of 3 scripts belonging to large cap 

category, namely RELIANCE, ACC and TATASTEEL, of the Indian stock market. 

The daily data from August 19 to November 6, 2013 is used in this analysis. Starting 

with one week daily data as the training set, Bayes credible interval is obtained for 

the volatility per mean return. Subsequently the Bayes estimator for successive 

weeks is computed and the process is continued till the week for which the Bayes 

estimator lies outside the credible interval. The exercise is repeated with various 

starting weeks. Table 4 summarizes these results. 
 
 
Table 4. Bayes credible interval for the index volatility per mean return based on 1 week 

data and the Bayes estimator for the successive weeks for different starting values. 
 

Stock Starting Value  
95% 

credible interval 

Bayes Estimator  

2nd week 3rd week 4th week 

RELIANCE 
Sept 17th  -Sept 23rd 

  

[0.0877,0.2714] 0.1507 0.1486 0.1460 

ACC [0.0396,0.1226] 0.0987 0.1219 0.1425 

TATASTEEL [0.0124,0.0384] 0.0265 0.0821 0.0820 

RELIANCE 
Oct 1st  - Oct 8th 

  

[0.0865,0.2745] 0.1460 0.1421 0.1103 

ACC [0.0713,0.2265] 0.1425 0.1570 0.1704 

TATASTEEL [0.0482,0.1486] 0.0820 0.1381 0.0164 

 
 

Table 4 shows that based on one week data, the index for the subsequent week 

for all the three stocks can be accurately predicted. This is true regardless of the 

starting date namely August 19, September 17, October 1, etc. The duration of the 

data for making future predictions was also examined. For this purpose credible 

intervals were constructed using the first 2 through 10 weeks of data. To save space 

the results are not reported here. From these results it follows that by increasing the 

length of the data one do not get much accurate prediction for the successive week. 

Therefore it may be concluded that minimum data of one week be used for making 

prediction regarding volatility of the stock prices. If the duration increases, then the 

volatility increases thereby decreasing the decision of the future forecast. 
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Subjective Bayesian Analysis 

As pointed out previously the advantage of Bayesian analysis is that the decision 

maker can use his belief for making future prediction. In the present scenario this 

can be achieved using conjugate prior. In the case of lognormal distribution, the 

conjugate prior is gamma for the scale parameter η=1/σ2 where μ is fixed. Thus 

using Uniform prior for μ, the posterior distribution turns out to be gamma and one 

can use the program developed in this paper for carrying out subjective Bayesian 

analysis. The mean and variance of the posterior gamma density is given by αβ and 

αβ2 where α = (n+2)/2 and β = ½(n−1)Sz
2 under right invariant prior. The 

parameters α and β can be determined by using past information as well as the 

subjective belief of the decision maker. The posterior density of the previous week 

can be used as the prior density for the week under consideration. In addition, the 

investigator can use his belief to modify the parameters of the posterior density of 

the previous week. Using past data, this type of subjective Bayesian analysis cannot 

be carried out and is not attempted in this paper. 

Conclusion 

This paper concentrates on the Bayesian estimation of the index, namely volatility 

per mean return. This is a frequently used indicator in the analysis of stock market 

data. The investigation indicates that Bayes credible intervals have smaller width 

compared to the confidence interval based on maximum likelihood estimator. 

Frequentist comparison of the credible interval and confidence interval in terms of 

coverage probability is not well accepted among the Bayesians. The results of this 

study support the view that accurate prediction can be made based on a small 

sample size of n = 5 for the volatility per mean return of stock prices. Caution has 

to be exercised for interpreting the width of the credible/confidence interval. For 

example if the width increases or decreases by 0.05, this amounts to a percentage 

change of 25% when CV = 0.2. Therefore one should not conclude that the 

difference in the average length of the credible interval and confidence interval is 

only marginal. The purpose of this paper is to demonstrate the utility of Bayesian 

inference for forecasting the stock prices. 

This paper derives Bayes estimator and the associated credible intervals for 

the CV of the lognormal distribution. Lognormal distribution has applications in 

many areas like reliability studies and survival analysis where the focus is the 

duration of the lifetime. Although emphasis is given to the estimation of mean and 

median lifetime, the effectiveness of any treatment regime lies in the control of 
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variability in duration of lifetime. The results developed in this paper can also be 

used by researchers in these areas. Lognormal distribution is also used in the 

analysis of rainfall data (Ananthakrishnan & Soman, 1989) and the primary concern 

is the variability in rainfall, which is commonly measured using coefficient of 

variation. In these areas the data can be analyzed using objective Bayesian analysis 

of CV developed in this paper. Numerical analysis is carried out by writing 

programs using MATLAB software version 7.0 and can be obtained from the first 

author. 
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