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It is known that the more obvious parametric approaches to fitting a regression line to 
data are often not flexible enough to provide an adequate approximation of the true 
regression line. Many nonparametric regression estimators, often called smoothers, have 
been derived that are aimed at dealing with this problem. The paper deals with the issue 
of estimating the strength of an association based on the fit obtained by a robust smoother. 
A simple approach, already known, is to estimate explanatory power in a fairly obvious 
manner. This approach has been found to perform reasonably well when using the 

smoother LOESS. But when using a running interval, which provides a simple way of 
using any robust measure of location, the method performs poorly, even with a 
reasonably large sample size. The paper suggests an alternative estimation method that 
performs much better in simulations. 
 
Keywords: Running interval smoother, explanatory power, cross-validation, Well 
Elderly 2 Study  

 

Introduction 

Consider a situation where the conditional measure of location of some random 

variable Y, given X, is given by 

 

    |M Y X g X   (1) 

 

where g(X) some unknown function. As is evident, a common strategy is to 

assume g(X) = β0 + β1X, where β0 and β1 are unknown parameters that are 

typically estimated using ordinary least squares (OLS) regression with the goal of 

estimating the conditional mean of Y given X. There are, however, well known 
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concerns with this approach. First, it is often the case that assuming a straight 

regression line is unsatisfactory, which has led to the derivation of many 

nonparametric regression estimators, often called smoothers (e.g., Efromovich, 

1999; Eubank, 1999; Fan & Gijbels, 1996; Fox, 2001; Green & Silverman, 1993; 

Gyöfri, et al., 2002; Härdle, 1990; Hastie & Tibshirani, 1990). Of course, some 

parametric model might be used to deal with any curvature, but often the more 

obvious strategies (e.g., include a quadratic term) are not flexible enough in terms 

of giving a reasonably accurate approximation of the true regression line.  

Another concern with least squares regression, as well as the bulk of the 

smoothers that have been derived, is that they are designed to estimate the 

conditional mean of Y, one concern being that the population mean is not robust 

in the general sense summarized, for example, by Hampel et al., (1986), Huber 

and Ronchetti (2009), Staudte and Sheather (1990). (The population mean has an 

unbounded influence function and its breakdown point is zero.) A related concern 

is that even a single outlier can highly influence the sample mean, which in turn 

can give a distorted view of the typical value of Y given X. Cleveland (1979) 

derived a smoother (generally known as LOESS) aimed at estimating the 

conditional mean of Y and suggested how it might be modified to handle outliers 

among the dependent variable. Another robust approach is the running interval 

smoother in Wilcox (2012). It is more flexible than LOESS in the sense that 

virtually any robust measure of location can be used. For example, it is easily 

applied when the goal is to estimate the conditional median, trimmed mean or M-

estimator of Y. It also can be used to estimate any quantile of interest.  

A fundamental goal is estimating the strength of an association given a fit to 

data. An approach when using any smoother is to use some robust version of 

explanatory power (e.g., Wilcox, 2012). Explanatory power is 
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where τ2 is some measure of variation and Ŷ  is the predicted value of Y based on 

some fit to the data. The square root of explanatory power is called the 

explanatory strength of the association. To put ξ2 in perspective, if Ŷ  is based on 

the OLS regression line and τ2 is taken to be the usual variance, ξ2 reduces to R2, 

the usual coefficient of determination. 
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Estimating explanatory power would seem to be straightforward. Given a 

random sample (Xi, Yi), i = 1, ⋯ n, let ˆ
iY  be the predicted value of Y given that 

X = Xi. Let  2 ˆˆ Y  be an estimate of τ2( Ŷ ) based on 
1
ˆ ˆ, , nY Y  and let  2ˆ Y  be an 

estimate of τ2(Y) based on Y1, ⋯, Yn. The an estimate of explanatory power is 

simply 
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This approach seems to perform reasonably well when using LOESS, but when 

using the running interval smoother, it performs poorly: it can be severely biased 

(Wilcox, 2008). The goal in this paper is to suggest another estimation method 

that gives substantially better results.  

The next section describes the details of the proposed estimation method. 

The following section reports simulation results comparing the new estimator to 

the estimator studied in Wilcox (2008). The final section illustrates the new 

method using data from the Well Elderly 2 study. 

The Proposed Method 

The measure of location used here is a 20% trimmed mean. For Y1, ⋯, Yn the 

sample 20% trimmed mean is 

 

  
1

1

2

n g

i
i g

Y
n g



 
   

 

where g = .2n rounded down to the nearest integer and Y(1) ≤ ⋯ ≤ Y(n) are the 

values Y1, ⋯, Yn written in ascending order. The 20% trimmed mean has nearly 

the same efficiency as the mean under normality, but it continues to have high 

efficiency, relative to the usual sample mean, when sampling from heavy-tailed 

distributions. 

