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A More Efficient Way Of Obtaining A Unique Median Estimate For Circular Data 
 
 
 

B. Sango Otieno  

Department of Statistics 
Virginia Tech 

C. M. Anderson-Cook  
Department of Statistics 

Virginia Tech  
 

 
The procedure for computing the sample circular median occasionally leads to a non-unique estimate of the 
population circular median, since there can sometimes be two or more diameters that divide data equally and 
have the same circular mean deviation. A modification in the computation of the sample median is suggested, 
which not only eliminates this non-uniqueness problem, but is computationally easier and faster to work with 
than the existing alternative. 
 
Key words: Preferred direction, circular median, uniqueness, robustness, local averaging 
 
 

Introduction 
 
Two common choices for summarizing the 
preferred direction are the mean direction and the 
median direction. (Fisher 1993, p. 30-36). The 
notion of preferred direction in circular data is 
analogous to the “center” of a distribution for data 
on a linear scale. The sample mean direction is 
frequently preferred for moderately large samples, 
because when combined with a measure of sample 
dispersion, it acts as a summary of the data 
suitable for comparison and amalgamation with 
other such information. An alternative, the  sample 
median, can be thought of as balancing the number 
of observations on two halves of the circle.  

Because there is no natural preferred 
direction for data that are uniformly distributed 
around the circle, it is natural and desirable that 
any measures of preferred direction are undefined 
if the sample data are equally spaced around the 
circle. In this paper, we consider estimating the 
preferred direction for a sample of unimodal 
circular data.  
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Ko and Guttorp (1988) showed that for a 
very wide class of families of distributions on Sp-1, 
the mean has infinite standardized gross error 
sensitivity; i.e., the asymptotic effect of a small 
contamination can be  large compared with the 
dispersion. Hence, for the purposes of robust 
estimation, it is desirable to have a version of the 
sample median for circular data. As a 
nonparametric and robust estimate for the 
preferred direction of a distribution, the circular 
median has a different character from the sample 
circular mean as illustrated by different breakdown 
properties.  

The sample median direction θ̂  of angles 

1θ , . . ., nθ  is defined to be the point P on the 
circumference of the circle that satisfies the 
following two properties: (a) The diameter PQ 
through P divides the circle into two semi-circles, 
each with an equal number of observed data points 
and, (b) the majority of the observed data is closer 
to P than to the anti-median Q , See Mardia (1972, 
p. 28-30) or Fisher (1993, p. 35-36), for further 
details. For odd size samples, the medium is an 
observation, while for even sized samples, the 
median is the midpoint of two adjacent 
observations. Observations directly opposite each 
other do not contribute to the preferred direction, 
since these observations balance each other for all 
possible choices of medians. The procedure for 
finding the circular median has the flexibility to 
find a balancing point for situations involving ties, 
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by mimicking the midranking idea for linear data. 
Potential median values are shown in Figure 1. For 
even samples, the candidate values are the 
midpoints of all neighboring observations, as 
shown in Figure 1a. For odd samples, the 
candidate values are the observations themselves, 
as in Figure 1b.  

The circular median is rotationally 
invariant as shown by Ackermann (1997). Lenth 
(1981), and, Wehrly and Shine (1981) studied the 
robustness properties of both the circular mean 
and median using influence curves, and revealed 
that the circular mean is quite robust, in contrast to 
the sample mean on the real line. Durcharme and 
Milasevic (1987), show that in the presence of 
outliers, the circular median is more efficient than 
the mean direction. Many authors, including He 
and Simpson (1992), advocate the use of circular 
median as an estimate of preferred direction 
especially in situations where the data are not from 
the von Mises distribution.  

A strategy to deal with non-unique 
circular median estimates is desired, especially for 
small samples, which are commonly encountered 
in circular data as is the case described below. 

Consider the Frog data, given in Table 1 
and shown in Figure 2, which relates the homing 
ability of Northern cricket frog, Acris 
crepitans, (Ferguson, et. al., 1967). For this data 
set, it is thought that the preferred direction for the 
population is 1210 (where 00 is taken to be true 
North, and angles are measured in a clockwise 
direction), Collett (1980). The sample appears to 
be consist of a single modal group, with one 
observation which can be classified as an outlier. 
We wish to obtain the median as the point estimate 
of the preferred direction. 
 Notice that diameters P1Q1 and P2Q2 both 
divide the data evenly between the two 
semicircles, and hence both P1(1330) and 
P2(140.50) satisfy the definition of a circular 
median. This implies that the median for this data 
set is not unique. A method for dealing with this 
non-uniqueness is the focus of this paper. 
 

