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A new exponentiality test was developed by modifying the Lilliefors test of 
exponentiality. The proposed test considered the sum of all the absolute differences 
between the exponential cumulative distribution function (CDF) and the sample empirical 
distribution function (EDF). The proposed test is simple to understand and easy to 
compute. 
 
Keywords: Cumulative distribution function, empirical distribution function, 

exponentiality test, critical value, significance level, and power 

 

Introduction 

Exponential distributions are quite often used in duration models and survival 

analysis, including several applications in macroeconomics, finance and labor 

economics (optimal insurance policy, duration of unemployment spell, retirement 

behavior, etc.). Quite often the data-generating process for estimating these types 

of models is assumed to behave as an exponential distribution. This calls for 

developing tests for distributional assumptions in order to avoid misspecification 

of the model (Acosta & Rojas, 2009). “The validity of estimates and tests of 

hypotheses for analyses derived from linear models rests on the merits of several 

key assumptions. The analysis of variance can lead to erroneous inferences if 

certain assumptions regarding the data are not satisfied” (Kuehl, 2000, p. 123).  

As statistical consultants we should always consider the validity of the 

assumptions, be doubtful, and conduct analyses to examine the adequacy of the 

model. “Gross violations of the assumptions may yield an unstable model in the 

sense that different samples could lead to a totally different model with opposite 

conclusions” (Montgomery, Peck, & Vining, 2006, p. 122). 

In this study we developed a new Goodness-of-Fit Test (GOFT) of 

exponentiality and compare it with four other existing GOFTs in terms of 
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computation and performance. This study also derived the critical values of the 

proposed test. The proposed test considered the sum of all the absolute differences 

between the empirical distribution function (EDF) and the exponential cumulative 

distribution function (CDF). 

Methodology 

To generate critical values, this study used data simulation techniques to mimic 

the desired parameter settings. Three different scale parameters (θ = 1, 5, and 10) 

were used to generate random samples from an exponential distribution. Sample 

sizes 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45 and 50 were used. The study 

considered three different significance levels (α) (0.01, 0.05 and 0.10). For each 

sample size and significance level, 50,000 trials were run from an exponential 

distribution which generated 50,000 test statistics. The 50,000 test statistics were 

then arranged in the order from smallest to largest. The proposed test is a right tail 

test. So, this study used the 99th, 95th, and 90th percentile of the test statistics as the 

critical values for the given sample size for the 0.01, 0.05, and 0.10 significance 

levels respectively. 

To verify the accuracy of the intended significance levels and to compare 

the power of the proposed test with other four exponentiality tests, data were 

produced from varieties of 12 distributions (Weibull (1,0.50), Weibull (1,0.75), 

Gamma (4,0.25), Gamma (0.55,0.275), Gamma (0.55,0.412), Gamma (4,0.50), 

Gamma (4,0.75), Gamma (4,1), Chi-Square (1), Chi-Square (2), t (5) and 

log-normal (0,1)) to see how the proposed test statistic works. Fifty thousand 

replications were drawn from each distribution for sample sizes 5, 10, 15, 20, 25, 

30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 1000, and 2000. For each 

sample size, the proposed test statistic and critical values were compared to make 

decisions about the null hypothesis. There were 50,000 trials for each sample size. 

The study tracked the number of rejections (rejection yes or no) in 50,000 trials to 

evaluate capacity of the proposed test to detect the departure from exponentiality. 

The study used R 3.0.2 for most of the simulations to generate test statistics, 

critical values and power comparisons. Microsoft Excel 2010 was also used to 

make tables and charts. Monte Carlo simulation techniques were used to generate 

random numbers which were used to approximate the distribution of critical 

values for each test. 

The proposed modified Lilliefors exponentiality test statistic (PML) takes 

the form, 
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where  *

iF x  is the CDF of exponential distribution using the maximum 

likelihood estimator for the scale parameter θ and S(xi) is the sample cumulative 

distribution function. The estimator ̂  is the uniformly minimum variance 

unbiased estimator (UMVUE) of the scale parameter θ. 
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 . The EDF is given by equation 3 
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Lilliefors test (LF-test) statistic (Lilliefors, 1969) is given by: 
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, and S(xi) is the empirical 

distribution function (EDF). Finkelstein & Schafers test (S-test) statistics 

(Finkelstein & Schafer, 1971) is given by: 

 

      0 0

1

1
max , ,ˆ ˆ  ,

n

i i

i

i i
S F X F X

n n
 



 
   

 
 ,  (5) 

 

where, 1ˆ     .  

n

ii
x

x
n

  


 Van-Soest test (VS-test) statistics (Soest, 1969) is given 

by: 
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nD - test) statistics 

(Srinivasan, 1970) is given by: 
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,  n iS x  is the EDF. 

