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Invited Debate  
Per Family or Familywise Type I Error 
Control: “Eether, Eyether, Neether, Nyther, 
Let's Call the Whole Thing Off!”1

H. J. Keselman 
University of Manitoba 

Winnipeg, Manitoba 

 
 

 

 
Frane (2015) pointed out the difference between per-family and familywise Type I error 
control and how different multiple comparison procedures control one method but not 
necessarily the other. He then went on to demonstrate in the context of a two group 
multivariate design containing different numbers of dependent variables and correlations 

between variables how the per-family rate inflates beyond the level of significance. In 
this article I reintroduce other newer better methods of Type I error control. These newer 
methods provide more power to detect effects than the per-family and familywise 
techniques of control yet maintain the overall rate of Type I error at a chosen level of 
significance. In particular, I discuss the False Discovery Rate due to Benjamini and 
Hochberg (1995) and k-Familywise Type I error control enumerated by Lehmann and 
Romano (2005), Romano and Shaikh (2006), and Sarkar (2008). I conclude the article by 

referring readers to articles by Keselman, et al. (2011, 2012) which presented R computer 
code for determining critical significance levels for these newer methods of Type I error 
control. 
 
Keywords: Type I error, multiple comparisons, simultaneous inference 

 

Introduction 

Frane (2015) presented an article which clarified the difference between the per-

family (PFER) and familywise (FWER) Type I error rates (See also Klockars & 

Hancock, 1994). It is important that applied researchers understand the difference 

between the rates and how different multiple comparison procedures may control 
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one rate of error but not the other. For example, as he notes, the typical Dunn 

(1961)-Bonferroni method controls the overall rate of Type I error per-family, 

whereas other Bonferroni methods of Type I error control (e.g., Holm, 1979) 

control the familywise rate of error. Through simulation methods he then shows 

that in a multivariate design containing two groups, multiple dependent measures, 

and various correlations between the dependent variables, the FWER may be 

controlled, yet the PFER can be very large. The author also notes in the article 

that other issues could have been discussed such as newer methods of controlling 

Type I errors and other multiple comparison procedures themselves; some issues 

were noted but not discussed in detail. 

My intention in this article is to take the reader further into the topics of 

Type I error control and multiple comparison procedures that Frane (2015) did not 

have the space to discuss. I believe these additional topics are very important to 

discuss since the issue of Type I error control has advanced immeasurably since 

the early discussions related to PFER and FWER control. 

Per-experiment and experimentwise Type I error control 

At the outset I want to expand on the definitions of per-family and familywise 

presented by Frane (2015). But first, I want to re-introduce the per-experiment 

(PEER) and the experimentwise (EWER) Type I error rates, rates applied 

researchers are more likely to be familiar with. Ryan (1959, 1960, 1962) in his 

seminal articles regarding overall Type I error control versus comparisonwise 

(CWE) (i.e., per test or per comparison) control, used the terminology per-

experiment and experimentwise to indicate that these rates applied to controlling 

the maximum overall rate of Type I error for multiple tests of significance 

assessed within an experiment. Later in the history of methods for controlling the 

overall rate of Type I error, per-family and familywise became equated with per-

experiment and experimentwise (See Hochberg & Tamhane, 1987).  

The distinction is important because it allows one to adopt per-family and 

familywise control in more interesting and dynamic ways. For example, in a one-

way design where a researcher computes pairwise and complex comparisons 

between group means, one can set a per-family or familywise error rate over each 

family of tests (i.e., the pairwise tests and complex comparisons tests), and thus 

maintain the per-experiment or experimentwise rates at some overall maximum 

value. So a .05 level of significance can be tied to each family of tests and 

consequently the maximum overall joint per-experiment or experimentwise 

probability of Type I error can be fixed at .10. To further illustrate the nuances of 
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familywise and experimentwise control consider an A × B design. In such a 

design a researcher can set familywise rates of error over all tests performed on 

the A effect, B effect, and A × B effects. Collectively, the overall or 

experimentwise Type I error rate would be a function of the three familywise 

rates. For example, suppose the researcher chose to perform all possible pairwise 

comparisons on the A main effect, a number of complex comparisons on the B 

main effect, and a number of interaction contrasts on the A × B effects setting 

a .05 value on each set. Collectively therefore, the overall experimentwise Type I 

error rate would be controlled at the .15 level. Clearly by thinking about the 

familywise or per-family rate as rates for related families of tests, the researcher 

can see the flexibility that s/he is afforded. I will have more to say on how 

researchers should define a family shortly. 

