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Estimating the Accuracy of Automated 
Classification Systems Using Only Expert 
Ratings that are Less Accurate than the 
System 

Paul E. Lehner 
The MITRE Corporation 

McLean, VA, USA 

 

 
A method is presented to estimate the accuracy of an automated classification system 
based only on expert ratings on test cases, where the system may be substantially more 
accurate than the raters. In this method an estimate of overall rater accuracy is derived 
from the level of inter-rater agreement, Bayesian updating based on estimated rater 

accuracy is applied to estimate a ground truth probability for each classification on each 
test case, and then overall system accuracy is estimated by comparing the relative 
frequency that the system agrees with the most probable classification at different 
probability levels. A simulation analysis provides evidence that the method yields 
reasonable estimates of system accuracy under diverse and predictable conditions. 
 
Keywords: Inter-rater reliability, Kappa, artificial intelligence 

 

Introduction 

Information technology is advancing to develop systems that address problems of 

increasing sophistication and complexity. A quick scan of programs sponsored by 

research funding agencies (e.g., www.nih.gov, www.nsf.gov, www.darpa.mil, 

www.iarpa.gov ) showed new systems being developed to address complex 

problems as diverse as automated medical and clinical diagnoses, technology 

readiness evaluation, detection of emerging technologies, classification of the 

behavioral contents of unstructured video segments, recognition and classification 

of metaphors used in natural language text and many others. 

The complexities of the problems that these advanced systems address make 

it difficult to evaluate the accuracy of such systems. It is usually necessary to 
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resort to using expert raters to assign ground truth for test cases. However, the 

complexity of these problems also challenge to the expert raters. Raters often 

disagree as to which is the correct category. Furthermore as future systems 

address problems of ever increasing sophistication and complexity, it seems likely 

that the experts will be even more challenged and exhibit even lower levels of 

agreement. Ground truth data sets based on expert assignments are fallible and are 

likely to become more so in the future. 

Using expert raters to assign ground truth to test cases is a well-established 

practice. For classification problems, which are the focus of this paper, a statistic 

such as Kappa is used to measure inter-rater agreement; and then the rating 

process is refined until a satisfactory level of agreement is reached. Once the 

agreement threshold is reached, assignments of individual raters or collaborating 

teams of raters are treated as truth and system accuracy is measured by the level 

of agreement with the assigned ground truth (See Gwet, 2010 for review). 

For several reasons, this common scientific practice does not adequately 

meet the needs of advanced system evaluation. First, the level of agreement 

amongst raters will rarely meet a satisfactory level. The problems that these 

systems address are simply too complex. About the only way to increase the level 

of agreement is to select relatively simple and therefore non-representative test 

cases. 

Second, estimating system accuracy by measuring the level of agreement 

with expert raters makes the de facto assumption that the experts are more 

accurate than the system. This assumption runs contrary to a substantial body of 

empirical research where it is often found that simple algorithms outperform 

human experts in complex judgments (Dawes, 1979; Grove, Zald, Lebow, Snitz, 

& Nelson 2001; Tetlock, 2005). It should not be presumed that the experts are 

more accurate than the system. 

Third, there is considerable evidence to suggest that for a wide variety of 

judgment tasks collaborative team judgments are not substantially more accurate 

than the judgments of randomly selected individual team member (e.g., 

Surowiecki, 2005; Armstrong, 2006). In judgment tasks, where there is no 

obvious correct answer, it should not be presumed that collaboration will reliably 

lead the raters to converge to the correct answer.  

Finally, when evaluating a classification system the statistic of greatest 

interest is the accuracy of the system - the proportion of system assignments that 

are correct. Unfortunately there is an unclear relationship between inter-rater 

reliability statistics such as Kappa, the probability of correct ground truth 



ESTIMATING SYSTEM ACCURACY USING FALLIBLE EXPERT RATINGS 

124 

assignments and the accuracy of any systems tested against error-prone ground 

truth assignments. 

A different approach is presented here to using expert ratings to estimate the 

accuracy of classification systems. Rather than treat expert ratings as a surrogate 

for ground truth, expert ratings are treated as error prone estimates of ground truth 

where independent ratings are fused to estimate ground truth probabilities, and the 

ground truth probabilities are then used to estimate system accuracy. 

One practical instantiation of this estimation approach is described below. In 

addition simulation test results are provided that support several claims. First, 

under diverse conditions, this approach reliably yields estimates of system 

accuracy that are approximately correct. If a system is 90% accurate then this 

approach will yield an estimate of system accuracy that is close to 90%. Second, 

the accuracy of the estimate of system accuracy is largely independent of whether 

the expert raters are more or less accurate than the system. If a system is in fact 

90% accurate, and the raters are individually 60% accurate, then the estimate of 

system accuracy will still be approximately 90%. Third, reliable estimates of 

system accuracy can often be obtained with a reasonably small number of test 

cases (e.g. fifty test cases with three expert raters). In complex domains it is 

important to keep sample sizes as small as possible, since it may be time 

consuming and costly to obtain expert ratings. Fourth, and importantly, the 

conditions under which the above three claims may break down are predictable. 

Therefore test data sets can be intentionally constructed to ensure that the 

conditions are met that are needed for accurate estimation of system accuracy. 

Estimating the accuracy of system classifications 

The method for estimating accuracy described below was derived from the 

following assumptions.  

 

AA1.  For each case there is a unique correct classification. 

AA2.  For each case raters independently assign classifications. 

AA3.  Expected agreement between raters increases as expected rater 

accuracy increases. 