According to Pugh (1963), the test statistic, 
nD -test, is based on the 

Rao-Blackwell and Lehman-Scheffe theorems which give the best unbiased 

estimate. Schafer, Finkelstein and Collins (1972) corrected the critical points of 

this test statistic originally proposed by Srinivasan (1970). 

Results 

Development of critical values 

The critical values from the simulated data generated for the three different values 

of the scale parameters (θ = 1, 5, and 10) are exactly the same for the set of 

parameters. It appeared that the critical values for the proposed test are the 

functions of the sample size (n) and the significance levels (α) but invariant with 

the choice of the scale parameter (θ). Table 1 shows the critical values for the 

proposed test. Due to space limitations, only five digits are shown on Table 1. 
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Table 1. Critical Values for the Proposed Exponentiality Test (θ = 1) 

 

n α = 0.01 α = 0.05 α = 0.10 

4 1.0567 0.8331 0.7409 

5 1.1760 0.9315 0.8202 

6 1.2703 1.0109 0.8931 

7 1.3642 1.0856 0.9562 

8 1.4647 1.1580 1.0189 

9 1.5403 1.2209 1.0757 

10 1.6274 1.2875 1.1310 

15 1.9444 1.5561 1.3653 

20 2.2271 1.7731 1.5636 

25 2.4762 1.9682 1.7342 

30 2.7097 2.1624 1.9066 

35 2.9111 2.3291 2.0584 

40 3.1062 2.4837 2.1904 

45 3.3216 2.6331 2.3204 

50 3.4557 2.7526 2.4309 

 

Accuracy of significance levels 

The simulated significance levels are presented on Table 2. Due to the limitations 

of the space, the simulated significance levels are rounded to three digits. The 

results showed that all five tests of exponentiality worked very well in terms of 

controlling the intended significance levels. The study found that the proposed 

test performs very closely to other four tests of exponentiality in terms of the 

accuracy of the intended significance levels (for each sample size and overall 

averages across the 19 different sample sizes). To allow for a better view of the 

five exponentiality tests across all sample sizes and significance levels, the 

columns for Lilliefors test are labelled by “LF”, Van-Soest test by “VS”, proposed 

modified Lilliefors test by “PML”, Srinivasan test by “D” and Finkelstein & 

Schafers test by “S” for the rest of the tables and figures presented in this study. 
 
 
Table 2. Average Simulated Significance Levels 

 

α LF D CVM S PML 

0.010 0.010 0.010 0.010 0.010 0.010 

0.050 0.051 0.051 0.051 0.051 0.051 

0.100 0.100 0.100 0.101 0.101 0.101 
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Power analysis 

First, consider the relationship between the alternative distribution, 

Weibull (1, 0.50) and the simulated power. Figure 1 summarizes the power 

analysis for the Weibull (1, 0.50) alternative distribution. The PML-test 

outperformed the power for all other four exponentiality tests across all 

significance levels and sample sizes. The power of all four exponentiality tests 

exceeded the LF-test. The VS-test, the D-test, and the S-test showed similar 

performance in power. It appears that for sample sizes 40 or more, the powers for 

all five exponentiality tests close to 1. 
 
 

 
 
Figure 1. Power for Alternative Distribution: Weibull (1, 0.50) 

 

 

Second, consider the relationship between the alternative distribution, 

Weibull (1, 0.75) and the simulated power. Figure 2 summarizes the power 

analysis for the Weibull (1, 0.75) alternative distribution. This distribution has the 
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same scale parameter (θ = 1) with the previous Weibull (1, 0.50) distribution but 

the shape parameter (β) is changed from 0.50 to 0.75. This caused the power to 

reduce substantially across all sample sizes and all significance levels under 

consideration. 

The PML-test outperformed the power for all other four exponentiality tests 

across all sample sizes and significance levels. In all parameter settings under 

investigation, the powers for the LF-test were the lowest as compared to other 

four exponentiality tests. The powers of the S-test and VS-test were almost 

identical across all sample sizes and significance levels. For a fixed significance 

level, the powers for the D-test were greater than the S-test and VS-test for small 

sample sizes but this relationship was reversed for medium to large sample sizes. 

For all significance levels with sample sizes at least 200, the powers for all five 

exponentiality tests were almost equal and they approach 1. 
 
