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Model-Robust Regression 2 (MRR2) method is a semi-parametric regression approach that 
combines parametric and nonparametric fits. The bandwidth controls the smoothness of 
the nonparametric portion. We present a methodology for deriving data-driven local 
bandwidth that enhances the performance of MRR2 method for fitting curves to data 
generated from designed experiments. 
 
Keywords: Semi-parametric methods, Model-Robust Regression, response surface 

methodology, local bandwidths 

 

Introduction 

The understanding of any system or process is enhanced by the availability of fairly 

accurate mathematical relations connecting the explanatory variables and the 

dependent variables (responses) of the system. The desire to obtain such 

mathematical relations led to the development of response surface methodology 

(RSM) which is a collection of mathematical and statistical techniques employed 

for modeling and analysis of problems in which a response of interest is influenced 

by several explanatory variables (Montgomery, 1999; Wu & Hamada, 2000; Raissi 

& Farsani, 2009). The objective of RSM is to optimize one or more responses, 

which are influenced by several explanatory variables. 

RSM consists of three main phases, namely the experimental design phase, 

the modeling phase, and the optimization phase (Del Castillo, 2007). However, the 

efficiency and reliability of the optimal solutions achieved at the optimization phase 

depends on the results obtained in the modeling phase. Better results obtained in 
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the modeling phase ensure better optimal solution in the optimization phase  

(Pickle, 2006). 

The modeling phase involves the use of regression techniques to fit a curve 

to the data generated from the experiment. Regression techniques employed in 

RSM include parametric regression, nonparametric regression and semi-parametric 

regression (Pickle, 2006; Wan, 2007). 

In Parametric regression, a low-order polynomial such as the k-factor second-

order model of the form 

 

 2

0 1 1

k k

i i i i i ii i ij i j ii j
y x x x x      
        (1) 

 

is assumed for fitting the data, where βi, βii and βij are the model parameters, xi and 

xj are the explanatory (Del Castillo, 2007). For n-sample observations, (1) can be 

expressed in matrix form as 

 

   Y X  (2) 

 

where Y is an n by 1 vector of responses, X is an n by 1 2
2

k
k

  
   

  
 model matrix, 

β is a 1 2
2

k
k

  
   

  
 by 1 vector of unknown model parameters, and ε is an n by 1 

vector of random errors. The Ordinary Least Squares (OLS) method gives the 

vector of estimated responses is given as 

 

 
     1ˆˆ OLS 

   
OLS

OLS
y X X X X X y H y  (3) 

 

A disadvantage of the parametric regression method is that if the assumed model is 

misspecified, the fitted curve is affected by high bias (Einsporn & Birch, 1993; 

Mays, 2001b; Pickle, 2006). 

In nonparametric regression, the user approaches the problem without 

assuming a model and attempts to fit a curve to the data points by employing a 

weighting scheme (Uysal & Guvenir, 1999; DiNardo & Tobias, 2001). Most often, 

nonparametric regression (for example, the kernel regression, local linear 

regression) is employed when a theoretical reference curve is unavailable for a 

process and the data size is large (Hens, 2005; Hernández-Lobato, 2010). The local 



IMPROVING PERFORMANCE STATISTICS OF MRR2 

508 

linear regression (LLR) utilizes kernel weights for smoothing. For instance, the 

LLR estimate of observation 0y  obtained at the location 0x  is given as 

 

      1

0 0 0
ˆ LLR LLR
y x



   0 0X W X X W y h y   (4) 

 

 

1

2

n

 
 
 
 
 
 

x

x
X

x

  (5) 

 

where  11 , ,i ikx x 
1

x , the n by n diagonal matrix W0, known as the local weight 

matrix for location x0, is given by 

 

       01 02 04

KER KER KER
diag h h h0W  (6) 

 
 
0

KER

ih  represents a kernel weight assigned to yi in the estimation of y0 at location x0 

and is given as 

 

  

0

0

0
1

i

KER

i
n i
i

x x
K

b
h

x x
K

b


 
 
 

 
 
 


  (7) 

 

K is a univariate kernel function, b is referred to as the bandwidth (Härdle, 1994). 