 
 
 
 
 

Methodology 
 
To find a unique estimate of median, it is 
suggested to select the angle satisfying the median 
definition, such that it has the smallest circular 
mean deviation (Fisher, 1993, p. 35-36). The 
circular mean deviation is given by 

∑
=

−−−=
n

i
in

d
1

~1
)

~
( θθππθ , where θ

~
 is the 

estimate of the preferred direction, and it is used as 
a measure of dispersion. Computing the circular 
median proposed by Mardia (1972, p. 28,31), 
henceforth referred to as “Mardia Median”,  
occasionally leads to a non-unique estimate of the 
circular median since there can sometimes be two 
or more diameters that divide the data equally and 
have the same circular mean deviation.  

In this section, we adapt the existing 
definition of circular median and propose that the 
estimate of the population circular median be the 
average (circular mean) of all angles satisfying the 
definition of median. This gives a unique estimate 
of the median, henceforth referred to as “New 
Median”.  

For the Frog data above, P1 (1330) and P2 
(140.50) are the two candidate sample medians. 
That is, the point estimate of the preferred 
direction based on Mardia Median can be taken to 
be either P1(1330) or P2(140.50), since both have 
equal circular mean deviation of 0.650759. 
However, based on the new procedure, the point P 
(136.750) in Figure 2 is the circular mean of the 
two sample medians (P1 & P2). We conjecture that 
P will be more robust to rounding and will be a 
unique estimate since it involves local averaging, 
Cabrera et.al. (1994). Note that in this procedure, 
we eliminate the step of computing the circular 
mean deviation of candidate medians.  

However, it is important to point out that 
if we treat P1(1330) and P2(140.50) as equally good 
choices of median, since they have the same 
circular mean deviation, the circular mean 
deviation of P (136.750) is also 0.650759, hence it 
is the unique median. S-Plus functions for 
computing the circular mean direction, the Mardia 
Median and the New Median are given in the 
Appendix. 
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Figure 1: Original Observation o, Potential Median p 
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Figure 1a: Even sample size
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Figure 1b: Odd sample size

 
 
   Table 1: Frog Data-Angles in degrees measured due North. 
   _______________________________________________ 
   104 110 117 121 127 130 136 
   144 152 178 184 192 200 316 
   _______________________________________________ 
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Figure 2: Homing Ability of Northern Cricket Frog
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Results 
 

Comparison of Mardia Median & New Median 
  To determine the relative performance of 
Mardia Median and the New Median, data was 
simulated from a von Mises (VM) distribution 
with probability density function 

)]cos(exp[)](2[)( 1
0 µθκκπθ −= −If , 
πµθ 2,0 <≤  and ∞<≤ κ0 ,  Where µ  is the 

mean direction, κ is the concentration parameter 
and 

∫ ∑
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j

j

j
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is the modified Bessel function of order zero.  
 
 
Without loss of generality, the center of all the 
distributions considered was .0=µ  Ten thousand 
samples each of sizes between 5 & 20 from the 
distributions with 6 dispersion values ranging from 
κ =0.5 to 10 were obtained. The choice of sample 
size and dispersion values was based on the fact 
that non-uniqueness problems of the circular 
median are most common for small samples and 
large dispersions, so that is what we studied. For 
each sample, the sample circular medians (both 
Mardia Median and New Median) were computed.  