 

 
Figure 2. Power for Alternative Distribution: Weibull (1, 0.75) 
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Third, consider the relationship between the alternative distribution, 

Gamma (4, 0.25) and the simulated power. Figure 3 summarize the power 

analysis for the Gamma (4, 0.25) alternative distribution. According to Bain and 

Engelhardt (1992), the shape parameter, k, in the Gamma distribution determines 

the basic shape of the graph of the probability distribution function (PDF). The 

value of the shape parameter in null distribution is 1 and the shape parameter in 

this alternative distribution is 0.25 which are much different. The PML-test 

outperformed the powers of all other four exponentiality tests across all sample 

sizes and all significance levels under consideration. For a fixed significance level, 

the powers of the D-test, VS-test, and S-test exceeded the powers of the LF-test 

for small sample sizes. For medium to large sample sizes, the LF-test, D-test, S-

test, and the VS-test exhibited the identical power across all significance levels. In 

all parameter settings, the powers of the D-test, the VS-test and the S-test were 

similar. For sample sizes at least 40, the powers of all five exponentiality tests 

were found almost equal which were close to 1 across all significance levels. 
 
 

 
Figure 3. Power for Alternative Distribution: Gamma (4, 0.25) 
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Fourth, consider the relationship between the alternative distribution, 

Gamma (0.55, 0.275) and the simulated power. Figure 4 summarizes the power 

analysis for the Gamma (0.55, 0.275) alternative distribution. The PML-test 

outperformed other four exponentiality tests across all sample sizes and 

significance levels. The LF-test exhibited the lowest power across all sample sizes 

and significance levels. For sample sizes at least 50, the powers for all five tests 

were found almost equal which were close to 1 across all significance levels. In 

all parameter settings, the powers for the VS-test, the D-test, and the S-test were 

identical but all these three tests outperformed the LF-test across all sample sizes 

and significance levels. 
 
 

 
Figure 4. Power for Alternative Distribution: Gamma (0.55, 0.275) 

 

 

Although the overall power trends in the previous alternative distribution 

(Gamma (4, 0.25)) and this distribution were similar among five exponentiality 

tests, the powers for this distribution was lower than the previous alternative 
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distribution across all sample sizes and significance levels. In the previous 

alternative distribution, the value of the shape parameter (K) is 0.25 which is 

0.275 in this alternative distribution. 

Fifth, consider the relationship between the alternative distribution, 

Gamma (0.55, 0.412) and the simulated power. Figure 5 summarizes the power 

analysis for the Gamma (0.55, 0.412) alternative distribution. The PML-test 

outperformed other four exponentiality tests across all sample sizes and 

significance levels. The LF-test exhibited the lowest power across all sample sizes 

and significance levels. For sample sizes at least 80, the powers for all five tests 

were found almost equal which were close to 1 across all significance levels. In 

all parameter settings, the powers for the VS-test, the D-test, and the S-test were 

identical but all three tests outperformed the LF-test across all sample sizes and 

significance levels. Comparing the powers for this alternative distribution with the 

previous alternative distribution (Gamma (0.55, 0.275)), the powers were reduced 

in this alternative distribution across all sample sizes and significance levels. This 

is due to only the change in shape parameter (k) from 0.275 to 0.412. The scale 

parameters (θ) were the same on these two alternative distributions. It is relevant 

to argue that for Gamma alternative distribution, the powers for these five 

exponentiality tests depend only on the shape parameter (k). It is also important to 

note that the shape parameter (k) in the null distribution was 1. So, this study 

showed that as the shape parameter in the alternative distribution is close to the 

shape parameter of the null distribution, the simulated powers would be decreased. 

Before considering the power for next two alternative distributions, it is 

imperative to discuss that the Chi-Square distribution is a special case of Gamma 

distribution. According to Bain and Engelhardt (1992), if a variable Y is a special 

Gamma distribution with scale parameter (θ = 2) and shape parameter (k = ν/2), 

the variable Y is said to follow a Chi-Square distribution with ν degrees of 

freedom. So, if Y ~ Gamma (θ = 2, k = ν/2), a special notation for this distribution 

can be written as: 

 

  2 ~  Y     (8) 

 

Using equation 8, the Gamma (4, 0.5) and the Chi-Square (1) distributions are 

equivalent. This study previously showed that the power for the Gamma 

distribution depends only on the shape parameter (k). So, the powers of the 

Gamma (4, 0.5) and Chi-Square (1) alternative distributions must be equivalent. 
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Figure 5. Power for Alternative Distribution: Gamma (0.55, 0.412) 

 

 

Sixth, consider the relationship between the alternative distributions, 

Gamma (4, 0.5), Chi-Square (1) and the simulated power. Figure 6 summarizes 

the power analysis for the Gamma (4, 0.5) and Chi-Square (1) alternative 

distributions. For a fixed sample size and a significance level, powers for these 

two alternative distributions were exactly the same. As in the previous alternative 

distributions, the PML-test outperformed all other four exponentiality tests across 

all sample sizes and significance levels. The LF-test was in the last place on the 

power curve. The powers for the VS-test and S-test were identical for a fixed 

sample size and a significance level. The D-test demonstrated the superior power 

than the VS-test and the S-test for small sample sizes across all significance levels 

but this relationship was reversed for medium to large sample sizes. For sample 

sizes at least 200, the powers for all five tests were equivalents which were close 

to 1. As compare with the previous alternative distribution (Gamma (0.55, 0.412)), 

powers for these two alternative distributions decrease across all sample sizes and 
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significance levels. It is relevant to note that the shape parameter (k) was changed 

from 0.412 to 0.50 which caused the decrease in power. It appears that as the 

value of the shape parameter (k) approaches that of the null distribution (k = 1), 

the simulated powers decreases. 
 