A commonly used kernel function is the simplified Gaussian kernel function  

given as 

 

 

2
0

0

ix x

bix x
K e

b

 
 
 

 
 

 
  (8) 
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For the multivariate case with k explanatory variables, a common form of the 

Gaussian kernel function used is the product kernel given as 

 

   0

0 1 1,
j ijk

j

x x
K x x K

b


 
  

 
   (9) 

 

 0 01 02 0, , , kx x xx  is the prediction point, K is the univariate kernel function 

(Wan, 2007).  In general, using matrix notation, LLR estimated response can be 

written as 

 

 
   ˆ LLR LLR

y H y   (10) 

 

where H(LLR) is the LLR “HAT” or smoother matrix defined as 

 

 
 

 

 

 

1

2

LLR

LLR
LLR

LLR

n

H

 
 
 

  
 
 


 

h

h

h

 (11) 

 

    
1LLR

i


     i i ih x X W X X W   (12) 

 

A disadvantage of nonparametric methods is that large amounts of data are 

required. Moreover, the capacity of nonparametric methods to describe complex 

patterns makes them more prone to overfitting (Mays, 2001b; Wan, 2007; Starnes, 

Birch & Robinson, 2008). 

Semiparametric regression methods involve fitting the data both 

parametrically and nonparametrically, and then combining the results to form a 

curve that is based on suitable theoretical form, yet still being able to adapt to 

aberrations or misspecifications from that form. Hence semi-parametric regression 

techniques are robust to model misspecifications (Starnes, 1999; Mays, 2001a; 

Hens, 2005). 

Starnes (1999) and Pickle (2006) reported that MRR2 is the best overall semi-

parametric regression procedure for fitting small-sample data in situation of small 

to moderate model misspecification. 
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MRR2 technique combines a parametric fit like 
 ˆ OLS

y  to the raw data and a 

nonparametric fit to the vector of residuals, r, from the parametric fit. The MRR2 

fit at location x0 is given by 

 

 
        

11 12

0
ˆ MRR
y

 
         
0 0 r r

x X X X y x X W X X W I - X X X X y   (13) 

 

where 

 

 
        

11 12

0

MRR            
0 0 r r

h x X X X x X W X X W I - X X X X ,  

 

r is the vector of residuals from the parametric fits, I is an n by n identity matrix, 

Wr is the n by n diagonal matrix containing the kernel weights for fitting the 

parametric residuals and is obtained using the same procedure as in (6), the matrices 

X and X  are as defined in (2) and (5) respectively. MRR2 fits is expressed in 

matrix form as 

 

                 
 2ˆ MRR

y  
         

 
OLS LLR OLS

H H I H y   (14) 

 

 
 


MRR2

H y   (15) 

 

where H(MMR2) is the MRR2 “HAT” matrix defined as 

 

 
 

 

 

 

2

1

2

2

2

MRR

MRR

MRR

n

 
 
 

  
 
 


 

MRR2

h

h
H

h

 (16) 
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Wan (2007) reported two expressions for the mixing parameter, λ. One is the 

estimated asymptotically optimal mixing parameter given by 

 

 *

2

ˆ,ˆ

ˆ

r r

r
    (17) 

 

the notation < > represents the inner product and || || is the standard L2 (Euclidean) 

norm. A second data-driven method chooses *̂  such that PRESS**(λ) defined for 

a given optimal bandwidth, b*, as 

 

  
  

      
*

2
*

1 , 1**

max2 *

max

ˆ ,

, 1

n

i i i

MRR b

y y b
PRESS

SSE SSE
n tr H b n k

SSE






 



   


  (18) 

 

is minimized. n is the sample size, b* is the optimal bandwidth, k is the number 

explanatory variables, SSEmax is the maximum sum of squared errors obtained as b 

tends to infinity, SSEb* is the sum of squared errors for the optimal bandwidth, 

tr (H(MRR2)(b*,λ)) is the trace of the MRR2 “HAT” matrix for a given b* and λ, and 

,
ˆ

i iy   is the fit at xi with the ith observation left out. 

The bandwidth is an important parameter in that it determines performance of 

the model in terms of criteria such as variance, mean squared error (Huang & Fan, 

1996). A bandwidth is said to be fixed or global if its value is constant for the full 

range of the data or if does not change with locations or runs in a given regression 

procedure otherwise it is referred to as local, variable or adaptive bandwidth. For a 

given location, local bandwidths are chosen according to factors involving the 

values of the explanatory variables, xi, or of the response, yi, or both (Starnes, 1999). 