The results were summarized using the 
following measures: 1) Circular mean )ˆ(µ ; and 2) 

circular variance )ˆ1( ρ− of the 10000 estimates 
obtained by solving the equations  

)ˆcos(ˆcos
1

1

µρθ =∑
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n
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µρθ =∑
=

n

i
in

, 

where ρ̂  is the sample resultant length; 3) the 
95% Empirical Confidence Interval or the central 
95% of the 10000 values; 4)  Circular Mean 
Deviation (CMD) and 5) Circular Median 
Absolute Deviation (CMAD) given by 

Median θ1 − ˜ θ ,..., θn − ˜ θ [ ]. Some of the 

simulation results are given in Tables 2 and 3. 
 Table 2, illustrates the effect of sample 
size on the two measures for 2=κ . The measures 
appear unbiased, since the average of the point 
estimates is very close to zero, the true expected 
value. The confidence bands for the two medians 
are very similar and would be interchangeable for 

most required precision levels and become 
narrower as sample size increases for the two 
measures. The circular variances of the two 
medians, which could range between 1 for 
maximum variability to 0 for no variability, are 
consistently close over the whole range of sample 
sizes considered. Similarly, both the circular mean 
deviation (CMD), and the circular median absolute 
deviation (CMAD) are nearly the same for the two 
measures. These results were similar for other 
concentration parameters studied as well. 

The effect of changing the concentration 
parameter on the two measures of preferred 
direction is illustrated in Table 3 for n = 20. Again, 
the two measures appear unbiased, and their 
confidence bands are very similar. The confidence 
bands become narrower as the concentration 
parameter increases for the two measures. The 
remaining measures for both medians are nearly 
identical for all possibilities. These results were 
similar for other sample sizes studied as well.  
 Note that computationally, the new 
procedure for obtaining the circular median is 
faster and simpler, since it eliminates the step of 
computing the circular mean deviation of each 
candidate median as opposed to Mardia Median. 
From the above results, we observe that the new 
procedure results in an estimate which minimizes 
the circular mean deviation relative to its 
counterpart, utilizing the benefits of local 
averaging. 
 

 
Conclusion 

 
For a fixed sample size and concentration, the 
Mardia Median and New Median give remarkably 
consistent results for all combinations of sample 
sizes and concentrations studied. Most strikingly, 
the two estimators, Mardia Median and New 
Median are approximately identical, which implies 
that either of the two can be used as an estimate of 
preferred direction. Computationally, the new 
measure is easier and faster to work with. Both 
Mardia Median and New Median are robust 
alternatives to the mean. 
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Table 2. Mardia Median and New Median for VM(0, 2). 
 

 
Sample 

Size 

 
Measure 

 
Point Estimate 

Lower & Upper 
Confidence Limits 

 
Circular 
Variance 

 
Mean 

Deviation 

Median 
Absolute 
Deviation 

 
 
5 

Mardia 
 
 

New 

0.001206 
 
 

0.001347 

(-0.914198, 
0.884683) 

 
(-0.913211, 
0.889418) 

0.098107 
 
 

0.098065 

0.559813 
 
 

0.559152 

0.461589 
 
 

0.461589 

 
 
6 

Mardia 
 
 

New 

-0.002618 
 

 
  -0.002350 

(-0.77354, 
0.790136) 

 
(-0.774848, 
0.787038) 

0.075744 
 
 

0.075065 

0.593154 
 
 

0.592542 

0.484028 
 
 

0.484028 
 

 
 
7 

Mardia 
 
 

New 

0.004926 
 
 

0.004867 

(-0.773052, 
0.776042) 

 
(-0.771782, 
0.778294) 

0.075079 
 
 

0.075053 

0.597941 
 
 

0.597611 

0.499424 
 
 

0.499424 

 
 
8 

Mardia 
 
 

New 

-0.003863 
 
 

-0.004103 

(-0.700625, 
0.658065) 

 
(-0.699964, 

0.65746) 

0.059276 
 
 

0.058872 

0.612813 
 
 

0.612625 

0.507610 
 
 

0.507610 

 
9 

Mardia 
 
 

New 

-0.006341 
 
 

-0.006230 

(-0.69237, 
0.673193) 

 
(-0.693563, 
0.668901) 

0.059405 
 
 

0.059312 

0.615008 
 
 

0.614815 

0.515896 
 
 

0.515896 
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10 

Mardia 
 
 

New 

-0.001831 
 
 

-0.001734 

(-0.62134, 
0.631115) 

 
(-0.619628, 
0.631212) 

0.049014 
 
 

0.048872 

0.626990 
 
 

0.626892 

0.524162 
 
 

0.524162 

 
 

15 

Mardia 
 
 

New 

0.000521 
 
 

0.000580 

(-0.53107, 
0.515293) 

 
(-0.531013, 
0.515249) 

0.035605 
 
 

0.03559 

0.641045 
 
 

0.641003 

0.540889 
 
 

0.540889 

 
 

20 

Mardia 
 
 

New 

0.000071 
 
 

0.000010 

(-0.45413, 
0.457305) 

 
(-0.453727, 
0.455789) 

0.02582 
 
 

0.025815 

0.651075 
 
 

0.651067 

0.548252 
 
 

0.548252 

 
 
Table 3: Mardia Median and New Median for VM ),0( µ , n = 20. 

