
Journal of Modern Applied Statistical
Methods

Volume 8 | Issue 2 Article 21

11-1-2009

Test for the Equality of the Number of Signals
Madhusudan Bhandary
Columbus State University, bhandary_madhusudan@columbusstate.edu

Debasis Kundu
Indian Institute of Technology, Kanpur, India, kundu@iitk.ac.in

Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the
Statistical Theory Commons

Recommended Citation
Bhandary, Madhusudan and Kundu, Debasis (2009) "Test for the Equality of the Number of Signals," Journal of Modern Applied
Statistical Methods: Vol. 8 : Iss. 2 , Article 21.
DOI: 10.22237/jmasm/1257034800

http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol8%2Fiss2%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol8%2Fiss2%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol8?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol8%2Fiss2%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol8/iss2?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol8%2Fiss2%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol8/iss2/21?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol8%2Fiss2%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol8%2Fiss2%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol8%2Fiss2%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/214?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol8%2Fiss2%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages


Journal of Modern Applied Statistical Methods   Copyright © 2009 JMASM, Inc. 
November 2009, Vol. 8, No. 2, 566-570                                                                                                                   1538 – 9472/09/$95.00 

566 
 

Test for the Equality of the Number of Signals 
 

Madhusudan Bhandary Debasis Kundu 
Columbus State University Indian Institute of Technology 

Kanpur, India 
 

 
A likelihood ratio test for testing the equality of the ranks of two non-negative definite covariance 
matrices arising in the area of signal processing is derived. The asymptotic distribution of the test statistic 
follows a Chi-square distribution from the general theory of likelihood ratio test. 
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Introduction 
In the area of signal processing, signals are 
observed at different sensors from different 
sources at different time points. Wax, Shan and 
Kailath (1984) and Whalen (1971) discussed 
models and varieties of problems in signal 
processing. In general, the signal processing 
model is as follows: 
 

X(t) = AS(t) + n(t)                 (1) 
 
where, X(t) = (X1(t), X2(t), …, Xp(t))′ is the px1 
observation vector at time t, S(t) = (S1(t), S2(t), 
…, Sq(t))′ is the qx1 vector of unknown random 
signals at time t, n(t) = (n1(t), n2(t), …, np(t))′ is 
the px1 random noise vector at time t, A = 
(A(Φ1), A(Φ2), …, A(Φq)) is the pxq matrix of 
unknown coefficients, and A(Φr) is the px1 
vector of functions of the elements of unknown 
vector Φr associated with the rth signal and q < p. 

In model (1), X(t) is assumed to be 
distributed as p-variate normal with mean vector 
zero and dispersion matrix 

2 2
p pA A I Iσ σ′Ψ + = Γ + , where AA ′Ψ=Γ  is 

unknown n.n.d. matrix of rank q(<p) and Ψ  =  
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covariance matrix of S(t), 2σ (>0) is unknown 

and 2
pIσ  is the covariance matrix of the noise 

vector n(t). In this case, the model is called 
white noise model. 

One important problem that arises in the 
area of signal processing is to estimate q, the 
number of signals transmitted. This problem is 
equivalent to estimating the multiplicity of the 
smallest eigenvalue of the covariance matrix of 
the observation vector. Anderson (1963), 
Krishnaiah (1976) and Rao (1983), among 
others, considered this problem. Wax and 
Kailath (1984) and Zhao, et al. (1986a, b) used 
information theoretic criteria proposed by 
Akaike (1972), Rissanen (1978) and Schwartz 
(1978) to estimate the number of signals. 