 

Assumption AA3 refers to expected agreement and accuracy. Here 

“accuracy” refers to the total proportion of correct classifications made by all the 

raters, irrespective of which raters are making correct and incorrect classifications. 

And “agreement” refers to the total proportion of pairwise agreement among all of 
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the raters and cases. For any particular set of cases, accuracy may be low yet 

agreement high (the raters made the same mistakes), but AA3 asserts that in 

general there is an expected positive relationship between accuracy and 

agreement.  

Theorem 1: 

AA1-AA3 are ensured if and only if the raters behave as though their selection for 

each case is determined by a single confusion matrix where the conditional 

probability of correct assignment is constant and the conditional probability of all 

incorrect assignments is equal.  

 

That is to say all raters on all problems are selecting from a single confusion 

matrix with a structure such as shown in Table 1.  

The proof of this theorem is found in the Appendix. The general structure of 

the proof shows that if the raters are assigning classifications using any process 

other than selecting from a common confusion matrix with the structure 

illustrated in Table 1, then it is always possible to construct a classification 

process with lower expected accuracy and higher expected agreement, or higher 

accuracy and lower agreement; thereby violating the assumed monotonic 

relationship between expected accuracy and expected agreement.  
 
 
Table 1. Implied Structure of Rater Confusion Matrices for Four Category Problem (A to 

D are true categories and “A” to “D” are selected categories.) 
 

 
“A” “B” “C” “D” 

A Pc (1-Pc)/3 (1-Pc)/3 (1-Pc)/3 

B (1-Pc)/3 Pc (1-Pc)/3 (1-Pc)/3 

C (1-Pc)/3 (1-Pc)/3 Pc (1-Pc)/3 

D (1-Pc)/3 (1-Pc)/3 (1-Pc)/3 Pc 

 
 

AA1 through AA3 also seem to be assumed implicitly in many contexts 

where the Kappa statistic is applied. Indeed it is AA3 that would seem to warrant 

the common practice of using expert ratings as surrogates for ground truth when 

high levels of inter-rater agreement are found. Consequently it is reasonable to 

claim that the estimation method described below is derived from assumptions 

implicit in the Kappa statistic and how Kappa is often used. Because of this 

relationship to the Kappa statistic, in the remainder of this paper AA1-AA3 will 

be referred to as K-assumptions. Furthermore, the properties of equal rater 
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accuracy, equal error probabilities and equal problem difficulty that are implied 

by the K-assumptions will be referred to as K-properties. 

 
Table 2. Sample data of expert ratings and system assignments for 10 test cases 

 

Case # Rater 1 Rater 2 Rater 3 Rater 4 System 

1 “C” “D” “C” “C” “A” 

2 “B” “D” “C” “C” “C” 

3 “C” “C” “D” “C” “C” 

4 “B” “B” “D” “D” “B” 

5 “A” “B” “B” “B” “B” 

6 “C” “B” “D” “A” “A” 

7 “A” “A” “A” “A” “A” 

8 “A” “D” “B” “C” “C” 

9 “D” “B” “A” “A” “D” 

10 “A” “D” “A” “B” “B” 

 
 

The estimation method is straightforward to explain in the context of an 

example. Consider the test data in Table 2. There are 10 test cases, 4 categories, 4 

raters and the system’s proposed answers. When referring to ground truth the four 

categories are labeled A, B, C, D; when referring to rater and system assignments 

they are labeled “A”, “B”, “C”, “D”. 

As described below the estimation method is composed of four basic steps. 

Estimate rater accuracy 

Given that each rater has an identical confusion matrix, with the structure 

shown in Table 1, the probability that two raters will agree on any one case is 
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Here Pa is the probability of agreement, Pc is the probability that a rater will 

make the correct assignment, and N is the number of categories. Solving for Pc 

yields  
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Eq. 2 is used to estimate rater accuracy. In the 10 cases in Table 1 there was 

33% agreement (20 pairs out of 60). Setting Pa to .33 and solving for Pc yields Pc 

= 0.5; which is the estimate of rater accuracy. 

Estimate base rates 

The probability that a rater will assert a category, say “A”, is as follows: 
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  (3) 

 

Here P(“A”) is the marginal probability that the rater asserts “A”, P(“A”|A) 

is the conditional probability that the rater will assert “A” if A is true, and P(A) is 

the marginal probability of A. Solving for P(A) yields 
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Setting P(“A”) to be the observed relative frequency of “A”, and P(“A”|A) 

to be the estimate of Pc from above, yields 

 

  
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Eq. 5 is used to estimate the base rate for each category by setting Pc to be 

the estimate from above and P(“X”) to be the observed relative frequency across 

all raters and ratings that category X was assigned. In Table 1 there are 11 

instances of each of the categories; so the estimated base rate is 0.325 for category 

A. Applying Eq. 5 to the other categories yields base rates of 0.25, 0.25 and 0.175 

for B, C and D respectively. 
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Estimate ground truth probabilities 

Use Bayes rule, assuming conditional independence for each rater, to estimate 

ground truth probabilities. For example, in case 1 above the raters selected 

“CCDC”. So for each possible ground truth value calculate P(…|”CDCC”) and 

normalize. 
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Repeating this step for the other 9 cases yields the estimated probability 

distributions shown in Table 3. 
 
