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Using Multinomial Logistic Models To Predict Adolescent Behavioral Risk 
 
 

Chao-Ying Joanne Peng 
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Rebecca Naegle Nichols 
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Multinomial logistic regression was applied to data comprising 432 adolescents’ self reports of engagement in 
risky behaviors. Results showed that gender, intention to drop from the school, family structure, self-esteem, 
and emotional risk were effective predictors collectively. Three methodological issues were highlighted: (1) 
the use of odds ratio, (2) the absence of an extension of the Hosmer and Lemeshow test for multinomial 
logistic models, and (3) the missing data problem. Psychologists and educators can utilize findings to plan 
prevention programs, as well as to apply the versatile and effective logistic technique in psychological, 
educational, and health research concerning adolescents.   
 
Key words: Adolescent behavior, self-esteem, behavioral risk, emotional risk, family structure, multinominal   
logistic model, logistic modeling 
 
 

Introduction 
 
Adolescence is a very influential time in the life of 
a young person. It is a time of change and possible 
insecurity, accompanied by low self-esteem and 
emphasis on peer approval (Bergman & Scott, 
2001; Brack, Orr, & Ingersoll, 1988; McGee & 
Williams, 2000). This may be the reason that  
many risky health habits are developed during 
adolescence. One example is smoking. A study 
conducted by Everett and Husten (1999) revealed 
that 81% of college aged students who reported 
ever being daily smokers began smoking before 
the age of 18.  Furthermore, they found that 
among those who ever smoked a whole cigarette, 
43.0% did so for the first time at the age of 14 or 
younger; 23.7% at age 15 or 16. Other researchers 
have come to similar conclusions regarding the 
adoption of risky health habits during adolescents 
(Bergman & Scott, 2001; McGee & Williams, 
2000; Orr, Wilbrandt, Brack, Rauch, & Ingersoll, 
1989). 
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Because many health-endangering 
behaviors are engaged in for the first time during 
adolescence, one goal of health education is to 
reduce the initiation of health-endangering 
behaviors. These behaviors include, but are not 
limited to, unsafe sexual activity (Orr, et al., 1989) 
and the use of alcohol, tobacco, and marijuana 
(McGee & Williams, 2000). It is essential that 
health educators identify those youth at greatest 
risk so that effective programs may be targeted 
specifically toward minimizing or eliminating 
these behaviors. In this paper, we demonstrate the 
utility of multinomial logistic regression model in 
identifying adolescents at greatest health risk from 
their personal as well as family characteristics. 
Psychologists and educators can utilize findings to 
plan prevention programs, as well as to apply the 
versatile logistic regression technique in 
psychological, educational, and health research 
concerning adolescents.   
 Logistic regression is a promising 
statistical technique that can be used to predict the 
likelihood of a categorical outcome variable. It has 
found widespread use in the epidemiological 
literature, where often the dependent variable is 
presence or absence of a disease state. This 
technique has also proven useful in broader areas 
— social sciences (e.g., Chuang, 1997; Janik and 
Kravitz, 1994; Tolman and Weisz, 1995) and 
education, especially higher education (Austin, 



ADOLESCENT BEHAVIORAL RISK 178 

Yaffee, & Hinkle, 1992, Cabrera, 1994; Peng, So, 
Stage, & St. John, 2002) — than the typical 
epidemiological situation. To prof ile adolescents 
who are at greatest risk of participation in risky 
health behaviors, multinomial logistic regression 
was applied to data comprising 432 adolescents’ 
self reports of engagement in risky behaviors. 
Results are interpreted in terms of substantive and 
methodological implications. The remainder of 
this paper is divided into four sections: (1) 
Methodology, (2) The Multinomial Logistic 
Regression Model, (3) Interpreting and Assessing 
Multinomial Logistic Regression Results, and (4) 
Conclusion. 
 

Methodology 
 

Self-reported health behavior data were collected 
from 517 adolescents enrolled in two junior high 
schools (grades 7 through 9) in the fall of 1988. 
Parents were notified by mail that the survey was 
to be conducted. Both the parents and the students 
were assured of their rights to optional 
participation and confidentiality of students’ 
responses. Written parental consent was waived 
with the approval of the school administration and 
the university Institutional Review Board 
(Ingersoll, Grizzle, Beiter, & Orr, 1993). Among 
the 517 students, 85 did not complete all 
questions. Thus, the final sample size was 432 
(83.4% were Whites and the remaining Blacks or 
others) with a mean age of 13.9 years and nearly 
even composition of girls (n=208) and boys 
(n=224). The problem with missing data is 
addressed later in a section titled Missing Data. 
 Health Behavior Questionnaire (HBQ; 
Ingersoll & Orr, 1989; Resnick, Harris, & Blum, 
1993) and Rosenberg’s self esteem inventory 
(Rosenberg, 1965) were administered on the same 
day to all students in all math classes (a mandatory 
subject). The HBQ asked adolescents to indicate 
whether they engaged in specific risky health 
behaviors (Behavioral Risk Scale) or had 
experienced selected emotions (Emotional Risk 
Scale). Examples of behavioral risk items were “I 
use alcohol (beer, wine, booze),” “I use pot,” and 
“I have had sexual intercourse/gone all the way.” 
These items measured frequency of adolescents’ 
alcohol and drug use, sexual activity, and 
delinquent behavior. They were responded to on a 
4-point ordinal scale (1=never, and 4=about once a 