More recently, Chen, et al. (2001), Chen 
(2002) and Kundu (2000) developed procedures 
for estimating the number of signals. This article 
considers the two sample problem of testing the 
equality of the number of signals between two 
sets of data from two populations. This problem 
is relevant in practice in the area of signal 
processing because it is important to know 
whether the total numbers of signals received are 
the same or not for two different days, which 
can be separated by a lengthy time. This 
problem is equivalent to testing the equality of 
multiplicity of the smallest eigenvalue of the 
covariance matrices of observation vectors of 
the two sets of data. Consider the following 
model: 
 

( ) ( ) ( ); 1,2i i i iX t A S t N t i= + =  
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where, ( )iX t  is a px1 observation vector for the 

ith population, 1( ( ),..., ( ))
i

i i
i i i qA A A= Φ Φ , 

1( ) ( ( ),..., ( ))
i

i i
i qS t S t S t= , 1, 2i =  and ( )iN t  is 

a px1 random noise vector for the ith population. 
The following are assumed about ( )iN t  and 

( )iS t : 

iN ( ) ~ (0, ),

( ) ~ (0, ),

p i

i p i

t N
S t N

Σ

Ψ
 

 
and ( )iN t  and ( )iS t are independently 

distributed. The null hypothesis to test is 

0 1 2:kH q q k= = , and the alternative 

hypothesis is 1 1 2: , 0,1,..., 1.H q q k p≠ = −  At 

this point, the likelihood ratio test is derived next 
and asymptotic distribution of the test statistic is 
used to obtain the critical value. 
 
Likelihood Ratio Test: Case 1 

Consider 2 , 1,2.i pI iσΣ = =  The test 

hypotheses are: 
 

0 1 2:kH q q k= =  

and 

1 1 2: , 0,1,..., 1.H q q k p≠ = −  

 
The observations from the two populations are 
as follows: 

11 1 1( ),..., ( )nX t X t  are i.i.d. 
2

1 1 1~ (0, )p pN A A Iσ′Ψ +  and 

1 1 22 1 2( ),..., ( )n n nX t X t+ +  are i.i.d. 
2

2 2 2~ (0, ).p pN A A Iσ′Ψ +  

Let 2 , 1,2.i i i i pR A A I iσ′= Ψ + =  It may 

be stated that testing 0kH  is equivalent to testing 

the rank of i i iA A′Ψ  = k, i = 1, 2. 

Let ( )k
i iR R=  under 0kH , i = 1,2. Using 

spectral decomposition of ( )
1

kR  and ( )
2

kR , it can 

be written that 
 

( ) 2 2 2
1 1 1 1( ) ... ( )k

k k k pR U U U U Iλ σ λ σ σ′ ′= − + + − +
 

and 
 

( ) 2 2 2
2 1 1 1( ) ... ( )k

k k k pR VV V V Iμ σ μ σ σ′ ′= − + + − +
 

where 2
1 2 ... kλ λ λ σ≥ ≥ ≥ >  are the 

eigenvalues of ( )
1

kR  and 1,..., kU U  are the 

corresponding orthonormal eigenvectors of  

1 1 1A A′Ψ  and similarly, 2
1 2 ... kμ μ μ σ≥ ≥ ≥ >  

are the eigenvalues of ( )
2

kR  and 1,..., kV V  are the 

corresponding orthonormal eigen vectors of  

2 2 2A A′Ψ . 

Thus, under 0kH  the log-likelihood 

(apart from a constant term) is 
 

( ) ( ) 11 1
1 1 1

( ) ( ) 12 2
2 2 2

( ) 1 ( ) 11 2
1 1 2 2

1 2

1 1

2

ˆlog log .( ( ) )
2 2

ˆ  log .( ( ) )
2 2

ˆ ˆ.( ( ) ) .( ( ) )
2 2

  log log
2 2

  ( ) log
2

k k

k k

k k

k k

i i
i i

n nL R tr R R

n nR tr R R

n ntr R R tr R R

n n

n p k

λ μ

σ

−

−

− −

= =

= − −

− −

= − −

− −

− −

 

(2) 
where 

1

1 1 1
11

1ˆ ( ) ( ),
n

i i
i

R X t X t
n =

′=   

 
1 2

1

2 2 2
12

1ˆ ( ) ( )
n n

i i
i n

R X t X t
n

+

= +

′=   

and 

1 2n n n= + . 