Newer definitions of Type I error control 

Background 

Multiplicity of testing.  The multiplicity problem in statistical inference 

refers to selecting the statistically significant findings from a large set of findings 

(tests) to either support or refute one's research hypotheses. Discussions on how to 

deal with multiplicity of testing have permeated many literatures for decades. 

There are those who believe that the occurrence of any false positive must be 

guarded at all costs (see Games, 1971; Ryan, 1960, 1962; Westfall & Young, 

1993). That is, as promulgated by Thomas Ryan, pursuing a false lead can result 

in the waste of much time and expense, and is an error of inference that 

accordingly should be stringently controlled. Those in this camp deal with the 

multiplicity issue by setting α for the entire set of tests computed. This type of 

control has been referred to in the literature as experimentwise (EWER) or 

familywise (FWER) control. Those in the opposing camp maintain that stringent 

Type I error control results in a loss of statistical power and consequently 

important treatment effects go undetected (see Rothman, 1990; Saville, 1990). 

Members of this camp typically believe the error rate should be set per 

comparison [the probability of rejecting a given comparison] (the CWE rate) and 

usually recommend a five percent level of significance, allowing the overall error 

rate (i.e., EWER or FWER) to inflate with the number of tests computed. In effect, 

those who adopt comparisonwise control ignore the multiplicity issue. 
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Family size.   Specifying family size is a very important component of 

multiple testing. As Westfall et al. (1999, p. 10) note, differences in conclusions 

reached from statistical analyses that control for multiplicity of testing (FWER) 

and those that do not (CWE) are directly related to family size. Specifically, the 

larger the family size, the less likely individual tests will be found to be 

statistically significant with FWER control. Accordingly, to achieve as much 

sensitivity as possible to detect true differences and yet maintain control over 

multiplicity effects, Westfall et al. recommend that researchers “choose smaller, 

more focused families rather than broad ones, and (to avoid cheating) that such 

determination must be made a priori...” (p. 10).  

Not only does the FWER rate depend on the number of null hypotheses that 

are true but as well on the distributional characteristics of the data and the 

correlations among the test statistics. Because of this, an assortment of multiple 

comparison procedures have been developed, each intended to provide FWER 

control. 

As I indicated at the outset, since the per-family/per-experiment and 

familywise/experimentwise error rates were introduced, researchers have defined 

new ways of controlling Type I errors which by-in-large are intended to provide 

control over multiple tests of significance that one does not achieve with 

comparisonwise control and more power to detect effects than is provided by the 

familywise and experimentwise rates.  

The false discovery rate (FDR) 

It was noted by Frane (2015) that this is a new definition of Type I error control 

that affords the user more power to detect true effects though at the cost of 

allowing a greater number of Type I errors. However, Frane believes that if 

researchers want more power they should exert better experimental control and/or 

use more subjects in their studies. Presuming that applied researchers are always 

attuned to controlling extraneous variance and accordingly adopt the best 

experimental control that is feasible for their studies, the remaining avenue to 

increase power to detect effects is to increase the number of participants examined 

in their studies. Not always however, possible. In my department the subject pool 

is limited and experimenters do not have access to as many subjects that comprise 

the pool. Thus, achieving more statistical power through more liberal definitions 

of Type I error control and more sensitive multiple comparison procedures should 

be a viable option for researchers to consider. 
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As indicated, several different error rates have been proposed in the multiple 

comparison literature. The majority of discussion in the literature has focused on 

the FWER, although other error rates, such as the FDR also have been proposed 

(e.g., Benjamini & Hochberg, 1995). The FDR is defined by these authors as the 

expected proportion of the number of erroneous rejections to the total number of 

rejections. 