week). Emotional risk items measured 
adolescents’ quality of relationship with others, 
and management of emotions (e.g., “I have 
attempted suicide,” “I have felt depressed,” etc.).  
Cronbach’s alpha reliability (Nunnally, 1977) was 
0.84 for the Behavioral Risk Scale and 0.81 for the 
Emotional Risk Scale.  
 Adolescents’ self esteem was assessed 
using Rosenberg’s self esteem inventory 
(Rosenberg, 1965). Self-esteem scores ranged 
from 9.79 to 73.87 with a mean of 49.97 and 
standard deviation of 10.09. Furthermore, among 
the 432 adolescents, 12.27% (or 53) indicated an 
intention to drop out of school; 44.68% (or 193) 
were from intact families, 22.69% (or 98) were 
from families with one step-parent, and 32.63% 
(or 141) were from families headed by a single 
parent.  

For the present data, we were interested in 
identifying adolescents at the greatest behavioral 
risk from their gender, intention to drop out from 
school, family characteristics, emotional risks, and 
self-esteem scores. In addition to identifying youth 
at the greatest behavioral risk, we were also 
interested in differentiating adolescents at medium 
level of risk from those at low risk so that 
psychologists and educators could utilize findings 
to design appropriate prevention programs to help 
adolescents with different needs. Given the 
objective of this study, the research hypothesis 
posed to the data was stated as follows: “the 
likelihood that an adolescent is at high, medium, 
or low behavioral risk is related to his/her gender, 
intention to drop out of school, family structure, 
emotional risk, and self esteem.” The dependent 
variable was students’ risk level on the Behavioral 
Risk Scale of the HBQ; it is hereafter referred to 
as the RISK variable. The explanatory variables 
included gender, intention to drop out of school, 
type of family structure, emotional risk, and self-
esteem scores. 
 Scores on the Behavioral Risk Scale of the 
HBQ ranged from 40.44 to 66.81 with a mean of 
47.69 and a standard deviation of 10.89. 
Adolescents at highest behavioral risk (n=29) were 
identified to be those scored at least one standard 
deviation above the mean, i.e., 60 or higher. Those 
scored between 45 and 59 were identified to be at 
medium behavioral risk (n=170), and those scored 
between 44 and 40 were at low behavioral risk 
(n=233). The cutoff used to separate those at 
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medium risk from those at low risk was the 
median of the distribution (between 44 and 45), 
given the positive skewness of the scores on the 
Behavioral Risk Scale and the 4- point scale used 
for each item. Those classified as at low behavior 
risk were adolescents who answered, on the 
average, between “never”, coded as 1, and “once 
in a while”, coded as 2. 
 The relationship between the RISK 
dependent variable and each of the three 
categorical explanatory variables is shown in 
Tables 1A through 1C. According to Table 1A, 
boys were classified into high or medium 
behavioral risk groups more frequently than girls 
while the trend was reversed for the low risk 
group. Table 1B revealed that adolescents 
intending to drop out of school were more likely to 
exhibit high or medium behavioral risk than those 
without such an intention. As for the relationship 
between family structures and behavioral risk, a 
majority of adolescents from either intact or step-
parent families exhibited a low level of behavioral 
risk whereas a majority of those from single -
parent families showed a medium level of 
behavioral risk (Table 1C). 
 
Table 1A. Distribution of Gender and Three 
Levels of Behavioral Risk. 
 
Behavioral Risk Gender  Total 
Levels  Girls=0 Boys=1  

High Risk 5 24 29 
Medium Risk  66 104 170 
Low Risk 137 96 233 
Total 208 224 432 
 

Table 1B. Distribution of Dropout and Three 
Levels of Behavioral Risk. 

 
Behavioral Risk Dropout  Total 
Levels  No=0 Yes=1  

High Risk 15 14 29 
Medium Risk  137 33 170 
Low Risk 227 6 233 
Total 379 53 432 
 

 

Table 1C. Distribution of Family Structure and 
Three Levels of Behavioral Risk. 
 
Behavioral 
Risk 

Family Structure Total  

Levels  Intact=1 Step=2 Single=3  

High Risk 8 7 14 29 
Medium Risk 62 38 70 170 
Low Risk 123 53 57 233 
Total  193 98 141 432 
 

The Multinomial Logistic Regression Model 
 Logistic regression is well suited for 
describing and testing hypotheses about 
relationships between a categorical dependent 
variable and one or more categorical or continuous 
explanatory variables. Specifically, multinomial 
logistic regression was chosen to answer the 
research question for two reasons. First, 
multinomial logistic regression provides an 
effective and reliable way to obtain the estimated 
probability of belonging to a specific population 
(e.g., high risk adolescents) and the estimate of 
odds ratio of adolescents’ characteristic on their 
behavioral risk (Peng, Lee, & Ingersoll, 2002; 
Peng, Manz, & Keck, 2001; Scott, Mason, & 
Chapman, 1999).  