 
Table 3. Estimated ground truth probabilities for sample data  

 

 
Ground Truth Probability System 

Answer Case # A B C D 

1 0.041 0.032 0.860 0.067 “A” 

2 0.084 0.195 0.584 0.136 “C” 

3 0.041 0.032 0.860 0.067 “C” 

4 0.074 0.511 0.057 0.358 “B” 

5 0.120 0.828 0.031 0.021 “B” 

6 0.325 0.250 0.250 0.175 “A” 

7 0.975 0.009 0.009 0.006 “A” 

8 0.325 0.250 0.250 0.175 “C” 

9 0.657 0.169 0.056 0.118 “D” 

10 0.657 0.169 0.056 0.118 “B” 

 

Estimate system accuracy 

Assume any probability distribution over the categories for each test case. For any 

test case, let Pg be the probability of the classification with the highest probability, 
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Ps be the probability that the system will assign the correct answer, Pa be the 

probability that the system will assign the same classification as the highest 

ground truth probability. It follows that  

 

  
1

     1
1

s
a g s g
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P P P P

N


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Note that this relationship holds whether or not the classification with the 

highest probability is correct. Solving for Ps yields 
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Eq. 7 is used to estimate system accuracy as follows. First separate the test 

cases into bins with approximately the same highest estimated ground truth 

probability. In this paper the ranges (.9, 1.0], (.8, .9], (.7, .8], etc. are used. For 

example, in Table 3 there is one case in the (.9, 1.0] range, 3 cases in the (.8, .9] 

range, 2 cases in the (.6, .7] range, etc. Second for each bin calculate the average 

ground truth probability within the bin; record the proportion of system 

assignments that agree with the most probable answer; then estimate system 

accuracy for each bin using equation Eq. 7. Third estimate overall system 

accuracy by taking the average of the estimated accuracy in each bin weighted by 

the number of cases in each bin. This is shown in Table 4. 
 
 
Table 4. Estimate of System Accuracy for Sample Data 

 
Probability 

Bin 
Average Ground 
Truth Probability 

Number 
in Bin 

Proportion of 
Agreement 

Estimated 
Accuracy 

.9 – 1.0 0.975 1 1.000 1.000 

.8 - .9 0.849 3 0.667 0.776 

.6 - .7 0.657 2 0.000 0.000 

.5 - .6 0.548 2 0.333 0.452 

.2 - .3 0.325 2 0.500 1.000 

  Weighted Average = 0.731 

 
 

The reader may be curious as to why the estimate of system accuracy is not 

simply the average of the estimated ground truth probabilities for the system 

answers. The reason is that taking the average will consistently underestimate 
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system accuracy; because the system’s answer is itself additional evidence for 

each category. So, for example, if the system answer is “C” and the estimated 

ground truth probability for C is 0.6; then a better estimate for C would be 

somewhat higher than .6. But until system accuracy is estimated it cannot be 

determined how much more than .6 is appropriate. In the above example, the 

average estimated ground truth probability of the system answers is .466, but the 

estimate of system accuracy in Table 4 is 0.731. 

Note that the value of Kappa (using 1/number-categories to determine 

random agreement) for the data in Table 2 is 
 

   

   

Kappa =

= Observed Agreement - Random Agreement / 1.0 - Random Agreement

= .333 - .25 / 1 - .25  = 0.11

 

Standard thresholds normally require a level of Kappa = 0.7 before the 

expert ratings are considered usefully reliable (Gwet 2010). Kappa = 0.11 is 

considered “slight agreement” and is far too low for the ratings to be considered 

useful for establishing ground truth. 

Overall then, in the sample data provided in Table 2; inter-rater agreement is 

“slight” (Kappa = 0.11), estimated rater accuracy is 0.50, and estimated system 

accuracy is 0.731. 

Performance and robustness 

The above example illustrates how to estimate system accuracy for classification 

problems even when inter-rater agreement and estimated rater accuracy are very 

low. This section examines the accuracy of estimates of system accuracy, and the 

robustness of those estimates, through a series of simulations. 

All of the simulations described below use the following procedure to assign 

the confusion matrix for each rater and the system, based on values set to four 

parameters: an initial probability of correct assignment (IPC), a problem difficulty 

adjustment (PDA), degree of asymmetric dispersion (AD), and a proportional 

error range (PER). 

Each confusion matrix is constructed as follows: 

 

1. Initially assign the conditional probability of a correct classification 

to be IPC for all categories. 
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2. Add PDA to the conditional probabilities of correct assignment. 

3. For each category distribute the remaining probability 

(1 - IPC - PDA) to the incorrect classifications in a manner that is 

proportional to the distance from the correct classification, where the 

probability of a classification that is M steps removed from the 

correct classifications is AD times more likely than a classification 

that is M+1 steps removed. 

4. For each conditional probability of incorrect assignment (IC) set the 

range to be [IC - PER*IC, IC + PER*IC], then randomly select a 

new probability by uniform sampling over this range. 

5. Normalize the modified confusion matrix after the random changes 

in step 4 so that expected accuracy is equal to IPC + PDA. 

 

For example, if there are five categories and 

(IPC, PDA, AD, PER) = (.6, 0, 1.0, 0), then the resulting confusion matrix is 

shown in Table 5. 
 
 
Table 5. Confusion matrix where (IPC, PDA, AD, PER) = (0.6, 0, 1.0, 0) 
 

Correct 
Category 

Classification 

“A” “B” “C” “D” “E” 

A 0.6 0.1 0.1 0.1 0.1 

B 0.1 0.6 0.1 0.1 0.1 

C 0.1 0.1 0.6 0.1 0.1 

D 0.1 0.1 0.1 0.6 0.1 

E 0.1 0.1 0.1 0.1 0.6 

 
 

On the other hand, if (IPC, PDA, AD, PER) = (.6, -.2, 2.0, 1.0), then the 

confusion matrix after the first three steps would be as shown in Table 6. 
 