This dependence allows different degree of smoothing for different locations in the 

data thereby giving the data more privilege to determine the functional form of the 

model fitted and to incorporate the information provided by the density of the data. 

Among the categories of methods for selecting bandwidths, the most 

frequently employed procedures include the plug-in methods and the cross-

validation methods (Fan & Gijbels, 1992; Atkeson, Moore & Schaal, 1997; Gerard 

& Schucany, 1999; Racine, 2008; Avery, 2010; Kohler, Schindler and Sperlich, 

2011). However, all the criteria for selecting bandwidths are based on the same 

philosophy, and they are such that the fitted value  ŷ x  is as close to the true value 

y(x) as possible thereby minimizing errors associated with estimation (Härdle, 



IMPROVING PERFORMANCE STATISTICS OF MRR2 

512 

1994; Galdo & Black, 2008). Researches applying MRR2 for fitting curves to RSM 

data employ a penalized version of prediction error sum of squares referred to as 

PRESS** and given by 

 

  
  

      

2

1 , 1**

2 max

max

ˆ

1

n

i i i

MRR b

y y b
PRESS b

SSE SSE
n tr H b n k

SSE

 



   


  (19) 

 

     
2**

1 , 1
ˆ , 1,2,n

i i iPRESS b y y b i n      (20) 

 

where all the parameters retain their previous definitions in (18) (Pickle, 2005; Wan, 

2007). 

The remainder of this paper is organized as follows: A review of methods for 

deriving local bandwidth is presented in the next section. A new methodology for 

deriving data-driven local bandwidths follows. After that, results of application of 

MRR2 and LLR methods utilizing the new data-driven local bandwidths to a 

multiresponse problem are presented. Finally, a discussion on the comparison of 

results from OLS, LLR and MRR2 (both fixed optimal bandwidth and local optimal 

bandwidths) is presented. 

A Review of Methods for Deriving Local Bandwidths 

For kernel density estimation, Fan and Gijbels (1992), using Average Mean 

Integrated Squared Error, gave an expression for optimal variable bandwidths as 

 

  

   

 
 

   

1
52

2

*

,if 0,

, if 0

X

opt

f x m x
b W x

x x

x W x

 



       
  

 
 

  (21) 

 

where b is any arbitrarily positive constant, α*(x)  can take any value greater than 

zero, W(x) is a diagonal matrix of weights, m"(x) is the second-derivative of the 

unknown function, fX(.) and σ2(.) are the marginal density of X and the conditional 

variance of Y given X respectively. The limitation in the use of this variable 

bandwidth is that it requires estimates of fX(.), m"(x), and σ2(.) respectively. Hence, 

the efficiency of (21) depends on how close these estimates are to the true values. 
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Schucany (1995) proposed a variable bandwidth selector for both the kernel 

and local linear regression. An expression for the optimal bandwidth is given by 

 

  
 

 1/ 2 1
2

2
2

p

SCH

opt

A
h x

pnB x




 
  
 
 

  (22) 

 

where p is the degree of the polynomial, n is the number of observations, A is a 

constant which depends on the kernel, B(x) is an approximation for the bias. Again, 

 SCH

opth x  is calculated using estimates of σ2 and B(x). Hence, the quality of the final 

estimator ˆSCH

opth  depends on the choice of a “pilot bandwidth” from which an 

estimate of the B(x) is obtained. Moreover, (22) is developed for cases where the 

levels of a single explanatory variable are equally-spaced. 

Few of the plug-in methods for obtaining variable bandwidths are used in 

practice due to computational difficulty. Plugs methods seem logically inconsistent 

since they require higher order smoothness of the unknown function (Bickels & Li, 

2007; Galdo & Black., 2008; Avery, 2010). 

A Local cross-validation variable bandwidth which reflects the impact of the 

responses and suitable for a single explanatory is considered in Zheng (2010) and 

is given as 

 

        
min 2**

1
ˆarg

l x

i i i ih
h x Y m X 

     (23) 

 

where l(x) denotes the number of covariate values falling in a certain defined 

interval 
   * *,x x h x x h x

I
   
 

 and    , , 1, ,i iX Y i l x    denotes the number observations 

falling in the interval, h*(x) is a sequence of a version of optimal Bayesian 

bandwidths, and  ˆ
i im X  is given as 

 

  
 

   

     

2 1

2

2 0 1

1
ˆ

1

i j

i i i i

i j

i i jj i
i i i i i i

x x
M x M x

x x h
m X K Y

n h h M x M x M x
 

 
      

  
   (24) 
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and 

 

     
1

1 ,

c

i j i j

ci i j i

x x x x
M X n h K

h h





   
    

  
  for c = 1, 2, 3 (25) 

 

The method in (24) works for a single explanatory variable. Besides, the 

choice of l(x) is dependent on h*(x) which, according to the author, requires 

estimates of some prior parameters. 