Second, multinomial logistic regression is 
a procedure by which estimates of the net effects 
of a set of explanatory variables on the dependent 
variable can be obtained (Morgan & Teachman, 
1988). Even though logistic regression has been 
used in health research, the use of multinomial 
logistic regression is rare. In this section, we will 
first describe the general logic behind the 
multinomial logistic regression model. This is 
followed by the specification of a multinomial 
logistic model for the present data in order to 
answer the research question.  

The simplest form of the multinomial 
logistic regression model involves one categorical 
dependent variable Y (e.g., three levels of 
behavioral risk) and one explanatory variable, X 
(e.g., emotional risk score). Let p1= the probability 
of high behavioral risk (Y=3), p2= the probability 
of medium behavioral risk (Y=2), and p3= the 
probability of low behavioral risk (Y=1). The 
simplistic multinomial logistic regression model 
relates the log of odds (or logit) of Y to the 
explanatory variable, X, in a linear form: 
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Note both equations (1) and (2) constitute one 
multinomial logistic model with the constraint that 
Σpi = 1. They model the cumulative probabilities 
with a common slope parameter (b) but different Y 
intercepts (α1, α2). The two Y intercepts are two 
constants in the multinomial logistic model; they 
are not a function of the predictor X. 
 The predictor, X, can be categorical or 
continuous while the outcome (Y) is always 
categorical. Parameters, α1, α2, and β, are typically 
estimated by the maximum likelihood (ML) 
method. The ML method is designed to maximize 
the likelihood of reproducing the data given their 
parameter estimates (Peng, Lee, et al., 2002). The 
value of the coefficient β reveals the direction of 
the relationship between X and the logit of Y.  
When β is greater than 0, larger (or smaller) X 
values are associated with larger (or smaller) logits 
of Y, and the curve will resemble an increasing 
sigmoid (or S-shape). Conversely, if β is less than 
0, larger (or smaller) X values are associated with 
smaller (or larger) logits of Y. Such a relationship 
is often shown in data in the form of a reverse 
sigmoid curve. In other words, an increase in X is 
associated with a decrease in logits of Y and vice 
versa.  

Within the framework of inferential 
statistics, the null hypothesis states that β equals 
zero in the population. Rejecting such a null 
hypothesis implies that a linear relationship exists 
between X and the logit of Y. If an explanatory 
variable is binary, such as gender in Table 1A and 
dropout in Table 1B, the β coefficient can also be 
interpreted as an odds ratio which numerically 
equals e (the natural logarithm base) raised to the 
exponent of β (i.e., eβ). 
 If two or more explanatory variables are 
included in the model (say X1= gender and X2= 
emotional risk score), one may construct a 
complex logistic regression for the logit of Y 
(high, medium, or low levels of behavioral risk) as 
follows: 
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 As noted before, equations (3) and (4) 
constitute one complex multinomial logistic model 
with the constraint that Σpi = 1. They model the 
cumulative probabilities with common slope 
parameters ( ß 1 and ß2) but different Y intercepts 
(α1, α2). The two Y intercepts are two constants in 
the multinomial logistic model; they are not a 
function of the explanatory variables. Explanatory 
variables, X1 and X2, can be categorical or 
continuous while the dependent variable (Y) is 
always categorical. Parameters, α1, α2, ß1, and ß2, 
are estimated by the maximum likelihood (ML) 
method, as in the simple multinomial model. Data 
are entered into the analysis as 1, 2, or 3 coding 
for the trichotomous dependent variable, 
continuous values for continuous explanatory 
variables, and dummy coding (e.g., 0 or 1) for 
categorical explanatory variables.  

The null hypothesis underlying the 
complex multinomial logistic model states that all 
ß’s equal zero. Rejecting this null hypothesis 
implies that at least one ß does not equal 0 in the 
population. The interpretation of ß is rendered 
using odds ratios. If ßj represents the regression 
coefficient for predictor Xj, exponentiating ßj 
yields the odds ratio (eßj). When all other 
explanatory variables are held at a constant, odds 
ratio is the change in the odds of Y given a unit 
change in Xj.  
 For the behavioral risk data, we 
hypothesized the following linear relationship 
might exist: 
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where p1= the probability of high behavioral risk 
(Y=3), p2= the probability of medium behavioral 
risk (Y=2), and p3= the probability of low 
behavioral risk (Y=1), X1=GENDER (boys=1, 
girls=0), X2=intention to drop out of school 
(DROPOUT, yes=1, no=0), X3=family structure 
(FAMILY, intact family=1, step-family =2, and 
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single-parent family=3), X4=emotional risk score 
(EMOTION), and X5=self-esteem score 
(ESTEEM). 
 Alternatively , one can express the same 
functional relationship by taking the antilog 
function of Equations (5) and (6) to obtain a direct 
estimate of the probabilities of behavioral risk: 
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where e=2.71828 is the base of the system of 
natural logarithms. Equation (7) defines p1 
directly, whereas p2 and p3 are derived by 
subtraction; i.e., p2 = (p1 + p2) – p1 = equation 8 – 
equation 7, and p3 = 1 – (p1 + p2) = 1 – equation 8. 
As previously defined, p1= the probability of high 
behavioral risk (Y=3), p2= the probability of 
medium behavioral risk (Y=2), and p3= the 
probability of low behavioral risk (Y=1).    
 