 
Table 6. Confusion matrix where (IPC, PDA, AD, PER) = (0.6, -0.2, 2.0, 0) 

 

Correct 
Category 

Classification 

“A” “B” “C” “D” “E” 

A 0.400 0.320 0.160 0.080 0.040 

B 0.218 0.400 0.218 0.109 0.055 

C 0.100 0.200 0.400 0.200 0.100 

D 0.055 0.109 0.218 0.400 0.218 

E 0.040 0.080 0.160 0.320 0.400 
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Then after adding random variation around the incorrect probability assignments 

in step 4, and renormalizing in step 5, the resulting confusion matrix would look 

something like the randomly generated confusion matrix shown in Table 7. 
 
 
Table 7. Example of randomly generated confusion matrix where (IPC, PDA, AD, PER) = 

(0.6, -0.2, 2.0, 1.0) 
 

Correct 
Category 

Classification 

“A” “B” “C” “D” “E” 

A 0.349 0.438 0.106 0.082 0.025 

B 0.015 0.439 0.291 0.183 0.073 

C 0.034 0.225 0.377 0.301 0.064 

D 0.107 0.088 0.085 0.512 0.207 

E 0.010 0.008 0.098 0.469 0.415 

 
 

For a selected sample size, N, a “simulation run” executes the following: 

 

1. Randomly select the base rate probability for each classification 

2. Generate the confusion matrices for each rater and the system 

3. Use the base rate probability and confusions matrices to randomly 

generate N cases. 

4. Estimate system accuracy (using method described above) 

5. Compare estimated system accuracy to “true” system accuracy, 

where there are two measures of true system accuracy 

a. Expected accuracy (i.e. P(A)*P(“A”|A) + P(B)*P(“B”|B) + 

…) 

b. Proportion correct in sample 

When K-Assumptions are satisfied  

This section examines circumstances where the assumptions implicit in Kappa are 

satisfied. That is to say where the raters are selecting from a single confusion 

matrix of the structure shown in Table 1 and where the system confusion matrix 

also has the same well-behaved structure. 

Illustrated in Figure 1 is the asymptotic behavior of the estimation method. 

The simulation results depicted in Figure 1 had five categories, three experts each 

with 60% accuracy, 5000 test cases for each run, and where there are 10 runs each 

with system accuracy set to .1, .3, .5, .7 and .9 respectively. 
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Figure 1. Estimated vs. true system accuracy from simulations with accuracy of three 

experts each at 0.6, sample size at 5000, with equal error probabilities and equal problem 
difficulty. (Kappa = 0.251) 

 

 

The results depicted in Figure 1 indicate that estimates of system accuracy 

cluster tightly around true system accuracy. When true system accuracy is 0.1, 

which is less accurate than random guessing (0.2), estimates of system accuracy 

cluster tightly around 0.1. When true system accuracy is 0.9, which is far better 

than the raters’ accuracy (0.6), estimates of system accuracy cluster tightly around 

0.9. Across all fifty simulation runs the average value of Kappa was just 0.251.   

The results below depict what happens when sample size and rater accuracy 

are varied. Figures 2-4 depict the results of fifty simulation runs with a sample 

size of 200 per run and rater expert accuracy is set to .4, .6 and .8 respectively. 
 
 

 
Figure 2. Estimated vs. true system accuracy from simulations with accuracy of three 

raters each at 0.4, sample size at 200, with equal error probabilities and equal problem 
difficulty. (Kappa = .065) 
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Figure 3. Estimated vs. true system accuracy from simulations with accuracy of three 

raters each at 0.6, sample size at 200, with equal error probabilities and equal problem 
difficulty. (Kappa = .255) 

 

 
 

 
Figure 4. Estimated vs. true system accuracy from simulations with accuracy of three 
raters each at 0.8, sample size at 200, with equal error probabilities and equal problem 
difficulty. (Kappa = .562) 

 

 

The results shown in Figures 2-4 indicate that the correspondence between 

estimated and true system accuracy improves rapidly as rater accuracy improves. 

Even when the raters are just 60% accurate, estimates of system accuracy are 

consistently within ± 0.1 of true system accuracy. 

Figures 5-7 depict results when sample size is further reduced to just 50 

cases per run. When rater accuracy is 0.4 there is little correspondence between 

estimated and true system accuracy. However when rater accuracy is 0.6 and 0.8 

this correspondence improves quickly. 
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Figure 5. Estimated vs. true system accuracy from simulations with accuracy of three 

experts each at 0.4, sample size at 50, with equal error probabilities and equal problem 
difficulty. (Kappa = .060) 

 

 
 

 
Figure 6. Estimated vs. true system accuracy from simulations with accuracy of three 

experts each at 0.6, sample size at 50, with equal error probabilities and equal problem 
difficulty. (Kappa = .244) 

 

 

Note that in Figures 6 and 7 the two measures of true system accuracy yield 

slightly different results. Estimated accuracy corresponds more closely to 

proportion correct in sample than to expected accuracy. This occurs because the 

proportion correct in a sample varies according to a binomial distribution defined 

by system accuracy. So even if there is perfect correspondence between estimated 

accuracy and proportion correct (as is the case when rater accuracy is set to 1.0), 

the standard deviation of the estimate around expected accuracy (Ea) would still 

be equal to (Ea·(1-Ea)/N)½ . 
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Figure 7. Estimated vs. true system accuracy from simulations with accuracy of three 

experts each at 0.8, sample size at 50, with equal error probabilities and equal problem 
difficulty. (Kappa = .546) 

 

 

In summary, when the K-assumptions are satisfied, the estimation method 

exhibits an orderly relationship between estimated and true system accuracy.  

