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Frequentist confidence intervals were compared with Bayesian credible intervals under a 
variety of scenarios to determine when Bayesian credible intervals outperform frequentist 
confidence intervals. Results indicated that Bayesian interval estimation frequently 
produces results with precision greater than or equal to the frequentist method. 
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Introduction 

Although mathematicians introduced the field of Bayesian statistics in the 1700s, 

Bayesian methods gained most of its popularity in practice fairly recently 

(McCarthy & Parris., 2004; Smyth, 2004; Stoyan & Penttinan, 2000). Researchers 

have used frequentist methods for statistical analysis until technological advances 

and the introduction of certain algorithms, such as Markov chain Monte Carlo, 

gave way to increased computational power that enabled complex calculations to 

be done using Bayesian procedures (Little, 2006). This resulted in an increase in 

the interest of Bayesian statistics and sparked much controversy and debate 

regarding which method should be used by researchers (Little, 2006). 

The frequentist approach relies on properties based on repeated sampling 

and takes only sample data into account to estimate the population parameter. 

Bayesian statistics, however, adds the component of a prior distribution based on 

prior knowledge and/or expert opinion of the subject. Using the prior information 

and the observed data, Bayesian methods calculate a refined estimate of the 

mailto:klgray@csuchico.edu


GRAY ET AL. 

44 

population parameter. Some claim that this subjective prior is key to most 

accurately estimating the population parameter while others claim that the lack of 

objectivity of Bayesian statistics interferes with the results (Choy et al., 2009). 

The goal of this study was to compare Bayesian credible intervals to 

frequentist confidence intervals under a variety of scenarios to determine when 

Bayesian credible intervals outperform frequentist confidence intervals. The 

Central Limit Theorem (CLT) states that when a large enough random sample is 

taken the distribution of the sample means will be approximately normal. This 

theorem has been widely researched and it is generally accepted that as long as 

the sample size is around 25 we can rely on the CLT when performing inference 

on the population mean when the population is not normal (Stonehouse & 

Forrester, 1998). 

Although not as well studied as the CLT, there exists a Bayesian Central 

Limit Theorem (BCLT) which states that under certain conditions the posterior 

probability distribution is approximately normal for large enough sample sizes 

(Walker, 1969). For Bayesian credible intervals, if the data are assumed to follow 

a normal distribution and if the prior distribution is also assumed to be normal 

then the calculations are straightforward because the posterior distribution for the 

population mean will also follow a normal distribution (Kruschke, 2010). If the 

data are not normal and transformations of the data do not achieve normality, then 

a more appropriate distribution could be used to model the data, however, this 

leads to a more complicated analysis. Furthermore, there is no guarantee that an 

appropriate distribution can be found that models the data. The goal of our study 

is to examine the robustness of Bayesian credible intervals when the assumption 

of normally distributed data is violated and to determine under what scenarios 

Bayesian credible intervals outperform frequentist confidence intervals. 

Methodology 

In order to investigate the BCLT we generated populations from three different 

distributions: 1) Standard normal distribution; 2) Beta distribution with 

parameters α = 2 and β = 5 (moderately skewed distribution); 3) Exponential 

distribution with parameter λ = 0.5 (strongly skewed distribution). We repeatedly 

and randomly sampled from each population for various sample sizes (n = 10, 15, 

20, 25, 30, 40, 50, and 75). For each scenario we calculated Bayesian credible 

intervals and frequentist confidence intervals. The frequentist confidence interval 

was calculated using the following formula: 
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where t n−1 is the critical value for a 95% confidence interval with n − 1 degrees of 

freedom. Bayesian confidence intervals were calculated as follows: 
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where σ2 is the population variance, µ0 is the prior mean and 
2

0  is the prior 

variance.  

The population variance was always estimated with the sample variance, s2. 

For each population distribution and sample size we calculated Bayesian credible 

intervals using a prior mean that wasn’t biased, a prior that had a low bias, and a 

prior that had a large bias. We use the term bias to represent how far off the prior 

mean is from the population mean. A bias of 0.25 times the standard deviation 

was considered as a small bias in the prior mean and a bias of 0.50 times the 

standard deviation as a large bias in the prior mean. For the normal distribution, 

the bias was added to the prior before running the simulations. For the skewed 

distributions, we looked at both positive (prior mean > population mean) and 

negative biases (prior mean < population mean). The prior variance can be 

thought of as how confident one is in the prior mean. For instance, if there is a lot 

of confidence in the prior mean then the prior variance would be small since the 

researcher has honed in on the population mean. If there is little confidence in 

their prior mean then the prior variance would be large to reflect this. A 

confidence in the precision was considered to be equal to a value that would be 

equivalent to a sample size of about 12. In other words, about as much confidence 
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was placed in the prior as would be if there was a sample of 12 from the 

population. This value was somewhat arbitrary; however, it represents the typical 

confidence in a prior mean. Thus, the prior variance was calculated as 
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For each scenario (combination of sample size, bias, and population shape) we 

computed capture rate as the percent of the intervals that contained the true 

population mean. Additionally, the mean squared error (MSE) was calculated for 

each scenario. The MSE combines both the bias of an estimator as well as the 

variance. The MSE was calculated as 

 

    2ˆ ˆMSE bias var     (6) 

 

The bias is the difference between the estimated value and the true mean of the 

population. For the frequentist method it can be shown that the bias of the sample 

mean is 0, therefore, the MSE is var( y ) for frequentist methods. All statistical 

analyses were performed using R (R Development Core Team, 2007). 