 
 

κ  

 
 

Measure 

 
Point Estimate 

Lower and 
Upper 

Confidence 
Limits 

 
Circular 
Variance 

 
Mean 

Deviation 

Median 
Absolute 
Deviation 

 
 

0.5 

Mardia 
 
 

New 

-0.005483 
 
 

-0.010259 

( -1.796451 
,1.664871) 

 
(-1.787609, 
1.647442) 

0.265584 
 
 

0.263658 

1.189068 
 
 

1.178366 

1.044356 
 
 

1.044356 

 
 
1 

Mardia 
 
 

New 

-0.002878 
 
 

-0.003105 

(-0.775017, 
0.777624) 

 
(-0.777569, 
0.777397) 

0.075995 
 
 

0. 076126 

0.959626 
 
 

0.958215 

0.815823 
 
 

0.815823 

 
   
  2 

Mardia 
 
 

New 

0.000071 
 
 

0.000010 

(-0.45413, 
0.457305) 

 
(-0.453727, 
0.455789) 

0. 02582 
 

 
0. 025815 

0.651075 
 
 

0.651067 

0.548252 
 
 

0.548252 

 
 
4 

Mardia 
 
 

New 

-0.000058 
 
 

-0.000058 

(-0.296221, 
0.285816) 

 
(-0.296221, 
0.285816) 

0.010901 
 
 

0.010901 

0.415821 
 
 

0.415821 

0.350094 
 
 

0.350094 

 
 
8 

Mardia 
 
 

New 

0.000323 
 
 

0.000323 

(-0.191746, 
0.200085) 

 
(-0.191746, 
0.200085) 

0.005015 
 
 

0.005015 
 

0.280498 
 
 

0.280498 
 

0.236698 
 
 

0.236698 
 

 
 

10 

Mardia 
 
 

New 

-0.000812 
 
 

-0.000812 

(-0.176491, 
0.169498) 

 
(-0.176491, 
0.169498) 

0.003927 
 
 

0.003927 

0.249753 
 
 

0.249753 

0.211066 
 
 

0.211066 
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Appendix 
A.1  cmed() 
 This function calculates circular median “New Median”. It is a main program, one that the user will 
need to run. Input: data vector, x. 
cmed<- function(x){ 
lenx <- length(x) 
sx <- sort(x) 
difsin <-c() 
numties <-c() 
if(lenx/2 == round(lenx/2)) { 
# Checks if sample size is odd or even 
# Computes median if sample size is even 
posmed<- checkeven(x) 
for(i in 1:length(posmed)) { 
newx <- sx - posmed[i] 
difsin[i] <-sum(round(sin(newx),10)> 0) - sum(round(sin(newx),10) < 0) 
numties[i] <- sum(round(newx, 10) == 0)} 
} 
else  
# Computes median if sample size is odd 
posmed <- checkodd(x) 
for(i in 1:length(posmed)) { 
newx <- sx - posmed[i] 
difsin[i] <- sum(round(sin(newx),10) >  0) - sum(round(sin(newx),10) < 0) 
numties[i] <- sum(round(newx, 10)  == 0)} 
} 
# Checks for ties 
cm <- c(posmed[round(difsin, 10)  == 0 | abs(difsin) >  numties]) 
circmed <- ave.ang(cm) 
} 
#takes into account if possible circmed are equidistant from mean 
direction 
circmed} 
 