Interpreting and Assessing Multinomial Logistic 

Regression Results 
 

Equations (7) and (8) were fitted to data 
using SAS® PROC LOGISTIC (Version 8e, SAS 
Institute Inc., 1999) in order to support/refute the 
research hypothesis posed earlier that “the 
likelihood that an adolescent is at high, medium, 
or low behavioral risk is related to his/her gender, 
intention to drop out of school, family structure, 
emotional risk, and self esteem.”  The result 
showed that 

 
Predicted logit (Y1=High RISK)= -0.6211 

+ (1.1070)*GENDER + (2.1818)*DROPOUT + 
(0.4135)*FAMILY + (0.00738)*EMOTION +  
(-0.0488)*ESTEEM,                                      (9) 
 
and 
 

Predicted logit (Y1+ Y2 =High + Medium 
RISK) = 2.5220 + (1.1070)*GENDER + 
(2.1818)*DROPOUT + (0.4135)*FAMILY + 
(0.00738)*EMOTION + (-0.0488)*ESTEEM  (10) 

        

The χ2 test of proportional odds 
assumption was insignificant (df=5; p=0.6548), 
indicating that there was no need to fit a second 
model with distinct β parameters (Peterson & 
Harrell, 1990). Hence, Equations (9) and (10) will 
be hereafter referred to as the MLR model. 

 
Interpreting Multinomial Logistic Regression 
Results 

According to the MLR model, the log of 
the odds of an adolescent’s behavioral risk level 
was positively related to gender (p<.0001, Table 
2), intention to drop out of school (p<.0001), and 
family structure (p<.001); it was negatively related 
to self-esteem (p<.0001), and insignificantly 
related to emotional risk (p =0.5211). The positive 
coefficient (1.1070) associated with GENDER in 
the MLR model implied that boys were more 
likely, than girls, to be at high behavioral risk, 
holding all other explanatory variables constant. In 
fact, the odds of a boy being at high behavioral 
risk were 3.025 (= e1.1070, Table 2) times greater 
than the odds for a girl. The same trend was 
observed with the dichotomous variable of 
DROPOUT from school. The odds of teen-age 
students engaging in high or medium risk of 
behavior, than not, were 8.8622 times higher for 
students intending to drop out than students 
without such an intention. This relationship can 
also be seen in Table 1B in which the majority of 
those intending to not stay in school were placed 
in high or medium level of behavioral risk, 
compared to those with intentions to stay in 
school. 

Regarding the third categorical variable 
family structure, interpretation should be based on 
the reference group of intact families. Thus, the 
higher the score on FAMILY, the less stability in 
the family structure and the greater is the 
behavioral risk for adolescents. This interpretation 
was rendered by the positive coefficient associated 
with FAMILY. As a family’s structure changed 
from 1 (intact family) to 2 (step family) or from 2 
to 3 (single family), the odds increased by 1.5121 
for adolescents to be at a higher behavioral risk 
than medium or low risk.  

The coefficient for self-ESTEEM 
indicated that the decrease in log odds of risky 
behavior corresponded to one unit increase in self-
esteem scores. In other words, the higher the self-
esteem score, the less likely an adolescent would 
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be at high behavioral risk. For each point increase 
on the self esteem score, the odds of participating 
in risky behavior, compared to the odds of not 
participating, decreased from one to 0.952 (=  
e–0.0488, Table 2). If the increase on the self-esteem 
score was 10 points, the odds decreased from one 
to 0.6139 [= e 10*(–0.0488)]. 

Combining the four explanatory variables 
that were found to be statistically significant in the 
MLR model, a profile emerged for a youth at the 
greatest predicted behavioral risk: a male who 
intended to drop out of school, came from a single 
parent household, scored low on the self-esteem 
measure, and possibly high on the emotional risk 
measure (based on the positive correlation 
between behavioral risk and emotional risk) — 
this last characteristic did not reach statistical 
significance in the MLR model.    
 
Assessing Multinomial Logistic Regression 
Results 

How effective was the MLR model 
expressed in Equations (9) and (10)? How can a 
health educator assess the soundness of a 
multinomial model? To answer these questions, 
we attended to (a) overall model evaluations, (b) 
statistical tests of each explanatory variable, (c) 
goodness-of-fit statistics, and (d) validations of 
predicted probabilities. These evaluations are 
discussed below based on Equations (9) and (10), 
or the MLR model. 