Estimates of system accuracy are unbiased, and the correspondence between true 

and estimated system accuracy improve rapidly as rater accuracy and sample size 

increase. 

When K-Assumptions are substantially violated 

In practice it is difficult to imagine a circumstance where the K-assumptions and 

the implied K-properties are satisfied. All raters are not equally accurate; some 

are typically more experienced and expert than others. All types of errors are not 

equally probable; this property is certainly false when the categories are naturally 

ordered or when the raters have some idea of which categories have the highest 

base rates. And all problems are not equally difficult; unless the test cases are 

carefully pre-selected and therefore unrepresentative of real world diversity. 

In this section the behavior of the estimation method is examined in cases 

where the K-properties are violated. In all of the simulation runs summarized 

below the K-properties of equal rater accuracy, equal problem difficulty, and 

equal error probabilities are substantially violated. Specifically:  

Rater accuracy (IPC) was varied by .1. For example, instead of three raters 

with .6 accuracy, initial accuracy would be set to .5, .6 and .7 respectively. 

Problem difficulty (PDA) was varied by .2. For about a third of the test 

cases rater and system accuracy were reduced by .2 (or set to a minimum of 0.0) 

and for about another third accuracy was increased by .2 (or set to the maximum 

of 1.0). 
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Asymmetric dispersion (AD) was set to 2.0. An incorrect answer that is 

‘next to’ the correct answer is twice as likely as one two steps removed and 4 

times as likely as one 3 steps removed, etc. 

Error probabilities were randomly varied by up to 100% (PER=1.0). For 

example, if the error probability is initially set to .2 then that error probability 

would be randomly selected from the range [0, .4]. This random variation is done 

independently for each error probability. 

To appreciate the magnitude of impact of these parameter settings consider 

again Tables 5 and 7 above. Table 5 is exactly the confusion matrix that results 

when initial rater accuracy is set to .6 and the K-properties are satisfied. Table 7 is 

representative of about 1/3 of the cases when initial rater accuracy is set to .6 but 

with the above parameter settings. It seems fair to characterize Table 7 as a 

substantial variation from Table 5.  

All of the simulation runs in this section use the above parameter settings to 

systematically and then randomly vary the rater and system confusion matrices. 

The results shown in Figure 8 illustrate the asymptotic behavior of the estimation 

method when the K-properties are substantially violated. Note that when system 

accuracy is preset to .1 and .9, expected accuracy is .133 and .867 respectively. 

This occurs because problem difficulty is varied plus and minus 0.2, but accuracy 

can be no lower than 0.0 or higher than 1.0. So for example when system 

accuracy is preset to 0.1, one third of the problems have system accuracy reset to 

0.3, one third stay at 0.1 and the remaining third are reset to 0.0; then averaged 

expected system accuracy is then .133. 

There is a linear relationship between estimated and true accuracy. There is 

also some bias in the estimates; estimated accuracy is too high when true system 

accuracy is low and estimated accuracy is to low when true system accuracy is 

high. Note though that when the system was more accurate than the raters the 

estimates of system accuracy were still consistently higher than the raters’ 

accuracy. The estimate of system accuracy may be conservative, but it is not 

bounded by the raters’ accuracy.  
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Figure 8. Estimated vs. true system accuracy from simulations with accuracy of three 

raters at .5, .6 and .7; sample size at 5000 and confusion matrices systematically then 
randomly varied. (Kappa = 0.305) 

 

 

There is a straightforward explanation for this estimation bias. The 

violations of the K-properties inflated inter-rater agreement. Because inter-rater 

agreement is used to estimate rater accuracy, as per Eq. 2, this leads to a slightly 

inflated estimate of rater accuracy. Inflated estimates of rater accuracy in turn lead 

to overestimates of the ground truth probabilities for the categories with the 

highest estimated ground truth probabilities. Finally given the equation for 

deriving system accuracy from the ground truth probabilities (Eq. 7) this leads to 

the estimation bias. In comparing Figures 1 and 8, note that Kappa was .251 

and .305 respectively; and the average estimated accuracy for the runs in Figure 1 

was exactly 0.60 and the average estimated rater accuracy for the runs in Figure 8 

was 0.64. 

In general violations of the K-properties will inflate expected inter-rater 

agreement with one exception. Differences between rater accuracy decreases 

rather than increases expected inter-rater agreement, but the net effect is small 

when compared to the larger opposite effect of the other violations. For example, 

if overall rater accuracy is set to .6 and then varied by.2 (i.e. rater accuracy set 

to .4, .6, .8 respectively) and true system accuracy is 0.9 then estimated accuracy 

will be approximately 0.924 – a 0.024 overestimate. But if instead problem 

difficulty is varied by the same amount (.4, .6, .8 respectively) then system 

accuracy will be approximately 0.857 – a 0.043 underestimate. Varying 

dispersion by 100% around the error probabilities results in an approximate 0.036 

underestimate, and setting asymmetric dispersion to 2.0 results in a 0.068 

underestimate.  