A methodology for the derivation of a function for generating local bandwidth 

is presented in the section that follows. The local bandwidth generated by the 

function can be applied to data with more than one explanatory variable. 

Furthermore, typical of cross validation procedures, no estimates of parameters is 

required for the utilization of the proposed function. 

Methodology 

Derivation of a Function for Generating Local Bandwidth 

A new methodology used to derive a function for generating data-driven local 

bandwidth is presented. In deriving the function, the basic objectives to achieve are: 

to allow the values of the bandwidths to be a function of the observations we intend 

to fit; to assume that a real number N, which also acts as a tuning parameter is the 

sum of all the bandwidths that minimize PRESS**. The simplified kernel function, 

which is a decreasing function, is utilized in the paper. Therefore, the function 

generating the local bandwidth is modeled in a manner that locations with relatively 

smaller observations are assigned smaller bandwidths (corresponding to heavier 

weights via the kernel function), and vice versa. For convenience, this function is 

referred to as N-squared function and its derivation is as follows: 

Given that 1

n

i iT y  , (T is the sum of all the observations), n is the number 

of observations or locations, or sample size, bi, i = 1, …, n, is the bandwidth for the 

ith location and N is the sum of the bandwidths that minimize PRESS**. 

First, it is required that for each location, the bandwidth be a function of the 

size of observation at that location, and one of the ways to achieve this is to express 

the bandwidth, bi, as ratio of the ith observation to the sum of the data, T 

 

 i
i

y
b

T
 , for i = 1, …, n. (26) 
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Because the simplified Kernel function is a decreasing function, hence to 

ensure heavier kernel weights are assigned to smaller observations and vice versa, 

smaller observations need to have smaller bandwidths and to achieve this, (26) is 

expressed as 

 

 
i

i

y
b N

T

 
  
 

  (27) 

 

Taking sum of both sides of (27) gives 

 

 1

n n i
i i

y
b N

T

 
  

 
    (28) 

 

 1

n n i
i i

NT y
b

T

 
  

 
    (29) 

 

Next, proceed to determine a factor that multiplies the right-hand side of (29) to 

ensure the bandwidths sum to a value N. 

By expanding the right side of (29) 

 

 
     1 2 nn

i i

NT y NT y NT y
b

T

      
  
 

   (30) 

 

On collecting like terms in (30) 

 

 
1

n

i in

i i

NTn y
b

T





   (31) 

 

But the sum of the data, 1

n

i iy , is equal to T as previously defined hence (31) 

reduces to 

 

 n

i i

NTn T
b

T


   (32) 
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Therefore 

 

  1n

i ib Nn    (33) 

 

which implies  1 1n iNT y
Nn

T

 
  

 
 . Hence, to ensure the bandwidths sum to a 

value N, we need to multiply the right hand side of (29) by a factor N ⁄ (Nn − 1), 

giving 

 

  1 1 / 1n n i
i

NT y
b N Nn

T

 
  

 
    (34) 

 

 
 

 
1 1

1

in n

i

N NT y
b

T Nn





    (35) 

 

Therefore 

 

 
 

2

1

i
i

N T Ny
b

T Nn





,  i = 1, 2, …, n, (36) 

 

 
 

2

1

11

n

i i i

i n

i i

N y Ny
b

Nn y













,  i = 1, 2, …, n. (37) 

 

Equation (37) gives the N-squared function for data-driven variable 

bandwidths. The optimal local bandwidth, b is a vector whose elements are the 

bandwidths bi, (for smoothing ith location of the observation), i = 1, 2, …, n, 

obtained at the value of N in (37) where PRESS**(b) given by 
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b

b

  (38) 
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


    b

b

b

  (39) 