(a) Overall model evaluations. The 
Likelihood Ratio, Score, and Wald tests were 
examined to determine the improvement of the 
MLR model over the intercept-only model (also 
called the null model). According to Peng, Lee, 
and Ingersoll (2002, p.6), “An intercept-only 
model serves as a good baseline because it 
contains no predictors; consequently all 
observations would be predicted to belong in the 
largest outcome category, according to this 
model.”  All three tests yielded similar results 
(p<.0001, Table 2), namely, the MLR Model was 
more effective than the null model. It was 
therefore inferred that at least one explanatory 
variable was a significant predictor of adolescents’ 
behavioral risk. After splitting the sample 
randomly 5 times, resulting in 10 random sub-

samples, we applied the same multinomial model 
to the sub-samples. The overall significance of the 
MLR model was replicated in all 10 sub-samples. 
              (b) Statistical tests of individual 
predictors. The individual β coefficients were 
tested using the Wald  χ2 statistic (Table 2). All 
variables except for EMOTION were significant 
predictors of adolescents’ risk for self-injurious 
behaviors (p<.001). Two predictors (GENDER, 
and ESTEEM) were cross-validated to be 
significant; one predictor (EMOTION) was 
replicated to be statistically insignificant, all with 
10 random sub-samples. FAMILY structure and 
intention to DROPOUT were confirmed to be 
statistically significant predictors in 9 out of 10 
cross-validation random samples. It was not 
necessary to statistically test the intercepts for the 
two constants (CONSTANTs 1 and 2 in Table 2) 
as the test result merely indicates if intercepts 
should be included in a logistic model (Peng, Lee, 
& Ingersoll, 2002). 
 (c) Goodness-of-fit statistics. Goodness-
of-fit statistics assess the fit of a logistic model 
against actual classifications, i.e., high, medium, 
or low level of behavioral risk. Two descriptive 
measures of goodness-of fit are presented in Table 
2 for the MLR model: R2 indices defined by Cox 
and Snell (1989) and Nagelkerke (1991), 
respectively. These two measures were similar for 
the MLR model (24.67% and 29.78%). According 
to Peng, Lee, and Ingersoll (2002), these indices 
are variations of the R2 concept defined for the 
ordinary least squares (OLS) regression model.  

Even though the R2 has a clear definition 
in OLS regression, there have been no equivalents 
of this concept devised by methodologists for 
multinomial logistic models that render the 
meaning of variance explained; none correspond 
to predictive efficiency, and none can be tested in 
an inferential framework (Mendard, 2000). For 
these reasons, a researcher may treat these two R2 

indices reported in Table 2 as supplementary to 
other, more useful evaluative indices such as the 
overall evaluation of the model, tests of individual 
regression coefficients, and the inferential test of 
the goodness-of-fit suggested by Begg and Gray 
(1984) for multinomial logistic models.   

 



PENG & NAEGLE NICHOLS 183 
 

Table 2. Multinomial Logistic Regression Analysis of Adolescent’s Self-inflicting Behavior Risk by SAS® 
PROC LOGISTIC (version 8). 

 
 
Predictor 

 
β 

 
SE β 

Wald’s 
χ2 (df=1) 

 
p 

eβ 
(odds ratio) 

CONSTANT 1 (Y1) −0.6211 1.0627 0.3416 0.5589 Not necessary 

CONSTANT 2 (Y1+Y2) 2.5220 1.0723 5.5317 0.0187 Not necessary 

GENDER (boys=1,girls=0) 1.1070 0.2111 27.5060 <0.0001 3.0253 

DROPOUT  

(yes=1, no=0) 
2.1818 0.3287 44.0618 <0.0001 8.8622 

FAMILY 0.4135 0.1179 12.2979 <0.001 1.5121 

EMOTION 0.0074 0.0115 0.4118 0.5211 1.0074 

ESTEEM −0.0488 0.0118 16.9867 <0.0001 0.9524 

Overall Model Evaluation 
 
Tests χ2 df p   

Likelihood Ratio Test 122.38 5 <0.0001   
Score test 110.47 5 <0.0001   
Wald test 97.87 5 <0.0001   

 
 

Notes. Cox and Snell R squared=0.2467.  Nagelkerke R squared (Max rescaled R squared)=0.2978. 
Kendall’s Tau-a = 0.297. Goodman-Kruskal’s Gamma= 0.548. Somers’ Dxy= 0.539. c-statistic = 
0.769.  

SAS® Programming Codes 

PROC LOGISTIC DATA=risk432 

           MODEL risk= gender dropout family emotion esteem; 

           OUTPUT out=probs  predicted=prob xbeta=logit; 

RUN; 
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 According to Begg and Gray (1984, cited 
in Hosmer & Lemeshow, 2001, p. 281), the 
goodness-of-fit test of a multinomial model may 
be carried out by applying the Hosmer and 
Lemeshow (H-L) test to two of the three outcome 
categories, then integrating the test results 
descriptively. For the logistic model comparing 
low risk adolescents with medium risk 
adolescents, the H-L test yielded a χ2 of 5.8011 
with 8 degrees of freedom. For the logistic model 
comparing low risk adolescents with high risk 
adolescents, the H-L test yielded a χ2 of 8.2925, 
also with 8 degrees of freedom. Both test results 
were statistically insignificant (p>.40) indicating 
that both models fit the data well. In other words, 
the null hypothesis of a good model fit to data was 
tenable. 