A.2  cmedM() 
 This function calculates Mardia Median. It is a main program, one that the user will need to run. 
Input: data vector, x. 
cmedM <- function(x) {  
lenx <- length(x)  
sx <- sort(x) 
sx2 <- c(sx[2:lenx], sx[1])  
# Determines closest neighbors of a fixed observation 
posmed <- rep(0, lenx)  
difsin  <- rep(0, lenx)  
numties <- rep(0, lenx)  
med <- c()  
if(lenx/2 == round(lenx/2)) {  
\# Checks if sample is odd or even 
posmed <- posmedf(x)  
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# Computes median if sample size is even 
for(i in 1:length(posmed)) {  
newx <- sx - posmed[i] 
difsin[i]<- sum(round(sin(newx),10) > 0) - sum(round(sin(newx),10) < 0)  
numties[i]<- sum(round(newx, 10)  == 0)} 
} 
else {  
# Computes median if sample size is even  
posmed <- checkodd(x)  
for(i in 1:length(posmed)) { 
newx <- sx - posmed[i]  
difsin[i]<- sum(round(sin(newx),10) > 0) - sum(round(sin(newx),10) < 0)  
numties[i]<- sum(round(newx, 10) == 0) } 
} 
# Checks for ties 
cm <- c(posmed[round(difsin, 10) == 0 | round(abs(difsin),10) < numties])  
for (i in 1:length(cm)) {  
# Computes the circular mean deviation for candidate medians 
med[i] <- meandev(x,cm[i]) } 
circmed <- ave.ang(cm[round(med,10) == round(min(med),10)]) 
 } 
 # Chooses the candidate medians with smallest circular mean deviations 
and takes circular mean of them if more that one. 
  
A. 3  ave.ang() 
 This function calculates circular mean direction. It is an internal function needed for the main 
programs. Input: data vector a. 
ave.ang <- function(a) { 
y <- sum(sin(a))  
x <- sum(cos(a))  
ifelse(round(x, 10) == 0 & round(y, 10) == 0, 9999, atan(y, x))} 
# If both x and y are zero, then no circular mean exists, so assign it a 
large number (9999). 
 
A. 4  posmedf() 
 This function calculates all potential medians for even samples 
It is an internal function needed for the main programs. Input: data 
vector x. 
posmedf <- function(x){  
lenx <- length(x) 
sx <- sort(x)  
sx2 <- sx[c(2:lenx,1)]  
# Determines closest neighbors of a fixed observation 
posmed <- c()  
for(i in 1:lenx) {  
posmed[i]<- ave.ang(c(sx[i],sx2[i]))}  
# Computes circular mean of two adjacent observations 
posmed <- posmed[posmed ≠ 9999]  
posmed } 
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A.5  checkeven() 
 This function checks if the number of possible medians is even. It is an internal function for the main 
programs. Input: data vector x. 
checkeven<-function(x){ 
lenx <- length(x) 
sx <- sort(x) 
check <- c() 
# Computes possible medians 
posmed<- posmedf(x) 
for(i in 1:length(posmed)){ 
#Takes posmed[i] as the center, i.e. draws diameter at posmed[i] and 
counts observations on either side of the diameter 
newx <-sx-posmed[i] 
check[i]<-ifelse(sum(round(cos(newx),10)>0)<lenx/2, 9999,posmed[i])} 
nposmed<- check[check≠  9999]  
nposmed } 
  
A. 6  checkodd() 
 This function checks if the number of possible medians is odd. It is an internal function needed for the 
main programs. Input: data vector x. 
checkodd <- function(x) {  
lenx <- length(x)  
sx <- sort(x)  
check <- c()  
posmed <- sx  
# Each observation is a possible median 
for (i in 1:length(posmed)) { 
newx <- sx-posmed[i]  
#Takes posmed[i] as the center, i.e. draws diameter at posmed[i] and 
counts observations on either side of the diameter 
check[i] <- ifelse(sum(cos(newx) > 0) > (lenx-1)/2, 9999,posmed[i]) } 
nposmed <- check[check ≠ 9999]   
nposmed } 
 
A.7  meandev() 
 This function calculates circular mean deviation. It is an internal function needed for the main 
programs. Input: data vector x. 
meandev <- function(x, teta) { 
# Checks if circular mean exists 
ifelse(teta == 9999, 9999, (pi - mean(round(abs(pi -  
(abs(rangeang( x - teta)))), 10))))} 
 
A.8  rangeang() 
 This function puts data in ( )ππ ,−  range. It is an internal function needed for the main programs. 
Input: data vector x. 
rangeang <-function(x) { 
ang <-ifelse(x <  - pi, x + 2 * pi, x) 
ang2<- ifelse(ang > pi, ang - 2 * pi, ang) 
return(ang2)  
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