 

where H(.) is the “HAT” matrix for (LLR) or MRR2 obtained by using local 

bandwidths from N-squared function, SSEmax is the maximum sum of squares of 

errors over all possible bandwidths which is equivalent to 
  

2

1
ˆ OLSn

i i iy y   for 

LLR or 
  

2

1
ˆ OLSn

i i ie e   for MRR2 where 
 ˆ OLS

y  and  ˆ OLS
e  are the OLS fit of a 

first-order model for  responses and OLS residuals respectively, 
ibSSE   is given by 

    
2

1
ˆ LLRn

i i i iy y b    for LLR or 
    

2
2

1
ˆ MMRn

i i i iy y b    for the MRR2 

counterpart. (See Wan, 2007). For MRR2, the mixing parameter, λ, is obtained 

using equations (17) or (18). 

LLR and MRR2 methods are applied using local bandwidth derived from N-

squared function to the Minced Fish Quality problem Wan (2007) and its 

performance is compared with results from parametric, (OLS), LLR, (fixed 

bandwidth), and MRR2, (fixed bandwidth), approaches. The comparison is based 

on some performance criteria including, estimate of the variance, (S2), the 

coefficient of determination, (R2), adjusted coefficient of determination, (
2

adjR ), 

PRESS given in (20), PRESS* = PRESS/DFerror, where DFerror = DFtotal – DFmodel, 

and PRESS**. 

Application of Local Bandwidths from N-Squared Function 

The data for the Minced Fish Quality problem presented in Wan (2007) is from 

food science and is used here to compare the performance of the modeling 

techniques discussed herein. The problem involves three independent variables x1, 

x2, x3 which represent washing temperatures, washing time, washing ratio of water 

volume to sample weight respectively, and four response variables y1, y2, y3, y4, 

representing springiness, thiobarbituric acid number, (TBA), cooking loss, and 

whiteness index respectively. The observed data were collected through a Central 

Composite Design, (CCD), and is presented in Table 1.  

According to Wan (2007), the final fitted second-order models for OLS for 

responses y1 and y4 include three terms: intercept, x1 and
2

1x . The OLS model for 

response y2 includes five terms: intercept, x1, x2, 
2

1x , and x12. The OLS model for 
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response y3 has eight terms: intercept, x1, x2, x3, 
2

1x , x12, x13, and 
2

3x . Therefore, the 

model spaces for the OLS part of the MRR2 are the same for the final fitted OLS 

models for each of the responses while the LLR and the nonparametric part of 

MRR2 utilize a first-order version of the OLS models since LLR and the 

nonparametric part of MRR2 are based local linear smoothing. Thus, the model 

matrix for the LLR and the nonparametric part of MRR2 for response y3 consists 

of four terms: intercept, x1, x2, and x3, the model matrices for response y1 and y4 

both consist of the intercept and x1, and that for response y2 consists of the intercept, 

x1 and x2. 
 
 
Table 1. A CCD with three factors and four responses on minced fish quality 

 
 Coded Variables  Response values 

 x1 x2 x3  y1 y2 y3 y4 

1 0.203 0.203 0.203  1.83 29.31 29.50 50.36 

2 0.797 0.203 0.203  1.73 39.32 19.40 48.16 

3 0.203 0.797 0.203  1.85 25.16 25.70 50.72 

4 0.797 0.797 0.203  1.67 40.18 27.10 49.69 

5 0.203 0.203 0.797  1.86 29.82 21.40 50.09 

6 0.797 0.203 0.797  1.77 32.20 24.00 50.61 

7 0.203 0.797 0.797  1.88 22.01 19.60 50.36 

8 0.797 0.797 0.797  1.66 40.02 25.10 50.42 

9 0 0.5 0.5  1.81 33.00 24.20 29.31 

10 1 0.5 0.5  1.37 51.59 30.60 50.67 

11 0.5 0 0.5  1.85 20.35 20.90 48.75 

12 0.5 1 0.5  1.92 20.53 18.90 52.70 

13 0.5 0.5 0  1.88 23.85 23.00 50.19 

14 0.5 0.5 1  1.90 20.16 21.20 50.86 

15 0.5 0.5 0.5  1.89 21.72 18.50 50.84 

16 0.5 0.5 0.5  1.88 21.21 18.60 50.93 

17 0.5 0.5 0.5  1.87 21.55 16.80 50.98 
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Table 2. Bandwidths for LLRVB1 for each location and response 

 