Use of the false discovery rate criterion has become widespread when 

making inferences in research involving the human genome, where family sizes in 

the thousands are common. See the review by Dudoit, Shaffer and Boldrick 

(2003), and references contained therein. Another area of research where FDR 

controlling procedures have had a significant impact is functional magnetic 

resonance imaging. In these experiments researchers are conducting numerous 

(often more than 100,000) significance tests that relate to tests of activation on 

specific voxels (i.e., areas) within the brain (e.g., Callan, Jones, Munhall, Callan, 

Kroos, & Vatikiotis-Bateson, 2003). 

The Benjamini and Hochberg (1995) procedure has been shown to control 

the FWER for several situations of dependent tests, that is, for a wide variety of 

multivariate distributions that make their procedure applicable to most testing 

situations scientists might encounter (see Sarkar, 1998; Sarkar & Chang, 1997). In 

addition, simulation studies comparing the power of the Benjamini and Hochberg 

procedure to several FWER controlling procedures have shown that as the 

number of treatment groups increases (beyond 4 treatment groups), the power 

advantage of their procedure over the FWER controlling procedures becomes 

increasingly large (Keselman et al., 1999). The power of FWER controlling 

procedures is highly dependent on the family size (i.e., number of comparisons), 

decreasing rapidly with larger families (Holland & Cheung, 2002; Miller, 1981). 

Therefore, control of the FDR results in more power than FWER controlling 

procedures in experiments with many treatment groups, but yet provides more 

control over Type I errors than CWE controlling procedures. 

Suppose for n means, μ1, μ2, …, μJ, and our interest is in testing the family 

of m = [J(J – 1)]/2 pairwise hypotheses, H0 : μi − μj = 0, of which m0 are true. Let 

S equal the number of correctly rejected hypotheses from the set of R rejections; 

the number of falsely rejected pairs will be V. In terms of the random variable V, 

the CWE is E(V / m), while the FWER is given by P(V ≥ 1). Thus, testing each 

and every comparison at α guarantees that E(V / m) ≤ α, while according to the 

Bonferroni inequality, testing each and every comparison at level α / m guarantees 

that P(V ≥ 1) ≤ α. 
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According to Benjamini and Hochberg (1995) the proportion of errors 

committed by falsely rejecting null hypotheses can be expressed through the 

random variable Q = V / R, that is, the proportion of rejected hypotheses that are 

erroneously rejected. (It is important to note that Q is defined to be zero when 

R = 0; that is, the error rate is zero when there are no rejections.) The FDR was 

defined by Benjamini and Hochberg as the mean of Q, that is 

 

    
Number of false rejections

,  or 
Number of rejections

V
E Q E E Q E

R

  
    

   
.  

 

That is, the FDR is the expected proportion of false discoveries or false 

positives. 

As Benjamini and Hochberg (1995) indicate, this error rate has a number of 

important properties: 

 

a) If μ1 = μ2 = … = μJ, then all m (pairwise) comparisons truly equal 

zero, and therefore the FDR is equivalent to the FWER; that is, in the 

case of the complete null being true, FDR control implies FWER 

control. Specifically, in the case of the complete null hypothesis 

being true, S = 0 and therefore V = R. So, if V = 0, then Q = 0, and if 

V > 0 then Q = 1 and accordingly P(V ≥ 1) = E(Q). 

b) In testing the family of (pairwise) hypotheses, of which m0 are true, 

when m0 < m, the FDR is smaller than or equal to the FWER. The 

FDR is smaller than or equal to the FWER because in this case 

FWER = P(R ≥ 1) ≥ E(V / R) = E(Q). This indicates that if the 

FWER is controlled for a procedure, then the FDR is as well. 