 
Rather than maximizing (2), equivalently 
minimize 
 

* ( ) 1 ( ) 1

1 1 1 2 2 2

1 2
1 1

2

ˆ ˆlog .( ( ) ) .( ( ) )

            log log

            ( ) log

k k

k k

i i
i i

L n tr R R n tr R R

n n

n p k

λ μ

σ

− −

= =

= +

+ +

+ −

   (3) 
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Orthogonal matrices 1 2 1 2, , ,P P U U  exist 

such that 

1 1 1 1R̂ PD P′= ,      ( )
1 1 1 1

kR U U ′= Λ  

and 

2 2 2 2R̂ P D P′= ,      ( )
2 2 2 2

kR U U ′= Λ  

 
where, 1 1.( ,..., ),pD Diag l l=    1 2 ... pl l l≥ ≥ ≥  

are the eigenvalues of 1R̂  and similarly, 

2 1.( ,..., ),pD Diag ξ ξ=    1 2 ... pξ ξ ξ≥ ≥ ≥  are 

the eigenvalues of 2R̂  
2 2

1 1.( ,..., , ,..., ),kDiag λ λ σ σΛ =  and 
2 2

2 1.( ,..., , ,..., ).kDiag μ μ σ σΛ =  Thus, (3) 

can be rewritten as follows: 
 

* 1
1 1 1 1 1 1 1

1
2 2 2 2 2 2 2

1 2
1 1

2

1 1
1 1 1 1 1 2 2 2 2 2

1 2

log .( )

 .( )

 log log

 ( ) log

.( ) .( )

 term independent of  and

k k

i i
i i

L n tr PD PU U
n tr P D PU U

n n

n p k
n tr DV V n tr D V V

V V

λ μ

σ

−

−

= =

− −

′ ′= Λ
′ ′+ Λ

+ +

+ −
′ ′= Λ + Λ

+

   

(4) 
 
where, 1 1 1V PU′=  and 2 2 2V PU′=  and hence 1V  

and 2V  are orthogonal. 

Differentiating (4) with respect to 1V  

subject to 1 1 pVV I′=  and equating it to 0, results 

in 
1 1 2

1 1 1 1 1 1

1

0

. ., p

D V V V

i e V I

− − −′ Λ − Λ = 
=

 

 
Similarly, 2 pV I=  is obtained. Hence, given 

' , 'i is sλ μ  and 2σ , 

 

0

*

1 1
1 22 2

1 1

2

1 2
1 1

log

                

              log log ( ) log

kH

p p

i ik k
i i k i i k

i ii i

k k

i i
i i

Inf L

l
l

n n

n n n p k

ξ
ξ

λ σ μ σ

λ μ σ

= + = +

= =

= =

=

+ + +

+ + + −

   
   
   
      
   

 
 

 
 

(5) 
 
Differentiating (5) with respect to 'i sλ  and 

equating it to 0, results in 
 

1
1 2

0

ˆ. .,

i

i i

i i

l nn

i e l

λ λ

λ

− + =

=
 

 
Similarly, ˆ ; 1,..., .i i i kμ ξ= =   

Differentiating (5) with respect to 2σ  
and equating it to 0, results in 
 

1 2
2 1 1ˆ ,

( )

p p

i i
i k i k

n l n

n p k

ξ
σ = + = +

+
=

−

 
 

hence, 

0

1 1
1 22 2

2
1 2

1 1

1 2
1 1

1 2
1 1

1

log

ˆlog log ( ) log

log log

 ( ) log
( )

 (say)

k

p p

i i
i k i k

H

k k

i i
i i

k k

i i
i i

p p

i i
i k i k

l
Sup L nk n n

n l n n p k

np n l n

n l n
n p k

n p k

L

ξ

σ σ

ξ σ

ξ

ξ

= + = +

= =

= =

= + = +

= − − −

− − − −

= − − −

 
+ 

 − −
− 

 
 