Location y1 y2 y3 y4 

1 0.0801 0.4377 0.5355 0.0800 

2 0.0803 0.4365 0.5370 0.0801 

3 0.0800 0.4382 0.5361 0.0799 

4 0.0804 0.4364 0.5358 0.0800 

5 0.0800 0.4376 0.5367 0.0800 

6 0.0802 0.4373 0.5363 0.0800 

7 0.0800 0.4385 0.5370 0.0800 

8 0.0804 0.4364 0.5361 0.0800 

9 0.0801 0.4372 0.5363 0.0815 

10 0.0810 0.4350 0.5353 0.0799 

11 0.0800 0.4387 0.5368 0.0801 

12 0.0799 0.4387 0.5371 0.0798 

13 0.0800 0.4383 0.5365 0.0800 

14 0.0799 0.4388 0.5367 0.0799 

15 0.0799 0.4386 0.5372 0.0799 

16 0.0800 0.4386 0.5371 0.0799 

17 0.0800 0.4386 0.5374 0.0799 

 
 
Table 3. Bandwidths for MMR2VB1 for each location and response 

 

Location y1 y2 y3 y4 

1 0.0792 0.2568 0.3624 0.0791 

2 0.0794 0.2556 0.3640 0.0793 

3 0.0792 0.2573 0.3630 0.0791 

4 0.0796 0.2555 0.3628 0.0792 

5 0.0792 0.2567 0.3637 0.0792 

6 0.0794 0.2564 0.3633 0.0791 

7 0.0791 0.2577 0.3639 0.0791 

8 0.0796 0.2555 0.3631 0.0791 

9 0.0793 0.2563 0.3632 0.0807 

10 0.0802 0.2541 0.3622 0.0791 

11 0.0792 0.2579 0.3637 0.0793 

12 0.0791 0.2578 0.3640 0.0790 

13 0.0791 0.2574 0.3634 0.0792 

14 0.0791 0.2579 0.3637 0.0791 

15 0.0791 0.2577 0.3641 0.0791 

16 0.0791 0.2578 0.3641 0.0791 

17 0.0792 0.2577 0.3644 0.0791 
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Results 

The values of SSEmax for LLR for y1, y2, y3, and y4 are 0.1638, 942.9793, 234.8291, 

and 352.1950 respectively, and those for MRR2 are 0.0231, 90.9033, 41.1338, and 

198.8048, respectively. The optimal Local bandwidths for each response generated 

for a given value of N in N-squared function are given in Table 2, and Table 3 for 

LLRVB1 and MMR2VB1 respectively. 

Tables 4–6 present the results of numerical values of performance statistics 

for comparing OLS, LLR for both fixed bandwidth and local bandwidth generated 

via N-squared function, and MRR2 for both fixed bandwidth and local bandwidth 

generated via N-squared function. For convenience, LLR and MRR2 for fixed 

bandwidth reported in Wan (2007) are referred to as LLRFB and MMR2FB 

respectively while LLR and MRR2 for N-squared variable bandwidths function are 

designated LLRvB1 and MMR2vB1 respectively. The case where the values of the 

mixing parameters for all responses are all 1 is considered for comparison sake. 

This will enable one attribute the performance of the models solely to the type of 

bandwidth used rather than to values of the mixing parameters. Best values for each 

performance statistics and for each response are shown in bold print. 

Table 4 compares the performance statistics of fitted responses from the three 

regression methods discussed here. LLRFB produces best results exclusively in zero 

cell and joint best result in zero cell, MMR2FB produces best result exclusively in 

zero cell and joint best results in zero cell. OLS produces best results exclusively 

in three cells and joint best result in zero cell. LLRVB1 produces best results 

exclusively in six cells and joint best results in six points. MMR2VB1 produces best 

results exclusively in nine cells and joint best results in six cells. MMR2VB1 produces 

the smallest S2, highest R2 and 
2

adjR  exclusively across two of the responses and 

joint best results for these statistics in the remaining two responses. For DFerror, 

MMR2VB1 produces either the best or competitive results across all responses. In 

addition, MMR2VB1 produces competitive results in several cells where it fails to 

produce the best results. Table 5 compares the performance statistics of fitted 

responses from the two versions of local linear regression, LLRFB and LLRVB1.  