Moreover, if one adopts a procedure that provides FDR control, 

rather than strong (i.e., over all possible mean configurations) FWER 

control, then based on the preceding relationship, a gain in power 

can be expected. 

c) V / R tends to be smaller when there are fewer pairs of equal means 

and when the non-equal pairs are more divergent, resulting in a 

greater differences in the FDR and the FWER values and thus a 

greater likelihood of increased power by adopting FDR control. 

 

With the BH FDR procedure, the p-values corresponding to the m (pairwise) 

statistics for testing the hypotheses H1, H2, …, Hm are ordered from smallest to 
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largest, that is, p1 ≤ p2 ≤ … ≤ pm. Let k be the largest value of i for which 

pi ≤ (i / m)α and then reject all Hi, i = 1, 2, …, k. On the basis of this procedure, 

one begins by assessing the largest p-value, pm, and then proceeds to smaller p-

values as long as pi > (i / m)α. Testing stops when pi ≤ (k / m)α. 

The k-FWER criterion and procedures for its control2 

The classical approach for controlling Type I errors for a family of many (say m) 

hypothesis tests is FWER control. Once the family is defined, control of the 

FWER requires that 

 

FWER ≤ α 

 

for all configurations of true and false hypotheses. It is well known that for non-

independent tests the probability (Pr) of making one or more Type I errors is 

 

FWER = Pr(One or more Type I errors for m tests) < 1 – (1 – α)m 

 

Examples of procedures that control the overall rate of Type I error when 

many tests of hypotheses are examined are the single-stage Bonferroni procedures 

(e.g., Dunn, 1961) and stepwise Bonferroni procedures (Hochberg, 1988; Holm, 

1979). However, when there are many hypotheses to be examined they can be 

deficient in power to detect non-null hypotheses. Indeed, when the size of the 

family of hypotheses to be tested becomes large, FWER becomes very restrictive 

and not very powerful at detecting false null hypotheses. For example, for m tests 

of significance, the single-stage Bonferroni level of significance would be α / m 

and when m is large detecting non-null effects will be difficult. As Lehmann & 

Romano (2005) note “control of the FWER at conventional levels becomes so 

stringent that individual departures from the hypothesis have little chance of being 

detected” (p. 1139).  

Accordingly, Type I error control is not the only issue researchers must 

consider when testing a hypothesis or set of hypotheses. As in the case of testing a 

single hypothesis, researchers must also consider the ability of a procedure to 

detect departures from the hypothesis when they do occur (Lehmann & Romano, 

2005, p. 1139). To address this issue, Lehmann & Romano, as well as others (See 

the references cited in Lehmann & Romano) developed the k-FWER method of 

                                                           
2 Keselman et al. (2012) previously introduced these procedures to the psychological audience. Their article also includes 

the mathematical underpinnings of the procedures. 
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Type I error control. As they note, with a larger family of hypotheses, one might 

be willing to allow the possibility of falsely rejecting k true null hypotheses. With 

the possibility of falsely rejecting more than one, two, three, etc. null 

hypothesis(es), one obtains more power to detect false null hypotheses. Lehmann 

and Romano (2005) define k-FWER as the probability of rejecting at least k true 

null hypotheses.  

 

k-FWER = Pr{reject at least k hypotheses Hi with i ∈ I(P)} 

 

Here I(P) denotes the set of true null hypotheses when P is the true 

probability distribution. Control of the k-FWER requires that k-FWER ≤ α for all 

P. When k = 1, then k-FWER reduces to 1-FWER or FWER which controls the 

probability of rejecting at least one true null hypothesis.  

To help the reader to fully appreciate k-FWER, I note the following. 

Consider what it means to control 2-FWER instead of 1-FWER (or simply 

FWER) at α = .05? This would be equivalent to specifying that the probability of 

2 or more false rejections is controlled at .05, whereas FWER controls the 

probability of any (i.e., 1 or more) false rejections at .05. In essence, then, 2-

FWER implicitly tolerates 1 false rejection and makes no explicit attempt to 

control the probability of its occurrence, unlike FWER which tolerates no false 

rejections at all. More generally, then, k-FWER tolerates k − 1 false rejections, but 

controls the probability of k or more false rejections at an α = .05. 