Results 

The capture rates of the frequentist and Bayesian intervals are shown in Figure 1 

for various scenarios and sample sizes. As expected, the frequentist intervals have 

a 95% capture rate when the population distribution is normal. The frequentist 

method does quite well for the moderately skewed population where a sample size 

of 30 is needed to obtain a 95% capture rate. For the strongly skewed population, 

the frequentist intervals do not capture the parameter at the stated 95% level, 

however, when the sample size is 75 the capture rate remains at about 94%. For 

all scenarios, the no bias and positive, low bias scenarios performed best for small 

sample sizes with capture rates above 95% for both the normal population and the 

moderately skewed population. These capture rates decreased when sample size 

increased since the credible intervals were weighted more heavily by the data 

rather than the prior information and thus conform to frequentist properties. 

For the strongly skewed data, the scenario that performed the best was the 

positive, low bias prior. This scenario captured the mean about 95% of the time 

for all sample sizes. A negative bias increased the capture rate when compared to 
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a positive bias. As expected, the high bias scenarios performed the worst with 

respect to capture rates. For all sample sizes, the high bias scenarios gave worse 

results than the frequentist intervals, indicating that sample sizes need to be larger 

than 75 to dilute the bias in the prior. The results indicate that as long as the bias 

in the prior distribution is not too large then one can have results better than 

frequentist’s methods even for strongly skewed distributions.  

The MSE is given in Figure 2 for each sample size. The MSE accounts for 

both bias and variance of an estimator and, therefore, the smaller the MSE the 

better the performance of the statistic in estimating the parameter. Since the 

sample mean is an unbiased estimate of the population mean, the frequentist 

confidence interval has a bias equal to zero and the MSE is only based on the 

variance of the estimator. The bias for the Bayesian credible intervals varied from 

no bias to a bias of half of a standard deviation. For all three population 

distributions, there were no significant differences between MSE when the sample 

size reached 75. Similar results were obtained for the normal and moderately 

skewed population. 

The largest difference in MSE between the different scenarios occurred for 

small sample sizes. The MSE was significantly larger for the frequentist 

confidence intervals than the Bayesian credible intervals until a sample size of 40 

for the high biased Bayesian scenario. When comparing the frequentist 

confidence intervals to the low bias and no bias credible intervals, they are 

significantly lower until the sample size reaches 75. All Bayesian scenarios 

performed better than the frequentist intervals until a sample size of 30 was 

reached. The no bias and low bias continued to perform better than the frequentist 

interval until a sample size of 75 was reached. 

The degree of bias needed before the capture rate drops below 0.95 is 

investigated in Figure 3. Iterations were performed using samples sizes of 15, 30, 

50, and 75. Surprisingly, there was not much difference between the three 

different population shapes (normal, moderately skewed, strongly skewed) even 

for smaller sample sizes. In addition, the sample size did not have much effect on 

capture rate. When the sample size is 15 both the normal distribution and the 

moderately skewed distribution are above the 95% capture rate until the bias was 

equal to 0.4, at which point the capture rate dropped very quickly. The strongly 

skewed population performed only slightly below the 95% capture rate when 

n = 15 until a bias equal to 0.4 at which point it dropped off significantly. The 

differences between the three distributions were very small for all sample sizes. 

For sample sizes larger than 15 the capture rate dropped below the 95% level at a 
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0.3 level of bias. Thus, it appears that the effects of the bias are slightly worse for 

larger sample sizes. 
 
 

 
Figure 1. Capture rates for confidence 
intervals and Bayesian credible intervals. 

 

 
 

 
Figure 2. Mean squared error (MSE) for 
each scenario. 

 

 
 



COMPARING BAYESIAN AND FREQUENTIST INTERVALS 

49 

 
 
Figure 3. Capture rates for different sample sizes and different degrees of bias. The bias 

is calculated by the number of standard deviations above the prior’s mean. 

 

 
 

The MSE for increasing levels of bias in the prior mean in shown in Figure 

4. The three distributions are shown on separate graphs and within each graph are 

three separate sample sizes. The solid line represents the MSE for frequentist 

methods for each sample size. For the normal distribution, when the Bayesian 

methods reach a bias of 0.6 the MSE is about equal to the frequentist methods 

with the same sample size. After a bias of 0.6 the Bayesian methods perform 

worse than frequentist methods with respect to the MSE. The differences were 

minor when comparing distributions. For strongly skewed distributions a smaller 

biased is required to perform better than frequentist methods. Surprisingly, for all 

distributions there was not much difference between the bias cutoff for different 

sample sizes. For the strongly skewed distribution, after a bias of 0.4 the 

frequentist methods performs better for n = 50 compared to a bias of 0.6 for a 

sample size of n = 15. 
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Figure 4. MSE calculated for different degrees of bias. The horizontal line reflects the 

MSE for frequentist methods of the same sample size. 

 

 

Conclusion 

These results indicate that when a prior mean is less than 0.4 to 0.6 standard 

deviations from the population mean then Bayesian credible intervals outperform 

frequentist confidence intervals with respect to MSE and capture rate for most 

scenarios that we looked at. For larger biases, frequentist confidence intervals will 

perform better with respect to MSE. Additionally, the distribution of the data did 

not have a large effect on the results even though the methods used assumed that 

the data came from a normal distribution. For strongly skewed data, neither 

frequentist nor Bayesian intervals performed at the optimal 95% capture rate with 

the exception being the Bayesian scenario with small, positive bias. Thus, for 

strongly skewed data it is suggested to seek a transformation for the data no 

matter which technique is used. In conclusion, this research demonstrates that 

Bayesian credible interval can have desirable properties for small sample sizes 

when the bias can be kept within about 0.5 standard deviations of the mean. 
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Because researchers will never know the bias of the prior mean they should only 

use Bayesian techniques when they have good information about the subject 

being researched. 
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