(d) Validations of predicted probabilities.  
As was explained previously, the MLR model 
predicts the logit of high and medium levels of 
behavioral risk from a set of explanatory variables. 
Since logit is the natural log of the odds [or 
probability/ (1-probability)], it can be transformed 
back to the probability scale, according to 
Equations (7) and (8). Once the predicted 
probability of behavioral risk is calculated, it can 
be compared with the actual risk behavior to 
determine if high probabilities are associated with 
the high level of behavioral risk, low probabilities 
with the low level of behavioral risk, and middle-
range probabilities with the medium level of 
behavioral risk.  
 SAS® PROC LOGISITC (version 8) 
provides four measures of association for logistic 
regression models. These are: Kendall’s Tau-a, 
Goodman-Kruskal’s Gamma, Somers’ D statistic, 
and the c statistic (Table 2). Kendall’s Tau-a is a 
rank-order correlation coefficient without 
adjustments for ties; for the MLR model, it 
equaled 0.287. Goodman-Kruskal’s Gamma 
equaled 0.548. According to Peng, Lee, and 
Ingersoll (2002), it is a more useful and 
appropriate measure than Tau-a when there are 
ties on both dependent variable categories and 
predicted probabilities (the present data had 923 
ties — approximately 1.8% of all pairs). This 
measure is interpreted as 54.8% fewer errors made 
in predicting which of two adolescents would be at 
a greater behavioral risk by utilizing the estimated 
probabilities, than by chance alone (Demaris, 

1992). Some caution is advised in using the 
Gamma statistic since: (1) it has a tendency to 
overstate the strength of association between 
estimated probabilities and outcomes (Demaris), 
and (2) a value of zero does not necessarily imply 
independence when the data structure exceeds a 2 
by 2 format (Siegel & Castellan, 1988). 
 Somers’ D is a preferred extension of 
Gamma whereby one variable is designated as the 
dependent variable and the other the independent 
variable (Siegel & Castellan, 1988). For the MLR 
model, Somers’ D was 0.539 (Table 2). There are 
two asymmetric forms of Somers’ D statistic: Dxy 
and Dyx. Only Dyx correctly represents the degree 
of association between the behavioral risk level 
(y), designated as the dependent variable, and the 
estimated probability (x), designated as the 
independent variable (Demaris, 1992). 
 Unfortunately, SAS® computes only Dxy, 
although this index can be corrected to Dyx in 
SAS® (Peng & So, 1998). For the present model, 
the c statistic was 0.769 (Table 2). This means that 
for 76.90% of all possible pairs of adolescents, one 
at a greater risk (e.g., high or medium level) than 
the other (e.g., medium or low level), the MLR 
model correctly assigned a higher probability to 
those measured by HBQ at greater behavioral risk. 
Thus the model worked better than assigning 
observations randomly into categories of high, 
medium, or low behavior risk. The c statistic 
ranges from 0.5 to 1.  
 A 0.5 value means that the model is no 
better than assigning observations randomly into 
categories of the dependent variable. A value of 1 
means that the assignment of probabilities matches 
perfectly with the ordered categories of the 
dependent variable (e.g., high with high, medium 
with medium, and low with low). If several 
models were fitted to the same data, the model 
chosen as the “best” model should be associated 
with the highest c statistic. Thus, the c statistic 
provides a basis for comparing different models 
fitted to the same data, or the same model fitted to 
different data sets.  
 
Reporting Multinomial Logistic Regression 
Results 
 In addition to Tables 1 and 2, it is helpful 
to profile adolescents with certain characteristics 
and relate these characteristics to the predicted 



PENG & NAEGLE NICHOLS 185 
 

probability of engaging in high, medium, or low 
level of risky behaviors. For this purpose, several 
boys and girls, from either an intact, step-parent, 
or single-parent home, were selected from the data 
base. These characteristics, along with their 
indication to stay in or drop out of school and their 
emotional risk and self-esteem measure, are shown 
in Table 3 (following References section) to be 
related to their predicted probability of engaging 
in various levels of risky behaviors. It is noted in 
Table 3 that 8 cases (#6, 12, 19, 22, 30, 31, 34, and 
36) did not exist in the data. These cases may be 
explained by their refusal to participate, missing 
data (to be addressed in the next section), and the 
improbable likelihood of locating these 
adolescents in the population (e.g., case #30, 31, 
34, and 36).  