The measure of variation that is used is the 20% Winsorized variance. For 

i = 1, ⋯, g, let Wi = Y(g + 1). For i = g + 1, ⋯, n − g, let Wi = Y(i) and for 

i = n − g + 1, ⋯, n let Wi = Yn − g. Then the Winsorized variance is just the usual 

sample variance based on the Winsorized values W1, ⋯, Wn. 
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The running-interval smoother is applied as follows. For some constant f, 

declare x to be close to Xi if  

 

 iX x f MADN    

 

where MADN = MAD/.6745, MAD is the median of the values. 

|X1 − M|, ⋯, |Xn − M| and M is the usual sample median of the Xi values. Let 

N(Xi) = { j:|Xj − Xi| ≤ f × MADN }. That is, N(Xi) indexes the set of all Xj values 

that are close to Xi. Then M(Y | Xi) is taken to be some measure of location based 

on all Yj values such that  ij N X  and here, a 20% trimmed mean is used. It 

appears that often a good choice for the span, f, is f = 1 (e.g., Wilcox, 2012) and 

this value is used here. 

Method M1 

Letting  ˆ |i iY M Y X  based on the running interval smoother just described, 

method M1 consists of simply computing (2) using the Winsorized variance. 

Method M2 

Method M2 differs from method M1 in two fundamental ways. First, ˆ
iY  is based 

on a leave-one-out cross-validation approach in conjunction with the running 

interval smoother. That is, ˆ
iY  in method M1 is replaced by  |i iY M Y X , which 

is based on (X1,Y1), ⋯, (Xn,Yn), ignoring the point (Xi,Yi) rather than using all n 

points. For notational convenience, let Ti be the trimmed mean of Y1, ⋯, Yn, 

excluding Yi. The other difference, compared to method M1, is that the estimate 

of explanatory power is replaced by 
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Note that (3) mimics a standard way of writing the coefficient of determination. 

That is, it reflects the proportion of variation accounted for by the dependent 

variable and the fit obtained by the running interval smoother. 
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Simulation Results 

Simulations were used to compare the bias and mean squared error of methods 

M1 and M2 when estimating ξ. For the first set of simulations data were 

generated from the model 1

3
Y X e   . The true value of ξ2 was determined by 

noting that  2 2 2 2/x x e     , in which case the explanatory strength of the 

association is ξ = .5. The sample size is taken to be 50. Both X and e were taken to 

have one of four g-and-h distributions, which contain the standard normal 

distribution as a special case. More precisely, if Z has a standard normal 

distribution, then 
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 

  

 

has a g-and-h distribution where g and h are parameters that determine the first 

four moments. The four distributions used here were the standard normal 

(g = h = 0), a symmetric heavy-tailed distribution (h = 0.2, g = 0.0), an 

asymmetric distribution with relatively light tails (h = 0.0, g = 0.2), and an 

asymmetric distribution with heavy tails (g = h = 0.2). Table 1 shows the 

skewness (κ1) and kurtosis (κ2) for each distribution. More properties of the g-

and-h distribution are summarized by Hoaglin (1985). 
 
 
Table 1. Some properties of the g-and-h distribution 

 

g h κ1 κ2 

0.0 0.0 0.00 3.00 

0.0 0.2 0.00 21.46 

0.2 0.0 0.61 3.68 

0.2 0.2 2.81 155.98 

 
 

Let 1̂  and 2̂  be the estimates of ξ based on methods M1 and M2, 

respectively. Bias was measured with  ˆ
jE    , j = 1, 2. To add perspective, 
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bias also was measured with the median difference. The accuracy of the 

estimators was also measured with mean squared error,  
2

ˆ
jE   , as well as the 

median squared error. 

Table 2 shows the estimated bias when n = 100 and Y = βX + e for three 

choices of the slope: 0, .5 and 1. As can be seen, generally M2 is less biased, and 

in various situations substantially so despite the reasonably large sample size. 

Note that the bias associated with M1 can be quite severe, the estimates being 

approximately −.2 in some cases. 
 
 
Table 2. Estimated mean bias and median bias, Y = βX + e, n = 100 
 

g h β 
mean bias median bias 

M1 M2 M1 M2 

0.0 0.0 0.0 .110 .081 .101 .000 

0.0 0.2 0.0 .115 .078 .104 .000 

0.2 0.0 0.0 .110 .085 .101 .000 

0.2 0.2 0.0 .115 .082 .105 .000 

0.0 0.0 0.5 -.140 -.099 -.139 -.065 

0.0 0.2 0.5 -.178 -.072 -.178 -.035 

0.2 0.0 0.5 -.144 -.108 -.142 -.070 

0.2 0.2 0.5 -.179 -.081 -.138 -.045 

0.0 0.0 1.0 -.132 -.074 -.129 -.057 

0.0 0.2 1.0 -.197 -.059 -.197 -.039 

0.2 0.0 1.0 -.139 -.077 -.134 -.057 

0.2 0.2 1.0 -.201 -.064 -.200 -.047 

 
 

Table 3 reports the estimated squared error. Method M2 does not dominate. 