 Before presenting these newer methods I provide some additional 

clarification of the k-FWER. First, remember that FWER control treats rejections 

of multiple true null hypotheses as being no more serious than the rejection of 

only one (i.e., at least one) true null hypothesis. The newer procedures have the 

same conceptual underpinning; however, for them falsely rejecting multiple true 

null hypotheses is no more serious than the rejection of only two, three, etc. true 

null hypotheses (i.e., at least 2, 3, etc.). Accordingly, a clean outcome from an 

analysis controlling the FWER is an outcome with no Type I errors. A clean 

outcome from a k-FWER analysis is an outcome with no more than k − 1 Type I 

errors. Note that in both cases, the number of Type I errors produced when at least 

k are produced (1 in the case of FWER) is of no concern as far as the error rate 

criterion is concerned. 

Keselman, Miller and Holland (2011) describe four procedures that utilize 

the k-FWER method of multiple testing control. Technical descriptions can be 
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found in Keselman et al. (2011). As well these authors provide R code for running 

the newer procedures (See also Keselman et al., 2012).3 

 

The Holm and generalized Holm (Lehmann and Romano) procedures 

Lehmann and Romano (2005) provided a generalization of the Holm (1979) 

procedure. Just as the Holm procedure controls FWER under all dependency 

conditions, the generalized procedure controls k-FWER under the same 

dependency conditions (i.e., there are no dependency conditions).  

The ordered p-values for the m individual tests denoted 

p(1) ≤ … ≤ p(k) ≤ … ≤ p(m) correspond to hypotheses, H(1), …, H(k), …, H(m). The 

generalized Holm procedure is defined stepwise as follows: 

 

Step 0. Let i = 1, k and α are chosen by the experimenter. 

Step 1. If i ≤ k, go to step 2. If k < i ≤ m, go to step 3. Otherwise, stop and 

reject all of the hypotheses. 

Step 2. If  i

k
p

m


 , go to step 4. Otherwise, set i = i + 1 and go to step 1. 

Step 3. If  i

k
p

m k i




 
, go to step 4. Otherwise, set i = i + 1 and go to 

step 1. 

Step 4. Reject H(j) for j < i and accept H(j) for j ≥ i. 

 

The Hochberg and generalized Hochberg (Sarkar 1) procedures 

The generalization of the Hochberg (1988) procedure is a step up version of the 

generalized Holm procedure presented by Lehmann and Romano. Sarkar (2008) 

states that it controls k-FWER when the test statistics are independent or when 

they satisfy the multivariate totally positive order of two (MTP2) condition.4 

A step up procedure based on the same set of critical values as a step down 

procedure will always reject at least as many hypotheses and therefore will be 

                                                           
3 The R code provides users with adjusted p-values. In its typical application, researchers compare a test statistic to a 

FWER critical value. Another approach for assessing statistical significance is with adjusted p-values, p~i, i = 1, …, m 

(Westfall et al., 1999; Westfall & Young, 1993). As Westfall and Young note “p~i is the smallest significance level for 

which one still rejects a given hypothesis (Hi) in a family, given a particular (familywise) controlling procedure.” (p. 11) 

The advantage of adjusted p-values for multiple comparison procedures, as with p-values for tests in comparisonwise 

contexts, is that they are more informative than merely declaring retain or reject Hi; they are a measure of the weight of 

evidence for or against the null hypothesis when controlling FWER. For example, if p~i = 0.09, the researcher/reader can 

conclude that the test is statistically significant at the FWER = 0.10 level, but not at the FWER = 0.05 level. Adjusted 

p-values are provided by the SAS system for many popular multiple comparison procedures (See Westfall et al., 1999). 

SPSS also provides adjusted p-values for most multiple comparison procedures. 
4 Keselman et al. (2012) define MTP2 in their article. 
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more powerful at detecting false null hypotheses. I therefore recommend using the 

generalized Hochberg procedure over the generalized Holm procedure as long as 

the Hochberg procedure is appropriate to use. 