Among boys from the intact family (cases 
#1 to #5), the probability of engaging in low-level 
of risky behaviors (#3) was associated with a very 
low emotional risk score and no intention to drop 
out of school. Likewise, girls from the intact 
family (cases #7 to #11), who were predicted to 
engage in low-level of risky behaviors, did not 
intend to drop out from school and were measured 
low on emotional risk.  
 Boys from the step-parent family (#13 to 
#18), were predicted to engage in medium to high 
level of risky behaviors. The higher the emotional 
risk score, the greater was the probability of being 
associated with high-risk behaviors (#18). For 
girls from step-parent families (#20, 21, 23, and 
24), those with no intention to drop out of school 
(#20 and #21) were predicted to engage in lower 
levels of risky behaviors than those with an 
intention to drop out of school. 
 Among boys from the single -parent home 
(#25 to #29), engaging in high-level risky 
behaviors was predicted for the boy with an 
intention to drop out of school (#29), whereas low-
level was predicted for the boy who had no 
intention to drop out of school, scored low on the 
emotion risk measure, and high on the self-esteem 
test (#26). Among girls from the single -parent 
home (#32, 33, and 35), all were predicted to 
engage in medium level of risky behaviors. 
Though cases #32 and #33 did not intend to drop 
out of school, they scored high on emotional risk 
and low on self-esteem. Case #35 intended to drop 
out of school; she was measured comparatively 
low on emotional risk and high on self-esteem. 

Missing Data 
 It is important to point out the problem 
with missing data encountered in the multinomial 
logistic modeling, especially for the explanatory 
variable emotional risk (EMOTION). Descriptive 
analyses of the data suggested one plausible 
explanation for the insignificant relationship 
between emotional risk and behavioral risk (Table 
2). Of the 85 cases with missing data, 77 were 
missing behavioral risk data, 34 were missing 
emotional risk data, and six were missing drop-out 
scores. It was noted that the range (34.21 to 
82.03), mean (50.11), and standard deviation 
(10.94) for the 51 (=85−34) emotional risk scores 
not included in the analysis, were slightly higher 
than those used in the analysis. Furthermore, 25 
(or 49.02%) of the 51 emotional risk scores were 
above the overall sample mean of 48.72. It would 
be important to ascertain why adolescents with 
slightly higher emotional risk scores chose not to 
complete the behavioral risk assessment.  Thus, 
missing data on the dependent variable might not 
be missing completely at random (Little and 
Rubin, 1987). 

To answer this question statistically, we 
imputed all missing values using the EM method 
installed in the MVA (missing value analysis) 
module of SPSS Version 11.01. The complete data 
set with imputed values (N=517 observations) 
contained 255 adolescents at low behavioral risk, 
228 at medium risk, and 34 at high risk. The 
complete data set was submitted to SAS® PROC 
LOGISTIC (Version 8e) for multinomial logistic 
regression modeling. Results were very similar to 
those in Table 2, namely, gender, intention to drop 
out from school, family structure, and self-esteem 
were statistically significant at p<.0001. The 
emotional risk variable was again not a 
statistically significant predictor. An examination 
of correlations between the behavioral risk level 
and the five predictors showed that the positive 
correlation between emotional risk scores and the 
behavioral risk level, though positive, was not as 
high as the correlation between self-esteem scores 
and behavioral risks. And there was a strong 
negative correlation between emotion risk and 
self-esteem (Pearson r = -.494). Based on these 
results, we concluded that the missing data did not 
bias the interpretations given earlier for the MLR 
model. 
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Conclusion 
 

In this article, we applied multinomial logistic 
regression to data based on 432 adolescents’ self-
reported measures of behavioral risk, emotional 
risk, self-esteem, intention to drop out of school, 
and their gender and family structure to test a 
research hypothesis. The research hypothesis  
stated that, “the likelihood that an adolescent child 
is at high, medium, or low level of self-injurious 
behavioral risk is related to his/her gender, 
intention to drop out of school, family structure, 
emotional risk, and self esteem.” Logistic 
regression results supported the statistical 
significance of four explanatory variables. 
 Specifically, the likelihood of an 
adolescent participating in risky behaviors was 
negatively related to his/her self-esteem scores, 
but positively related to intention to drop out of 
school, family structure, and gender. If all other 
explanatory variables were held as constants, 
adolescents with the following profiles were more 
likely, than their counterparts, to engage in risky 
behaviors: boys, intending to drop out of school, 
living in a single-parent household, and having 
low self-esteem. The effectiveness of the 
multinomial logistic model was supported by 
multiple indices, including the model’s overall test 
of all explanatory variables, statistical significance 
test of each explanatory variable, the predictive 
power of the model, and its interpretability. 
 Three methodological issues encountered 
during the logistic regression analysis were 
highlighted and treated in our discussion of the 
results. These included (1) the use of odds ratio in 
interpreting results obtained from MLR models, 
(2) the absence of an extension of the Hosmer and 
Lemeshow goodness-of-fit test for multinomial 
logistic models, and (3) the missing data problem. 

From the standpoint of modeling 
categorical outcomes, logistic regression is more 
flexible and less restrictive than discriminant 
function analysis, log-linear models, or modified 
probability models (Peng, Manz, & Keck, 2001). 
While logistic regression is gaining popularity in 
health and social sciences research (Peng, Lee, & 
Ingersoll, 2002; Peng, So, Stage, & St. John, 
2002), there are few studies that demonstrate a 
preferred pattern of the application of multinomial 
logistic regression methods. It is hoped that this 
paper has demonstrated that multinomial logistic 

regression is an effective technique for profiling 
those youth at greatest risk for participation in 
risky health behaviors. Psychologists and 
educators can utilize findings to plan prevention 
programs, as well as to apply the versatile logistic 
technique in psychological, educational, and 
health research concerning adolescents.   
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Table 3. Predicated Probability of Participating in Self-injurious Behavior for 36 Children. 
 