In Figures 9-11 the sample size is 200 cases per run and expected rater 

accuracy is set to .4, .6 and .8 respectively. In Figures 12-14 sample size is 
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reduced to 50 cases per run. Except for the bias toward underestimating high 

system accuracy (and overestimating low system accuracy) these results are 

similar to the results with the matrices that satisfy the K-properties. Increasing 

rater accuracy and sample size both decrease the variance of the estimate. The 

estimation bias is pronounced when rater accuracy is very low (0.4), noticeable 

when rater accuracy is moderate (0.6), and appears negligible when rater accuracy 

is high (0.8). 

In practice, most efforts to evaluate system accuracy address systems that 

are hypothesized to perform well. For such evaluations the estimates derived from 

this method become increasingly conservative as the ratings of the experts are 

increasingly suspect.  
 
 

 
Figure 9. Estimated vs. true system accuracy from simulations with accuracy of three 

raters at .3, .4 and .5; sample size at 200 and confusion matrices systematically then 
randomly varied. (Kappa = .142) 

 

 

 
Figure 10. Estimated vs. true system accuracy from simulations with accuracy of three 

raters at .5, .6 and .7; sample size at 200 and confusion matrices systematically then 
randomly varied. (Kappa = .306) 
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Figure 11. Estimated vs. true system accuracy from simulations with accuracy of three 

raters at .7, .8 and .9; sample size at 200 and confusion matrices systematically then 
randomly varied. (Kappa = .578) 

 

 

 
Figure 12. Estimated vs. true system accuracy from simulations with accuracy of three 

raters at .3, .4 and .5; sample size at 50 and confusion matrices systematically then 
randomly varied. (Kappa = .144) 

 

 

 
Figure 13. Estimated vs. true system accuracy from simulations with accuracy of three 

raters at .5, .6 and .7; sample size at 50 and confusion matrices systematically then 
randomly varied. (Kappa = .311) 
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Figure 14. Estimated vs. true system accuracy from simulations with accuracy of three 

raters at .7, .8 and .9; sample size at 50 and confusion matrices systematically then 
randomly varied. (Kappa = .586) 

 

 

Discussion 

The objective in this study was to demonstrate that it is feasible to reliably 

estimate the accuracy of system classifications when ground truth can only be 

estimated with fallible expert ratings. The simulation results described herein 

provide evidence for the claims stated in the introduction, namely that reliable 

estimates of system accuracy can be obtained from fallible expert ratings under a 

diverse conditions, that the reliability of these estimates is approximately the same 

whether the system is more or less accurate than the expert raters, and that the 

conditions under which these accuracy estimates become unreliable are 

predictable (e.g., inter-rater agreement is low and sample size is small). 

In the estimation method the level of inter-rater agreement is used to 

estimate the overall accuracy of the expert ratings, Bayesian updating based on 

the estimated expert accuracy is used to estimate a “ground truth” probability for 

each classification, and finally system accuracy is estimated by comparing the 

relative frequency that the system assignment agrees with the most probable 

classification at different probability levels. 

Although the estimation method was derived from assumptions that are 

implicit in the Kappa statistic (and how it is often used), a simulation analysis 

shows that the accuracy of the estimates of system accuracy are robust against 

substantial variations from the rater behavior implied by those assumptions. The 

accuracy of the estimates of system accuracy is driven primarily by overall rater 

accuracy (which can be estimated from inter-rater agreement) and sample size. 
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Recommended use and uses to avoid 

The simulation results presented herein suggest an overall data collection and 

estimation approach where measured inter-rater agreement is used to determine 

the number of test cases needed to obtain high confidence in system accuracy 

estimates. For example for five category problems with three raters if initial data 

collection indicates that Kappa is around .3 then data collection should continue 

for at least 200 cases. This would be a sufficient number of cases to obtain 90% 

“confidence” that estimated accuracy is within .1 of true accuracy. On the other 

hand, if Kappa is around .55 then a sample size of 100 cases is sufficient to ensure 

the same “confidence interval.” As the number of raters and categories varies, so 

does the parametric relationship between sample size and confidence in estimates 

of system accuracy; so additional simulation runs such as those shown here would 

be needed to determine sample size requirements.  

In this approach all test cases are useable, even ones where raters 

substantially disagree. This makes it feasible to randomly select test cases from 

the population of problems from which the system is likely to be applied which in 

turn should facilitate the ability generalize test results to practice.  

As noted above, violations of the K-properties (equal rater accuracy, 

problem difficulty and error probabilities) will bias the estimate of system 

accuracy. The magnitude of this bias interacts with overall rater accuracy. If 

system accuracy is high and rater accuracy low then the estimation procedure 

described herein will likely substantially under estimate system accuracy. In the 

above simulations, for example, on five category problems when true system 

accuracy was .9 and rater accuracy was .4 the estimate of system accuracy was 

around .6. Consequently when Kappa is very low (e.g. less than .2) it would be 

helpful to examine the inter-rater agreement data for patterns that suggest 

violations of the K-properties. For example, the K-property of equal error 

probabilities implies that all pairwise disagreements are equally likely (e.g. “AB” 

as likely as “AE”) and a statistical test can be performed to help determine if this 

pattern is violated. If it is, then the estimate of system accuracy can be adjusted 

upwards. There is much work to be done to determine how and when such 

adjustments should be made, but doing so seems feasible.  

The estimation method described herein is specifically intended for cases 

where each rater is an independent measure of ground truth classifications. The 

procedure assumes the causal structure shown in Figure 15-10a. 
 