LLRFB produces best results in just five cells in a total of twenty-four cells and 

LLRVB1 produces best results in nineteen cells which is equivalent to 79.17% of the 

total cells for comparison. Table 6 compares the performance statistics of fitted 

responses from the two versions of model-robust regression, MMR2FB and 

MMR2VB1. MMR2FB produces best results exclusively in just one cell and joint best 

results in zero cell. MMR2VB1 produces best results exclusively in twenty-three cells 

and best results in zero cell which is equivalent to 95.83% of the total cells for 
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comparison. Figures 1 through 4 present the plots of each response against x1 for 

various values of x2 and x3 were applicable. The MMR2(FB) and MMR2 (VB1) overlap 

in virtually all the plots for y1 and y4 reflecting the closeness of several performance 

statistics for the two approaches. However, in y2 and y3 plots, the MMR2 (VB1) plots 

are seen passing through the mean values of the responses for instance plot in the 

top right in Figure 4. 

The results in Tables 4 and 6 clearly show that MMR2VB1 is the overall best 

regression technique outperforming the MMR2FB that produces best results in 

sixteen cells out of twenty-four cells in results presented in wan (2007) where it is 

compared with OLS and LLRFB. However, in situations where the user has no prior 

knowledge of the true underlying model LLRVB1 will certainly come in handy as 

results in Table 4 reveal. 
 
 
Table 4. Results of comparison of performance statistics of OLS, fixed bandwidth LLR 

and MRR2, and Variable bandwidth LLR and MRR2 all for λ = 1, fixed optimal bandwidth, 
b, and N as defined in equation (37) for local bandwidths in Table 2, and Table 3 
 

 METHOD b N DFerror S2 R R2
adj PRESS PRESS* PRESS** 

y1 

OLS - - 14.0000 1.65E-03 0.9211 0.9090 0.0582 0.0042 0.0042 

LLRFB 0.146  12.1381 1.04E-03 0.9570 0.9433 0.0682 0.0056 0.0026 

MRR2FB 0.17  12.2680 1.03E-03 0.9568 0.9436 0.0472 0.0039 0.0025 

LLRVB1  1.362 12.0000 1.00E-03 0.9579 0.9439 0.0216 0.0018 0.0008 

MRR2VB1  1.348 12.0000 1.00E-03 0.9579 0.9439 0.0405 0.0034 0.0021 

y2 

OLS - - 12.0000 7.5417 0.9341 0.9122 234.1166 19.5097 19.5097 

LLRFB 0.436  11.2120 21.8508 0.8217 0.7456 785.7855 70.0873 36.4222 

MRR2FB 0.277  8.9400 4.8253 0.9686 0.9438 319.3332 35.7214 19.6311 

LLRVB1  7.441 11.2260 21.9206 0.8209 0.7448 785.9495 70.0115 36.4328 

MRR2VB1  4.366 8.6923 4.6819 0.9704 0.9455 305.1765 35.1090 18.5803 

y3 

OLS - - 9.0000 4.5641 0.8408 0.7170 182.4468 20.2719 20.2719 

LLRFB 0.537  8.3730 9.7990 0.6821 0.3925 287.0564 34.2849 17.0554 

MRR2FB 0.542  6.5960 2.9031 0.9258 0.8200 177.6750 26.9357 13.1264 

LLRVB1  9.121 8.3672 9.7791 0.6829 0.3937 286.6772 34.2622 17.0261 

MRR2VB1  6.179 3.9265 1.3817 0.9790 0.9143 173.9599 44.3046 11.4358 

y4 

OLS      - - 14.0000 14.2182 0.5407 0.4751 684.7407 48.9101 48.9101 

LLRFB 0.12      12.0310 1.0197 0.9717 0.9624 454.5871 37.7832 17.1484 

MRR2FB 0.119      12.0290 1.0158 0.9718 0.9625 486.8458 40.4725 18.6472 

LLRVB1  1.361 12.0000 1.0116 0.9720 0.9627 407.8131 33.9844 15.3990 

MRR2VB1   1.347 12.0000 1.0116 0.9720 0.9627 451.5303 37.6275 17.3105 
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Table 5. LLRFB versus LLRVB1 for values of b and bi indicated in Table 2 

 