 

 
Figure 6. Power for Alternative Distribution: Chi-Square (1) 

 

 

Seventh, consider the relationship between the alternative distribution 

Gamma (4, 0.75) and the simulated power. Figure 7 summarizes the power 

analysis for the Gamma (4, 0.75) alternative distribution. The PML-test 

outperformed all other four exponentiality tests across all sample sizes and 

significance levels. The LF-test was in the last place on the power curve. The 

powers for the VS-test and S-test were identical for a fixed sample size and 

significance level. The D-test demonstrated the superior power than the VS-test 

and the S-test for small sample sizes across all significance levels but this 

relationship was reversed for medium to large sample sizes. For sample size at 
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least 1,000, the powers of all five tests were equivalents which were close to 1. As 

compare with the previous alternative distribution (Gamma (4, 0.5)), powers of 

this alternative distributions were significantly decrease across all sample sizes 

and significance levels. It is relevant to note that the shape parameter (k) was 

changed from 0.5 to 0.75 which caused the decrease in power. Among five 

Gamma alternative distributions discussed in this chapter, this alternative 

distribution exhibited the lowest power across all sample sizes and significance 

levels. 
 
 

 
Figure 7. Power for Alternative Distribution: Gamma (4, 0.75) 

 

 

Before considering the power for next two alternative distributions, it is 

indispensable to revisit that the Chi-Square distribution is a special case of 

Gamma distribution (equation 8). This study previously showed that the power for 

the Gamma distribution depends only on the shape parameter (k). Null 

distributions were generated using the exponential (θ = 5) for power simulation. 
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Using 8, Gamma (4, 1) and Chi-Square (2) alternative distributions must produce 

similar powers for the set of parameters (n and α). In other words Gamma (4, 1) 

and Chi-Square (2) alternative distributions can be used for the simulation of 

significance levels. 

Eighth, consider the relationship between the alternative distributions, 

Gamma (4, 1), Chi-Square (2) and the simulated power. Figure 8 summarizes the 

power analysis for the Gamma (4, 1) and Chi-Square (2) alternative distributions. 

The powers of all five exponentiality tests across all sample sizes and significance 

levels were too low which were pretty close to their significance levels. It is due 

to the fact that the power of these five exponentiality tests depends only on the 

shape parameter (k). It appears that the scale parameter (θ) does not have any role 

on the simulated powers. 
 
 

 
Figure 8. Power for Alternative Distribution: Chi-Square (2) 
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Ninth, consider the relationship between the alternative distribution t (5) and 

the simulated power. Figure 9 summarizes the power analysis for the t (5) 

alternative distribution. This is the only one symmetric distribution used in the 

power analyses. All five exponentiality tests quickly detected non-exponentiality. 

For sample sizes at least 15, the powers for all five tests were almost identical 

which were close to 1. The range of the powers was found to be very narrow 

across all sample sizes for a fixed significance level. 
 
 

 
Figure 9. Power for Alternative Distribution: t (5) 

 

 

Finally, consider the relationship between the alternative distribution 

log-normal (0, 1) and the simulated power. Figure 10 summarizes the power 

analysis for the log-normal (0, 1) alternative distribution. For small sample sizes, 

all five exponentiality tests demonstrated similar power across all significance 

levels. For medium to large sample sizes, the PML-test and S-test were in the top, 

the VS-test was in the middle and the D-test and LF-test were in the bottom of the 

power curve. It appears that the PML-test exhibited equal or better power among 
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five exponentiality tests in the set of parameters considered in this study. For 

sample sizes at least 1000, the powers for all five tests were almost identical 

which were close to 1. 
 
 

 
Figure 10. Power for Alternative Distribution: log-normal (0, 1) 

 

 

Conclusion 

This study claimed that the PML-test demonstrated consistently superior power 

over the S-test, LF-test, VS-test, and D-test for most of the alternative 

distributions presented in this study. The D-test, VS-test, and S-test exhibited 

similar power for a fixed sample size and a significance level. The LF-test 

consistently showed the lowest power among five exponentiality tests. So, 

practically speaking the proposed test can hope to replace the other four 

exponentiality tests discussed throughout this study while maintaining a very 

simple form for computation and easy to understand for those people who have 

limited knowledge of statistics. 
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