Case 
No. 

SEX 
ß= 

1.107 
1=boy 
0=girl 

DROPOUT 
ß=2.1818 

1=yes 
0=no 

FAMILY 
ß=0.4135 
1=intact,  
2=step,  
3=single 

EMOTION 
ß=0.0074 

ESTEEM  
ß= 

−0.0488 

Intercept 
1 

α1 = 
−0.6211 

Intercept  
2 

α2 =2.522 

Predicted probability 
of participating in 

self-injurious behavior 
    p1                 p 2           p 3   
 (high) (medium)   (low)            

Actual Behavior risk, 
1=high, 2=med, 3=low 

(score on HBO,  
M=47.69, SD=10.89) 

1 1 0 1 62.39 32.68 −0.6211 2.5220 .0818 .5921 .3261 1   (60.40) 
2 1 0 1 80.74 32.68 −0.6211 2.5220 .0926 .6102 .2972 2   (52.77) 
3 1 0 1 32.07 71.58 −0.6211 2.5220 .0106 .1878 .8016 3   (42.65) 
4 1 1 1 72.72 46.41 −0.6211 2.5220 .3038 .6062 .0900 1   (95.21) 
5 1 1 1 63.07 37.25 −0.6211 2.5220 .3885 .5479 .0636 2   (50.00) 
6 1 1 1 ---- ---- −0.6211 2.5220 --- --- --- 3    (------) 
7 0 0 1 47.29 41.83 −0.6211 2.5220 .0166 .2645 .7189 1   (61.53) 
8 0 0 1 45.78 44.12 −0.6211 2.5220 .0147 .2422 .7431 2   (47.07) 
9 0 0 1 42.05 21.24 −0.6211 2.5220 .0425 .4643 .4932 3   (42.70) 
10 0 1 1 51.37 34.97 −0.6211 2.5220 .1772 .6559 .1669 1   (70.23) 
11 0 1 1 56.77 37.25 −0.6211 2.5220 .1670 .6559 .1771 2   (53.27) 
12 0 1 1 ---- ---- −0.6211 2.5220 --- --- --- 3   (-------) 
13 1 0 2 41.36 50.98 −0.6211 2.5220 .0451 .4776 .4773 1   (72.83) 
14 1 0 2 46.14 50.98 −0.6211 2.5220 .0467 .4848 .4685 2   (45.84) 
15 1 0 2 36.11 41.83 −0.6211 2.5220 .0663 .5559 .3778 3   (40.44) 
16 1 1 2 38.59 57.85 −0.6211 2.5220 .2269 .6449 .1282 1   (92.50) 
17 1 1 2 54.87 46.41 −0.6211 2.5220 .3665 .5641 .0694 2   (46.99) 
18 1 1 2 70.35 34.97 −0.6211 2.5220 .5312 .4321 .0367 3   (43.52) 
19 0 0 2 --- --- −0.6211 2.5220 --- --- --- 1   (-------) 
20 0 0 2 34.21 44.12 −0.6211 2.5220 .0203 .3041 .6756 2   (45.78) 
21 0 0 2 50.18 53.27 −0.6211 2.5220 .0147 .2421 .7432 3   (40.44) 
22 0 1 2 ---- --- −0.6211 2.5220 --- --- ---- 1   (------) 
23 0 1 2 54.84 50.98 −0.6211 2.5220 .1326 .6473 .2201 2   (48.64) 
24 0 1 2 50.18 46.41 −0.6211 2.5220 .1559 .6547 .1894 3   (43.08) 
25 1 0 3 63.52 23.52 −0.6211 2.5220 .2432 .6384 .1184 1   (67.90) 
26 1 0 3 32.07 67.00 −0.6211 2.5220 .0296 .3848 .5856 2   (56.69) 
27 1 0 3 50.18 48.70 −0.6211 2.5220 .0786 .5854 .3360 3   (40.44) 
28 1 1 3 43.54 48.70 −0.6211 2.5220 .4184 .5250 .0566 1   (85.49) 
29 1 1 3 56.74 44.12 −0.6211 2.5220 .4979 .4604 .0417 2   (54.31) 
30 1 1 3 --- --- −0.6211 2.5220 --- --- ---- 3   (-------) 
31 0 0 3 --- --- −0.6211 2.5220 --- --- --- 1   (-------) 
32 0 0 3 64.12 28.10 −0.6211 2.5220 .0786 .5856 .3358 2   (48.41) 
33 0 0 3 60.08 39.54 −0.6211 2.5220 .0453 .4781 .4766 3   (44.41) 
34 0 1 3 --- --- −0.6211 2.5220 --- --- --- 1   (-------) 
35 0 1 3 43.63 48.70 −0.6211 2.5220 .1922 .6543 .1535 2   (46.34) 
36 0 1 3 --- --- −0.6211 2.5220 --- --- ---- 3   (-------) 
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