  METHOD DFerror S2 R R2
adj PRESS PRESS* PRESS** 

y1 
LLRFB 12.1380 1.04E-03 0.9570 0.9433 0.0682 0.0056 0.0026 

LLRVB1 12.0000 1.00E-03 0.9579 0.9439 0.0216 0.0018 0.0008 

y2 
LLRFB 11.2120 21.8508 0.8217 0.7456 785.7855 70.0873 36.4222 

LLRVB1 11.2260 21.9206 0.8209 0.7448 785.9495 70.0115 36.4328 

y3 
LLRFB 8.3730 9.7990 0.6821 0.3925 287.0564 34.2849 17.0554 

LLRVB1 8.3672 9.7791 0.6829 0.3937 286.6772 34.2622 17.0261 

y4 
LLRFB 12.0310 1.0197 0.9717 0.9624 454.5871 37.7832 17.1484 

LLRVB1 12.0000 1.0116 0.9720 0.9627 407.8131 33.9844 15.3990 

 
 
Table 6. MMR2FB versus MMR2VB1 for values of b and bi indicated in Table 3. 

 

 METHOD DFerror S2 R R2
adj PRESS PRESS* PRESS** 

y1 
MRR2FB 12.2680 1.03E-03 0.9568 0.9436 0.0472 0.0039 0.0025 

MRR2VB1 12.0000 1.00E-03 0.9579 0.9439 0.0405 0.0034 0.0021 

y2 
MRR2FB 8.9400 4.8253 0.9686 0.9438 319.3332 35.7214 19.6311 

MRR2VB1 8.6923 4.6819 0.9704 0.9455 305.1765 35.1090 18.5803 

y3 
MRR2FB 6.5960 2.9031 0.9258 0.8200 177.6750 26.9357 13.1264 

MRR2VB1 3.9265 1.3817 0.9790 0.9143 173.9599 44.3046 11.4358 

y4 
MRR2FB 12.0290 1.0158 0.9718 0.9625 486.8458 40.4725 18.6472 

MRR2VB1 12.0000 1.0116 0.9720 0.9627 451.5303 37.6275 17.3105 

 

Figures 1 and 2 compare the plots of 1ŷ  versus x1 and 4ŷ  versus x1 

respectively, using OLS, MRR2 via fixed bandwidth MMR2FB, and MRR2 via local 

bandwidths MMR2VB1 from N-squared function. 
 
 

 

Figure 1. Plot of 1ŷ  vs. x1       Figure 2. Plot of 4ŷ  vs. x1 
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Figure 3 compares the plots of 1ŷ  versus x1 for OLS, MRR2(FB), and MRR2(VB), 

when x2 = 0 (left), x2 = 0.5 (center), and x2 = 1 (right). 
 
 

 

Figure 3. Plots of 2ŷ  versus x1 

 

 
 

Figure 4 compares the plots of 2ŷ  versus x1 for OLS, MRR2(FB), and MRR2(VB), 

for all respective values of x2 and x3 specified 
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Figure 4. Plots of 3ŷ  versus x1 

 

 

Conclusion 

One of the shortcomings of parametric regression is that the user has to specify a 

model that perfectly fits the data under consideration and failure to achieve this 

leads to highly biased estimates. Nonparametric regression is usually employed 

when the user is unable to specify a model for the data. However, in studies that 

require small-sample data such as RSM, nonparametric tends to produce fitted 

values that are highly variable. Semi-parametric regression such as MRR2 

technique which combine parametric regression with a nonparametric technique are 

employed in scenarios where there is partial knowledge of the underlying model 
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for small-sample data. Both the nonparametric and semi-parametric methods 

require a parameter referred to as smoothing parameter or bandwidth which 

determines the smoothness of the estimates.  

Regression methods for fitting data suitable for RSM were reviewed. Also 

reviewed are methods for selecting local bandwidth. A new methodology for 

deriving a function was presented. The function, herein referred to as N-squared 

function, was employed for generating data-driven local bandwidths and MRR2 

technique utilizing local bandwidth derived from the N-squared function was 

applied to the multi-response problem of minced fish quality and the results of 

performance statistics of fitted responses was compared with the results for 

performance statistics for MRR2 utilizing fixed bandwidth reported in Wan (2007). 

The comparisons presented in Tables 4−6 show the superiority of fits from local 

bandwidths derived from N-squared function over fits obtained using fixed 

bandwidth. Indeed, these results are confirmation of statements made Wan (2007), 

Mays (2001a), and several other researchers regarding improvement that MRR2 

and other semi-parametric methods stand to gain if performed using suitable local 

bandwidths. 
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