 



PAUL E. LEHNER 

143 

 
Figure 15. Assumed causal relationship between ground truth and expert ratings vs. 

causal structure of forecasting tasks 

 

 

There are many applications that involve aggregation of independent 

estimates from multiple individuals but do not have the causal structure shown in 

Figure 15-10a. For many such applications use of the estimation method 

described here would be inappropriate. For example, it is becoming common 

practice in forecasting to systematically combine the ratings of multiple 

independent forecasters (e.g. Surowieki, 2005). Although the estimation method 

presented here could be mechanically applied to such forecasting tasks, such an 

application may yield spurious results. Forecasting tasks do not have the causal 

structure shown in Figure 15-10a, but have a causal structure closer to the one 

shown in Figure 15-10b where expert ratings are not in any sense direct measures 

of the future outcomes. On the other hand the estimation method can and has been 

used to retrospectively assess whether a forecasted outcome actually occurred. 

For example Lehner et al. (2012) examined the accuracy of the imprecise 

forecasts typically found in published forecasts by using multiple raters to 

retrospectively assess whether the forecasted outcome occurred and then using an 

estimation method similar to the one presented here to estimate the accuracy of a 

collection of forecasts. Similarly Levitt and Lehner (2011) applied a variation of 

this method to resolve disagreeing historical judgments as to the timeframe when 

key developments occurred in the maturation of new technologies.  

The distinction between Figures 15-10a and 15-10b is essentially the 

distinction between medical diagnosis and medical prognosis. It would be 

appropriate to apply the method to estimate the accuracy of a new diagnostic 

system by comparing system diagnoses to those of medical professionals, but it 

would be inappropriate to use it to estimate the accuracy of a new system’s 

prognoses by comparing them to the prognoses of medical professionals.  

In general it is important that the causal structure relating the rater and 

system selections to ground truth match the structure assumed by the estimation 

method. The process of collecting ratings from the experts should be engineered 
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to ensure this causal structure; such as by ensuring that the expert ratings are 

independent and to the extent possible having available the same data for each 

rater for each test case.  

The estimation method presented here was developed to address test and 

evaluation of an automated classification system after development. However it 

does seem feasible to also employ this approach during system development. 

Specifically the estimation method could be used to develop training data sets 

with a probability distribution of correct classifications for each training case. 

Related and future research 

The research presented in this paper had the very specific goal of 

demonstrating that it is feasible to reasonably estimate system accuracy using 

fallible expert ratings even when the system is substantially more accurate than 

the experts. Nothing in this paper would support a claim that the estimation 

method presented here is in any sense optimal. There are many opportunities for 

improvement. Three suggestions are offered below.  

First, the estimation method was designed for use with classification 

problems for which there is no natural ordering to the categories. The simulation 

results suggest that the method is robust even when there is a natural ordering, but 

the accuracy of estimates of system accuracy would likely be improved if the 

method is modified to specifically account for the fact that certain types of errors 

are more likely than others. For example, if the natural ordering is A, B, C, D, E, 

then a rating of “A” should be more evidence for category B than for category E. 

The method presented here treats B and E equally.  

Second, as noted above, it should be feasible to develop statistical 

procedures to estimate whether and to what degree K-properties are violated. 

From these estimates it should be also feasible to adjust the system accuracy 

estimates to correct for bias. This area is unexplored.  

Third, the estimation method presented here is entirely algebraic. Everything 

is derived directly from some percent-of-agreement statistics. No effort was made 

to estimate base rates and confusion matrices that represent a “best fit” to the 

inter-rater agreement data. But there are best fit methods that could be used for 

this purpose. For example, the non-linear optimization methods in Latent Class 

Analysis (McCutcheon, 1987) could be used to find maximum likelihood 

estimates for the base rate and confusion matrix probabilities. Both Uebersax 

(1988) and Carpenter (2008) applied this approach to binary classification 

problems; and Carpenter also used Bayes inference to aggregate ratings and 
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estimate classification probabilities. Similarly one could use non-linear 

optimization to find base rates and confusion matrix probabilities that minimize 

the difference between expected and observed relative frequency of each inter-

rater pair (relative frequency of “AA”, “AB”, “AC” …). It remains an open and 

interesting question as to whether use of such optimization methods would yield 

better results. 
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Appendix 

Proof of Theorem 1 

Restating the assumptions: 

 

AA1. For each case there is a unique correct classification 

AA2. For each case raters independently assign classifications 

AA3. Expected agreement between raters increases as expected rater 

accuracy increases. 

 

Begin with a few definitions.  

Definition of correct classification in AA1: For each case there is a vector 

<c1, c2 … cn> where for some index i, ci = 1 and the remaining values are 0. 

Definition of independent assignment in AA3: For each case, the probability 

that a rater will select a class is conditionally independent of the other raters’ 

selections. 

Independent assignments allow the description of each rater’s selection 

behavior as a probability vector. That is to say, for each case each rater has a 

selection probability for each category. These will be called selection vectors. 

Definition of rater accuracy in AA3: For M raters and N cases, rater 

accuracy is defined as the total proportion of correct selections. 

For example, if there are 10 cases and three raters who make correct 

assignments in 7, 5 and 9 of the cases respectively, then rater accuracy = 0.7. 

The three lemmas below all use the same proof strategy. Begin with any two 

selection vectors that are not identical. Construct a selection vector that is the 

average of the two. The average vector will necessarily have the same expected 

accuracy but a different level of expected agreement than the original two vectors. 