But M1 never offers a striking advantage, while in some situations M2 is 

substantially better. 

Tables 4 and 5 report the estimated bias and squared error loss when 

Y = .5X2 + e. In terms of bias, the advantage of M2 over M1 is even more striking 

compared to the results in Table 2. Also, in terms of both the mean and median 

squared error, all indications are that M2 performs better than M1. 
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Table 3. Estimated mean squared error (MSE) and median squared error (MEDSE), 

Y = βX + e, n = 100 
 

g h β 
MSE MEDSE 

M1 M2 M1 M2 

0.0 0.0 0.0 .016 .021 .010 .000 

0.0 0.2 0.0 .017 .021 .011 .000 

0.2 0.0 0.0 .016 .023 .010 .000 

0.2 0.2 0.0 .018 .022 .011 .000 

0.0 0.0 0.5 .019 .044 .009 .011 

0.0 0.2 0.5 .030 .038 .018 .011 

0.2 0.0 0.5 .020 .048 .010 .012 

0.2 0.2 0.5 .031 .040 .019 .011 

0.0 0.0 0.7 .024 .018 .017 .005 

0.0 0.2 0.7 .047 .017 .039 .004 

0.2 0.0 0.7 .026 .019 .018 .005 

0.2 0.2 0.7 .049 .019 .040 .005 

 
 
Table 4. Estimated mean bias and median bias, Y = .5X2 + e, n = 100 

 

g h 
mean bias median bias 

M1 M2 M1 M2 

0.0 0.0 -.201 -.085 -.208 -.050 

0.0 0.2 -.182 -.015 -.191 .025 

0.2 0.0 -.203 -.067 -.210 -.036 

0.2 0.2 -.182 .004 -.190 .043 

 
 
Table 5. Estimated mean squared error (MSE) and median squared error (MEDSE), 

Y = .5X2 + e, n = 100 
 

g h 
MSE MEDSE 

M1 M2 M1 M2 

0.0 0.0 .045 .037 .043 .013 

0.0 0.2 .039 .036 .036 .025 

0.2 0.0 .046 .036 .044 .012 

0.2 0.2 .040 .035 .036 .016 
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An Illustration 

The Well Elderly 2 study (Clark et al., 2012; Jackson et al., 2009) was generally 

concerned with assessing the efficacy of an intervention strategy aimed at 

improving the physical and emotional health of older adults. One goal was to 

determine the association between the cortisol awakening response (CAR) and a 

measure of depressive symptoms after intervention. CAR is defined to be the 

change in cortisol concentration that occurs during the first hour after waking 

from sleep. Extant studies (e.g., Clow et al., 2004; Chida & Steptoe, 2009) 

indicate that various forms of stress are associated with the CAR. 

Simply using Pearson’s correlation yields r = .07, which is not significant at 

the .05 level when using Student’s t test (p = .22). There are outliers suggesting 

the use of some robust generalization of Pearson’s correlation. The skipped 

correlation in Wilcox (2012, section 9.4.3) is estimated to be .07. Kendall’s tau 

and Spearman’s rho are .038 and .057, respectively. So all of these correlation 

coefficients fail to detect any association and suggest that any association that 

might exist is relatively weak. However, a test of the hypothesis that the 

regression line is straight (using the method in Wilcox, 2012, section 11.6.1) is 

significant (p < .001). Based on method M1, the strength of the association is 

estimated to be .12 compared to .31 using method M2.  

Concluding Remarks 

It is not being suggested that better-known correlation coefficients should be 

abandoned in favor of method M2. If, for example, a correct parametric model has 

been specified, under normality Pearson’s correlation provides a more accurate 

estimate of the true association in terms of both bias and mean squared error. A 

difficulty is that no single estimator dominates and the optimal estimator depends 

in part on the true nature of the association, which of course is unknown. If, for 

example, a smoother suggests that the regression line is reasonably straight, and if 

outliers do not appear to be a serious issue, Pearson’s correlation seems 

reasonable. But it can be difficult determining whether some specified parametric 

model is sufficiently accurate to justify using something other than method M2. In 

the illustration, for example, the hypothesis of a straight line was rejected. But 

even if this hypothesis is not rejected, there is the issue of whether the test of the 

hypothesis that the regression line is straight has enough power to justify 

assuming a straight line when estimating the strength of the association. Strategies 
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for deciding which estimator to use, or how to resolve any discrepancies among 

the estimators that are used, are in need of further study. 

The running interval smoother can be used when there are two or more 

independent variables. A few simulations were run with two independent 

variables yielding results similar to those reported in Tables 2 and 3. But a more 

extensive investigation is in order. 
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