The generalized Hochberg procedure is defined stepwise as follows: 

 

Step 0. Let i = m, k and α are chosen by the experimenter. 

Step 1. If i > k, go to step 2. If 1 ≤ i ≤ k, go to step 3. Otherwise, stop and 

accept all of the hypotheses. 

Step 2. If  i

k
p

m k i




 
, go to step 4. Otherwise, set i = i − 1 and go to 

step 1. 

Step 3. If  i

k
p

m


 , go to step 4. Otherwise, set i = i − 1 and go to step 1. 

Step 4. Reject H(j) for j ≤ i and accept H(j) for j > i. 

 

Romano and Shaikh procedure  Romano and Shaikh (2006) 

developed a generalized version of the Hochberg procedure that has no 

dependency restrictions associated with it. This fact makes it attractive in 

situations with complex dependency conditions, i.e., such as when the family of 

tests are that the elements of a correlation matrix are zero. Step up tests such as 

the Hochberg are more powerful at detecting false null hypotheses than the step 

down test using the same critical values. However, since this generalized 

Hochberg test is valid to use under all dependency conditions, it does not use the 

same critical values as the generalized Holm procedure. The critical values are 

approximately halved. This negatively affects power to detect false null 

hypotheses since the p-values must be less than the critical values to be declared 

statistically significant. See Keselman et al.’s (2011) Appendix A for more 

information. 

 

Sarkar 2 procedure  The Sarkar (2008) procedure is another generalized 

version of the Hochberg procedure. It controls k-FWER when the joint 

distribution of the p-values is multivariate totally positive of order two (MTP2) in 

addition to having identical kth-order joint distributions under the null hypotheses. 

MTP2 is a somewhat restrictive condition that is violated if any of the test 

statistics are negatively correlated, but met if the tests are pairwise independent 

(Sarkar, 2000). An example of a MTP2 procedure would be many to one contrasts 

in a balanced design as is found in a Dunnett’s one-sided comparisons with a 

control.  
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When the p-values are independent, this procedure has been found to be a 

more powerful generalized Hochberg procedure than a step up version of the 

generalized Holm procedure when 2 ≤ k ≤ 1 / α (Sarkar, 2008). When k = 1, the 

Sarkar procedure is equivalent to the Hochberg procedure. Although, the Sarkar 

procedure is valid to use as long as the p-values have a MTP2 distribution, we 

only recommend its use when the p-values are independent [See Keselman et al.’s 

(2011) Table 1 for a description of k-FWER method and type of dependency 

assumed to exist between the test statistics and associated p-values]. (Note: The R 

code provided in their Appendix B is only valid for the Sarkar procedure when the 

p-values are independent.) 

Discussion 

As the reader can see, the way in which Type I errors can be controlled for 

families of tests goes way beyond the per-family and familywise rates discussed 

by Frane (2015). The intention of my article was to review methods previously 

presented in the statistical and psychological literatures, with the intention of 

letting the reader see that researchers have many techniques that can be adopted to 

control the overall rate of Type I error. I recommend that applied researchers give 

serious consideration to the newer techniques (FDR and k-FWER) because they 

provide more power to detect non-null effects and yet limit the overall rate of 

Type I error at some specified value. So referring back to the title of this article I 

would say with regard to per-family or familywise control—eether, eyether, or 

perhaps neether, nyther. 5 The reader should note that the R code provided in 

Keselman et al. (2011, 2012) provides adjusted p-values for all of the newer 

methods discussed in this article. Users must select a method of control before 

cherry-picking the method that has the greatest number of statistically significant 

findings as reported through the R code. 

  

                                                           
5 The methods described in this paper do not provide confidence intervals as compared to simultaneous MCPs [procedures 

that use one critical value to assess statistical significance such as Tukey’s (1953) method]; they, nonetheless, should be 

considered an important tool in any data analyst’s arsenal of viable methods for investigating treatment effects through 

many tests of significance. 
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