If the average vector has higher/lower expected agreement, then create a new 
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vector by slightly reducing/increasing the probability of correct assignment in the 

average vector. When the change is sufficiently small the new vector will have 

higher/lower expected accuracy and lower/higher expected agreement than the 

original two vectors. Most of the algebraic complexity in these proofs is the result 

of showing one way to calculate a change that is always “sufficiently small”. 

Lemma 1: 

To ensure AA1-AA3 within each case all raters must behave as though they are 

selecting a category using the same selection vector. 

 

Proof:  Let <p11, p12 … p1n> and <p21, p22 … p2n> be the selection vectors 

of 2 raters for a specific case; where some probabilities do not agree (e.g. 

p11 \ p21). For purposes of the proofs below, assume that category 1 is the correct 

category. (The arguments below apply no matter which category is correct.) 

Below it is shown how to construct from two different selection vectors a 

common selection vector for both raters where expected accuracy is lower but 

expected agreement higher. Consequently unless the two raters have the same 

selection vector, there will always be another pair of vectors with lower expected 

accuracy and higher expected agreement – violating AA3. 

Set  1 2 2i i ip p p   ,  1 2 2i i ie p p   ,    2

1 2 12d e p p    ,if 

p1 < p2,    2

1 2 12d e p p     , and d = 0 if p1 = p2 
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1
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For selection vectors ,  and ,

  Expected accuracy 

Expected agreement    

n n

n

p p p p p p

p

p p p
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
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  (A3) 

 

Expected accuracy in (A1) is higher than in (A3), but expected agreement is 

lower; where the common selection vector in (A3) was constructed from a 

difference between the vectors in (A1). Consequently, whenever there is a 

difference between the selection vectors of two raters a selection probability 

vector for the two raters can be constructed with lower expected accuracy but 

high expected agreement. 

Within each case if the selection vectors of the raters differ AA3 is not 

guaranteed.         *** 

Lemma 2: 

To ensure AA1-AA3 within each case the error probability is the same for all 

incorrect categories. 

 

Proof:  From Lemma 1 it is known that AA1-AA3 imply that for each case 

all raters have the same selection vector. Let that vector be <p1, p2 … pn>. Assume 

category 1 is the correct assignment and that the remaining probabilities are not 

all equal. 

Below it is shown how to construct selection vector, with equal probability 

for all incorrect assignments, where expected accuracy is higher but expected 

agreement lower. Consequently the error probabilities are unequal, there will 

always be a vector with higher expected accuracy and lower expected agreement 

– violating AA3. 

Set    2 1e np p p n     ,  i i ee p p   for all i > 1, set 

 min 2min ne e e  and 
min

2 2d e . 

Note that (e2 + … en) = 0 and that there are at least 2 ei that are not zero. 
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Since emin
2*(p1 – pe)) + emin

4 /2 < emin
2 + emin

2 <= e2
2 + e3

2 + … en
2, expected 

agreement in (A4) is higher than expected agreement in (A6) even though 

expected accuracy is lower.  

Consequently, whenever the probability of incorrect assignment is unequal, 

there will always be a selection vector with higher expected accuracy and lower 

expected agreement, violating AA3. 

Within each case and selection vector if the error probabilities are unequal 

AA3 is not guaranteed.       

 *** 

Lemma 3: 

To ensure AA1-AA3 the selection vector must be the same across all cases. 
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Proof:  Lemmas 1 and 2 show that AA1-AA3 imply that for each case the 

raters have identical selection vectors of the form <pe … pc … pe> where pc is the 

probability of assigning the correct category and pe = (1-pc)/(n-1) where n is the 

number of categories. 

Below it is shown that across different cases the selection vectors must have 

the same values for pc (and therefore pe) else a violation of AA3 can be 

constructed. 

Let pc1 and pc2 be the probability of correct assignment on two different 

cases, and pe1 and pe2 the corresponding error probabilities. For each case, order 

the cases such that the correct assignment is first. So for all raters the probability 

vector is <pc1, pe1, … pe1> for case 1 and <pc2, pe2, …, pe2> for case 2, but the 

categories may be in a different order. The proof below makes no reference to 

matching categories across cases so this ordering does not affect the proof.  

Set  1 2 2,c c cp p p    1 2 2,e e ep p p    1 ,c c ce p p    1 ,e e ee p p   

 min min , ,c ee e e  2

min 2d e   
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 (A7) 

 

 

 
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For two cases with accuracy   

Expected accuracy     
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 (A9) 

 

Since  2 4 2 2 2 2

min min min min2 ,c e c ee p p e e e e e        expected agreement in 

(A7) is higher than expected agreement in (A9) even though expected accuracy is 

lower. 

Consequently, whenever the probability of correct assignment across cases 

is unequal, there will always be a probability vector that is the same across cases 

with higher expected accuracy and lower expected agreement, violating AA3.  

Across cases, if the selection vectors differ then AA3 is not guaranteed. *** 

Theorem 1: 

AA1-AA3 are ensured if and only if the raters behave as though their selection for 

each case is determined by a single confusion matrix where the conditional 

probability of correct assignment is constant and the conditional probability of all 

incorrect assignments is equal. 

 

Proof:  The “only if” necessity portion follows directly from Lemmas 1-3. 

Sufficiency follows the fact that with a constant conditional probability of correct 

assignment (Pc) and incorrect assignments (Pe), expected accuracy is Pc and 

expected agreement is      
22 2 21 1 1c e c cP n P P P n      . Clearly expected 

agreement increases monotonically with Pc.   *** 
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