=

 

 

 

 
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In the above expression of 1L , the unknown k  

can be estimated by using Zhao, Krishnaiah and 
Bai’s (1986a,b) information criterion as follows: 

Estimate k  by k̂  such that 
 

0 1

ˆ( , ) min ( , ),n nk p
I k c I k c

≤ ≤ −
=  

where 
 

1

( 1)
( , ) (2 1) 2

2n n
k kI k c L c k pk k −  = − + + + − −  

  
 

 
and nc  is such that 

(i) lim 0n
n

c
n→∞

=  

 

(ii) lim
log log

n
n

c
n→∞

= ∞  

 
For practical purposes, choose lognc n=  which 

satisfies conditions (i) and (ii). Hence, 
 

ˆ ˆ
*
1 1 2

1 1

1 2
ˆ ˆ1 1

log log

ˆ      ( ) log
ˆ( )

k k

i i
i i

p p

i i
i k i k

L np n l n

n l n
n p k

n p k

ξ

ξ

= =

= + = +

= − − −

 
+ 

 − −
 −
 
 

 

   

(6) 
 
Similarly, 
 

[ ] 1 2

1 2

ˆ ˆ1 1

1 1 2 2

1 1 2 2

1

1 2

*
2

ˆ ˆ

1 2
1 1

ˆ ˆ( ) ( ) log
ˆ ˆ( ) ( )

log

log log

p p

i i

i q i q

H

q q

i i
i i

n l n

n p q n p q
n p q n p q

L Sup L

np n l n

ξ

ξ

= + = +

= =

+

− − + −
− + −

=

= − − −

 
 
 
 
 

 

 

(7) 
 
where, 1̂q  and 2q̂  are obtained such that 

1

2

1 2 1 20 1
0 1

ˆ ˆ( , , ) min ( , , )n nq p
q p

I q q c I q q c
≤ ≤ −
≤ ≤ −

=  

and 
 

1 2

1 2

1 2 1 2
1 1

1 2
1 11 1

2 2 1 1 2 2

1 2

1 1 2 2
1 2

( , , ) log log

( )
log

( ) ( ) ( )

( ) 1

( 1) ( 1)
( 1)( )

2 2

q q

n i i
i i

p p

i i
i q i q

n

I q q c np n l n

n l n
n p q

n p q n p q n p q

q q
c q q q qp q q

ξ

ξ

= =

= + = +

= + +

 
+ −   +    + − − + − 

 
 

+ + 
 +  − −+ − + − −  

 

 

 
 
and nc  is defined the same as previously. 

Hence log of likelihood ratio statistic is 
* *
1 2L L− , where *

1L  and *
2L  are given by (6) and 

(7) respectively. The critical value for this test 
can be approximated from the fact that 

asymptotically, 
1 2

* * 2
ˆ1 2 ˆ ˆ( , , )

2( ) ~
q q k

L L γχ− −  under 

0H  where, 

 

1 2

1 2 1 2

1 1 2 2

ˆˆ ˆ( , , )

ˆ ˆˆ ˆ ˆ ˆ  ( 2 ) ( 1)( 2 )

ˆ ˆ ˆ ˆ( 1) ( 1)ˆ ˆ  ( 1) .
2 2

q q k

q q k p q q k
q q q qk k

γ =

+ − + − + −
− −+ − − −

 
 

Likelihood Ratio Test: Case 2 

Consider, 2 , 1,2i i pI iσΣ = = . For case 

2, the problem can be solved similarly and the 
problem is easier than that in case 1.  
 
Likelihood Ratio Test: Case 3 

Consider, 2σ  is known in case 1. 
Without loss of generality, 2σ  = 1 can be 
assumed and in that case, the log likelihood must 
be maximized with respect to the eigenvalues 
subject to the condition that the eigenvalues are 
greater than 1, in which case the technique 
presented by Zhao, Krishnaiah and Bai (1986a, 
b) can be used. 
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